デフォルト表紙
市場調査レポート
商品コード
1423172

希土類元素市場レポート:用途別、地域別、2024年~2032年

Rare Earth Elements Market Report by Application (Magnets, NiMH Batteries, Auto Catalysts, Diesel Engines, Fluid Cracking Catalyst, Phosphers, Glass, Polishing Powders, and Others), and Region 2024-2032

出版日: | 発行: IMARC | ページ情報: 英文 145 Pages | 納期: 2~3営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=155.42円
希土類元素市場レポート:用途別、地域別、2024年~2032年
出版日: 2024年01月30日
発行: IMARC
ページ情報: 英文 145 Pages
納期: 2~3営業日
  • 全表示
  • 概要
  • 図表
  • 目次
概要

世界の希土類元素市場規模は、2023年に110億米ドルに達しました。今後、IMARC Groupは、市場は2032年までに343億米ドルに達し、2024年から2032年の間に13.1%の成長率(CAGR)を示すと予測しています。さまざまな分野での希土類元素の有用性に対する認識の高まり、さまざまな産業用途、家電製品の広範な採用、持続可能でクリーンなエネルギーソリューションへのシフトが、市場を推進している主な要因の一部です。

希土類元素は、15種のランタノイドにスカンジウムとイットリウムを加えた17種の化学元素からなるグループです。その名前とは裏腹に、ほとんどの希土類元素は地殻中で特に希少というわけではないです。希少」なのは、採掘や精製が難しいからです。これらの元素は、ユニークな磁気特性、触媒特性、発光特性で知られており、さまざまなハイテク用途で重要な役割を担っています。スマートフォンや家電製品から再生可能エネルギー・システムや高度な軍事技術に至るまで、幅広い製品に不可欠な構成要素となっています。

コンシューマーエレクトロニクス、自動車、再生可能エネルギーなど、さまざまな産業における著しい技術革新は、世界中の希土類元素市場の成長を促進する重要な要因の1つとなっています。希土類元素は、電池、磁石、電子ディスプレイなどの部品を製造する上で極めて重要であり、その需要は技術の進歩とともに高まっています。これらの元素は、レーダーシステム、ジェットエンジン、ミサイル誘導システムに使用される高性能材料の製造に不可欠であるため、市場は防衛用途での役割によっても牽引されています。グリーンエネルギーの重視の高まりも、主要な成長促進要因として作用しています。レアアース元素は、風力タービンや電気自動車の生産に不可欠であり、二酸化炭素排出量を削減するという世界の持続可能性の目標に合致しています。さらに、多くのレアアース供給が特定の地域に集中しているため、サプライチェーンに潜在的なボトルネックが発生しており、地政学と貿易関係が市場に大きな影響を与えています。さらに、レアアースを使用する技術への補助金や戦略的備蓄を含む政府の政策が、世界中の市場に前向きな見通しを生み出しています。

レアアース市場の動向と促進要因:

大幅な技術進歩

レアアース需要の最も強力な原動力の1つは、技術革新の絶え間ないペースです。これらの元素は、数多くのハイテク用途に不可欠です。例えば、風力タービンに使用される強力な磁石にはネオジムが必要であり、ハイブリッド車や電気自動車のバッテリーにはランタンが使用されることが多いです。これに加えて、スマートフォン、タブレット端末、ノートパソコンなど、多くの電子機器には、より小型で効率的な部品を実現するレアアース(希土類元素)が使用されています。これらの技術が進化を続け、採用率が上昇するにつれて、レアアースに対する需要が高まっており、市場価値をさらに押し上げています。

グリーンエネルギーへの取り組みの高まり

環境の持続可能性は、世界中の政府や組織にとって焦点となりつつあり、クリーンエネルギー技術への需要を刺激しています。レアアース(希土類元素)は、この分野で重要な役割を果たしています。ネオジムやジスプロシウムなどの元素は、風力タービンの機能に不可欠な永久磁石の生産に使用されます。同様に、輸送部門の電化の推進も、電池や電気モーターに使用されるレアアース元素の需要を押し上げています。各国が野心的な気候目標を達成し、再生可能エネルギー源への移行に努める中、これらの元素の市場は活気を帯びています。

防衛用途の増加

防衛用途における希土類元素の需要は、市場の成長に大きく貢献しています。これらの元素は、さまざまな高度な軍事技術に不可欠です。たとえば、レアアースは精密誘導弾、レーダーシステム、航空電子工学の製造に不可欠なコンポーネントです。また、暗視ゴーグルやその他の光学機器用の特殊ガラスの製造にも使用されています。地政学的緊張が高まり、各国が防衛能力の近代化にさらに投資するようになると、レアアースの必要性が高まる。高性能材料への軍事的な依存は、これらの元素を戦略的優先事項とし、しばしば備蓄や長期調達契約につながります。

目次

第1章 序文

第2章 調査範囲と調査手法

  • 調査目的
  • 利害関係者
  • データソース
    • 一次情報
    • 二次情報
  • 市場推定
    • ボトムアップアプローチ
    • トップダウンアプローチ
  • 調査手法

第3章 エグゼクティブサマリー

第4章 希土類元素とは何か?

第5章 希土類元素:本当にレアなのか?

  • 埋蔵量の推定
  • レアアースの寿命は?

第6章 希土類元素:鉱山経済学

  • 鉱山の評価グレードと組成が鍵
  • 新規プロジェクトの開発:数年かかることもある
  • レアアースの採掘コスト:主に立地とグレードの開発
  • インフラと資本コスト
  • 操業コスト
  • 主要プロジェクト
    • アラフラ・リソーシズ社-ノーランド・プロジェクト
    • ネカラチョ希土類元素プロジェクト
    • Kvanefjeldプロジェクト-Greenland Minerals &Energy Limited
    • ダボ・ジルコニア-アルケイン・リソーシズ社
  • 採掘と加工
    • 鉱業
    • 川下処理
  • 価格
    • レアアース価格変動要因
    • 過去の価格
    • 価格見通し

第7章 世界のレアアース市場における中国の役割

  • 中国はレアアースを独占している
  • 中国の採掘コストは他のレアアース生産国よりも大幅に低い
  • 鉱山業者は適切な作業基準と環境規制の欠如から利益を得てきた
  • 中国は他のレアアース生産国に比べ、社内ノウハウが格段に高い
  • 中国はレアアース市場における世界的優位性を維持するため、戦略的に生産割当量を増やしている
  • 中国は高価値商品の輸出国になることを目指している

第8章 世界のレアアース市場

  • レアアースの総販売量と生産量
  • レアアースの地域別生産量
    • 現在操業中の鉱山
      • バヤンオボ(中国)
      • 中国・龍南
      • 中国・宣武
      • インド
      • ブラジル、イースタン・コースト
      • マレーシア、ラハト
      • オーストラリア、マウント・ウェルド
      • 米国、マウンテン・パス
      • オーストラリア、ノーランズ
      • 南アフリカ、スティーンカンプスクラール
      • グリーンランド、クヴァネフェルド
      • ベトナム、ドンパオ
      • オーストラリア、ダボ・ジルコニア
    • 操業中の鉱山の可能性
      • カナダ、ネカラチョ
  • レアアースの地域別消費量
    • 中国
    • 日本および北東アジア
    • 米国

第9章 レアアース個別元素の需要と供給

  • 近い将来供給不足に直面する元素
    • プラセオジム
      • 元素の概要と供給リスク
      • 供給と需要
    • ネオジム
      • 元素の概要と供給リスク
      • 供給と需要
  • 近い将来供給過多になる元素
    • テルビウム
      • 元素の概要と供給リスク
      • 供給と需要
    • イットリウム
      • 元素の概要と供給リスク
      • 供給と需要
    • ランタン
      • 元素の概要と供給リスク
      • 需要と供給
    • セリウム
      • 元素の概要と供給リスク
      • 供給と需要
    • ジスプロシウム
      • 元素の概要と供給リスク
      • 供給と需要
    • サマリウム
      • 元素の概要と供給リスク
      • 供給と需要
    • ユーロピウム
      • 元素の概要と供給リスク
      • 供給と需要

第10章 市場:用途別

  • 磁石
  • ニッケル水素電池
  • 自動車触媒
  • ディーゼルエンジン
  • 流動分解触媒
  • ホスファ
  • ガラス
  • 研磨パウダー
  • その他の用途

第11章 イオン吸着粘土の採掘と加工の概要

  • 現在の技術
  • RE酸化物の処理に関わる典型的なコスト

第12章 潜在的供給不足の克服

  • 備蓄
  • リサイクル
  • 代替
  • レアアース消費者の材料不足戦略

第13章 競合情勢

  • 市場構造
  • 主要企業
  • 主要企業のプロファイル
    • Lynas Corporation Ltd.
    • Arafura Resources Limited
    • Great Western Minerals Group Ltd.
    • Avalon Advanced Materials Inc.
    • Greenland Minerals Ltd
    • Alkane Resources Ltd
    • Neo Performance Materials
    • Iluka Resource Limited
    • IREL(India)Limited
    • Canada Rare Earths Corporation
図表

List of Figures

  • Figure 1: Periodic Table Showing Rare Earth Elements
  • Figure 2: Topology of Rare Earth Elements
  • Figure 3: Global: Rare Earth Metal Reserves by Country (in Million Metric Tons), 2023
  • Figure 4: Global: Rare Earth Metal Reserves by Country (in %), 2023
  • Figure 5: Comparative Total Rare Earth Oxide Values of Various Rare Earth Mines
  • Figure 6: Kvanefjeld Project Capital Cost Estimated Breakdown
  • Figure 7: Global: Sources of Rare Earth Metals
  • Figure 8: Flow Chart: Concentration of Rare Earth Ores
  • Figure 9: Flow Chart: Extraction of Rare Earths from their Concentrated Ores
  • Figure 10: China & US: Average Labor Costs Per Hour (in US$), 2023
  • Figure 11: Global: Rare Earth Metals Production (in 000' Metric Tons), 2018-2023
  • Figure 12: Global: Rare Earth Metals Market (in Billion US$), 2018-2023
  • Figure 13: Global: Rare Earth Metals Production Forecast (in 000' Metric Tons), 2024-2032
  • Figure 14: Global: Rare Earth Metals Market Forecast (in Billion US$), 2024-2032
  • Figure 15: Global: Rare Earth Metals Production by Country (in %), 2023
  • Figure 16: Bayan Obo Rare Earth Mine: Composition of Various Elements (in %)
  • Figure 17: Longnan Rare Earth Mine: Composition of Various Elements (in %)
  • Figure 18: Xunwu Rare Earth Mine: Composition of Various Elements (in %)
  • Figure 19: India Rare Earth Mine: Composition of Various Elements (in %)
  • Figure 20: Eastern Coast Rare Earth Mine: Composition of Various Elements (in %)
  • Figure 21: Lahat Rare Earth Mine: Composition of Various Elements (in %)
  • Figure 22: Mt Weld Rare Earth Mine: Composition of Various Elements (in %)
  • Figure 23: Mountain Pass Rare Earth Mine: Composition of Various Elements (in %)
  • Figure 24: Nolans Rare Earth Mine: Composition of Various Elements (in %)
  • Figure 25: Steenkampskraal Rare Earth Mine: Composition of Various Elements (in %)
  • Figure 26: Kvanefjeld Rare Earth Mine: Composition of Various Elements (in %)
  • Figure 27: Dong Pao Rare Earth Mine: Composition of Various Elements (in %)
  • Figure 28: Dubbo Zirconia Rare Earth Mine: Composition of Various Elements (in %)
  • Figure 29: Nechalacho Rare Earth Mine: Composition of Various Elements (in %)
  • Figure 30: Global: Rare Earth Elements Consumption by Region (in %), 2023
  • Figure 31: Global: Rare Earth Elements Consumption by Region Forecast (in %), 2032
  • Figure 32: Praseodymium: Supply & Demand Balance (in Metric Tons), 2023
  • Figure 33: Praseodymium: Historical Prices (in US$/kg), 2018-2023
  • Figure 34: Praseodymium: Price Forecast (in US$/kg), 2024-2032
  • Figure 35: Neodymium: Supply & Demand Balance (in Metric Tons), 2023
  • Figure 36: Neodymium: Historical Prices (in US$/kg), 2018-2023
  • Figure 37: Neodymium: Price Forecast (in US$/kg), 2024-2032
  • Figure 38: Terbium: Supply & Demand Balance (in Metric Tons), 2023
  • Figure 39: Terbium: Historical Prices (in US$/kg), 2018-2023
  • Figure 40: Terbium: Price Forecast (in US$/kg), 2024-2032
  • Figure 41: Yttrium: Supply & Demand Balance (in Metric Tons), 2023
  • Figure 42: Yttrium: Historical Prices (in US$/kg), 2018-2023
  • Figure 43: Yttrium: Price Forecast (in US$/kg), 2024-2032
  • Figure 44: Lanthanum: Supply & Demand Balance (in Metric Tons), 2023
  • Figure 45: Lanthanum: Historical Prices (in US$/kg), 2018-2023
  • Figure 46: Lanthanum: Price Forecast (in US$/kg), 2024-2032
  • Figure 47: Cerium: Supply & Demand Balance (in Metric Tons), 2023
  • Figure 48: Cerium: Historical Prices (in US$/kg), 2018-2023
  • Figure 49: Cerium: Price Forecast (in US$/kg), 2024-2032
  • Figure 50: Dysprosium: Supply & Demand Balance (in Metric Tons), 2023
  • Figure 51: Dysprosium: Historical Prices (in US$/kg), 2018-2023
  • Figure 52: Dysprosium: Price Forecast (in US$/kg), 2024-2032
  • Figure 53: Samarium: Supply & Demand Balance (in Metric Tons), 2023
  • Figure 54: Samarium: Historical Prices (in US$/kg), 2018-2023
  • Figure 55: Samarium: Price Forecast (in US$/kg), 2024-2032
  • Figure 56: Europium: Supply & Demand Balance (in Metric Tons), 2023
  • Figure 57: Europium: Historical Prices (in US$/kg), 2018-2023
  • Figure 58: Europium: Price Forecast (in US$/kg), 2024-2032
  • Figure 59: Diesel Particulate Filter

List of Tables

  • Table 1: Rare Earth Elements: Light & Heavy Definitions
  • Table 2: Rare Earth Elements: Characteristics & Applications
  • Table 3: Light & Heavy Rare Earth Elements: Key Barriers to Entry
  • Table 4: Total Time & Stages Required in Constructing & Bringing a Rare Earth Mine to Production
  • Table 5: Rare Earth Elements: Mining & Processing Costs
  • Table 6: Arafura Resources Limited-Nolans Project: Mining & Production
  • Table 7: Arafura Resources Limited-Nolans Project: Financials Involved
  • Table 8: Nechalacho Earth Elements Project Capital Cost Summary
  • Table 9: Nechalacho Earth Elements Site Capital Cost Summary
  • Table 10: Nechalacho Earth Elements Project Operating Cost
  • Table 11: Kvanefjeld Project Capital Cost Summary
  • Table 12: Kvanefjeld Project Operating Cost Summary
  • Table 13: Dubbo Zirconia Project Capital Cost Estimates
  • Table 14: Dubbo Zirconia Project Operating Cost Estimates
  • Table 15: Sources of Rare Earth Elements & Their Composition
  • Table 16: Average Annual Prices of Individual Rare Earth Elements (in US$/Kg), 2018-2023
  • Table 17: Average Annual Price Forecast of Individual Rare Earth Elements (in US$/Kg), 2024-2032
  • Table 18: China: Rare Earth Elements Production Quota (in Metric Tons), 2018-2023
  • Table 19: Global: Distribution of Elements in Various Rare Earth Mines (in %)
  • Table 20: Bayan Obo Rare Earth Mine: Composition of Various Elements (in %)
  • Table 21: Longnan Rare Earth Mine: Composition of Various Elements (in %)
  • Table 22: Xunwu Rare Earth Mine: Composition of Various Elements (in %)
  • Table 23: India Rare Earth Mine: Composition of Various Elements (in %)
  • Table 24: Eastern Coast Rare Earth Mine: Composition of Various Elements (in %)
  • Table 25: Lahat Rare Earth Mine: Composition of Various Elements (in %)
  • Table 26: Mt Weld Rare Earth Mine: Composition of Various Elements (in %)
  • Table 27: Mountain Pass Rare Earth Mine: Composition of Various Elements (in %)
  • Table 28: Nolans Rare Earth Mine: Composition of Various Elements (in %)
  • Table 29: Steenkampskraal Rare Earth Mine: Composition of Various Elements (in %)
  • Table 30: Kvanefjeld Rare Earth Mine: Composition of Various Elements (in %)
  • Table 31: Dong Pao Rare Earth Mine: Composition of Various Elements (in %)
  • Table 32: Dubbo Zirconia Rare Earth Mine: Composition of Various Elements (in %)
  • Table 33: Nechalacho Rare Earth Mine: Composition of Various Elements (in %)
  • Table 34: Global: Rare Earth Elements Consumption by Region & Application (in Metric Tons), 2023
  • Table 35: Global: Rare Earth Elements Consumption by Region & Application Forecast (in Metric Tons), 2032
  • Table 36: China: Rare Earth Elements Consumption by Application (in Metric Tons), 2023 and 2032
  • Table 37: Japan & Northeast Asia: Rare Earth Elements Consumption by Application (in Metric Tons), 2023 and 2032
  • Table 38: US: Rare Earth Elements Consumption by Application (in Metric Tons), 2023 and 2032
  • Table 39: Global: Supply of Various Rare Earth Elements (in Metric Tons), 2023
  • Table 40: Global: Supply & Demand of Various Rare Earth Elements (in Metric Tons), 2023
  • Table 41: Praseodymium: Overview, Importance to Clean Energy & Supply Risk
  • Table 42: Neodymium: Overview, Importance to Clean Energy & Supply Risk
  • Table 43: Terbium: Overview, Importance to Clean Energy & Supply Risk
  • Table 44: Yttrium: Overview, Importance to Clean Energy & Supply Risk
  • Table 45: Lanthanum: Overview, Importance to Clean Energy & Supply Risk
  • Table 46: Cerium: Overview, Importance to Clean Energy & Supply Risk
  • Table 47: Dysprosium: Overview, Importance to Clean Energy & Supply Risk
  • Table 48: Samarium: Overview, Importance to Clean Energy & Supply Risk
  • Table 49: Europium: Overview, Importance to Clean Energy & Supply Risk
  • Table 50: Global: Demand of Rare Earth Elements by Application (in Metric Tons), 2018-2023
  • Table 51: Global: Demand of Rare Earth Elements by Application (in Metric Tons), 2024-2032
  • Table 52: Global: Demand of Rare Earth Elements for Magnets (in Metric Tons), 2018-2023
  • Table 53: Global: Demand of Rare Earth Elements for Magnets (in Metric Tons), 2024-2032
  • Table 54: Global: Demand of Rare Earth Elements for NiMH Batteries (in Metric Tons), 2018-2023
  • Table 55: Global: Demand of Rare Earth Elements for NiMH Batteries (in Metric Tons), 2024-2032
  • Table 56: Global: Demand of Rare Earth Elements for Auto Catalysts (in Metric Tons), 2018-2023
  • Table 57: Global: Demand of Rare Earth Elements for Auto Catalysts (in Metric Tons), 2024-2032
  • Table 58: Global: Demand of Rare Earth Elements for Diesel Engines (in Metric Tons), 2018-2023
  • Table 59: Global: Demand of Rare Earth Elements for Diesel Engines (in Metric Tons), 2024-2032
  • Table 60: Global: Demand of Rare Earth Elements for FCC (in Metric Tons), 2018-2023
  • Table 61: Global: Demand of Rare Earth Elements for FCC (in Metric Tons), 2024-2032
  • Table 62: Global: Demand of Rare Earth Elements for Phosphers (in Metric Tons), 2018-2023
  • Table 63: Global: Demand of Rare Earth Elements for Phosphers (in Metric Tons), 2024-2032
  • Table 64: Global: Demand of Rare Earth Elements for Glass (in Metric Tons), 2018-2023
  • Table 65: Global: Demand of Rare Earth Elements for Glass (in Metric Tons), 2024-2032
  • Table 66: Global: Demand of Rare Earth Elements for Polishing Powders (in Metric Tons), 2018-2023
  • Table 67: Global: Demand of Rare Earth Elements for Polishing Powders (in Metric Tons), 2024-2032
  • Table 68: Global: Demand of Rare Earth Elements for Other Applications (in Metric Tons), 2018-2023
  • Table 69: Global: Demand of Rare Earth Elements for Other Applications (in Metric Tons), 2024-2032
  • Table 70: Rare Earth Elements Processing Costs (US$/lb, TREO)
  • Table 71: Mill Operating Costs (US$/lb, TREO)
  • Table 72: Extraction/ Separation Plant Operating Costs (US$/lb, TREO)
  • Table 73: Substitution Possibilities in Rare Earth Elements
  • Table 74: Material Shortfall Strategies by Rare Earth Reserve Rich Countries
  • Table 75: Material Shortfall Strategies by Countries Not Having Rich Rare Earth Reserves
目次
Product Code: SR112024A398

Abstract

The global rare earth elements market size reached US$ 11.0 Billion in 2023. Looking forward, IMARC Group expects the market to reach US$ 34.3 Billion by 2032, exhibiting a growth rate (CAGR) of 13.1% during 2024-2032. The increasing awareness of the utility of rare earth elements across different sectors, various industrial applications, widespread adoption of consumer electronics, and the shift toward sustainable and clean energy solutions are some of the major factors propelling the market.

Rare earth elements are a group of 17 chemical elements that consist of the 15 lanthanides, along with scandium and yttrium. Despite their name, most rare earth elements are not particularly rare in the Earth's crust. What makes them "rare" is the difficulty associated with mining and refining them. These elements are known for their unique magnetic, catalytic, and luminescent properties, which make them critical in various high-technology applications. They are essential components in a wide array of products, ranging from smartphones and consumer electronics to renewable energy systems and advanced military technologies.

Significant technological innovations across various industries, including consumer electronics, automotive, and renewable energy, represent one of the key factors driving the growth of the rare earth elements market across the globe. Rare earth elements are crucial in manufacturing components like batteries, magnets, and electronic displays, whose demand is rising with technological advancements. The market is also driven by their role in defense applications as these elements are essential in producing high-performance materials used in radar systems, jet engines, and missile guidance systems. The growing emphasis on green energy is also acting as a major growth-inducing factor. Rare earth elements are vital in the production of wind turbines and electric vehicles, aligning with global sustainability goals to reduce carbon emissions. Additionally, geopolitics and trade relations significantly impact the market, as many rare earth element supplies are concentrated in specific regions, which are creating potential bottlenecks in supply chains. Moreover, government policies, including subsidies for technologies that use rare earth elements and strategic stockpiling, are creating a positive outlook for the market across the globe.

Rare Earth Elements Market Trends/Drivers:

Significant technological advancements

One of the most potent drivers of demand for rare earth elements is the relentless pace of technological innovation. These elements are indispensable in a plethora of high-tech applications. For instance, the powerful magnets used in wind turbines require neodymium, while hybrid and electric vehicle batteries often employ lanthanum. In addition to this, many electronic devices, such as smartphones, tablets, and laptops contain rare earth elements that enable smaller, and more efficient components. As these technologies continue to evolve and adoption rates climb, the demand for rare earth elements is escalating, which is further driving up the market value.

Rising green energy initiatives

Environmental sustainability is becoming a focal point for governments and organizations worldwide, stimulating the demand for clean energy technologies. Rare earth elements play a critical role in this sector. Elements like neodymium and dysprosium are used in the production of permanent magnets that are integral to the function of wind turbines. Similarly, the drive for electrification of the transport sector also boosts demand for rare earth elements used in batteries and electric motors. As nations strive to meet ambitious climate targets and transition to renewable energy sources, the market for these elements is fueling.

Rising defense applications

The demand for rare earth elements in defense applications significantly contributes to the market growth. These elements are indispensable for a variety of advanced military technologies. For instance, rare earths are essential components in the manufacturing of precision-guided munitions, radar systems, and avionics. They are also used in the production of specialized glass for night-vision goggles and other optical equipment. As geopolitical tensions escalate and nations invest more in modernizing their defense capabilities, the need for rare earth elements rises. Military reliance on high-performance materials makes these elements a strategic priority, often leading to stockpiling and long-term procurement contracts.

Rare Earth Elements Industry Segmentation:

IMARC Group provides an analysis of the key trends in each segment of the global rare earth elements market report, along with forecasts at the global and regional levels for 2024-2032. Our report has categorized the market based on application.

Breakup by Application:

Magnets

NiMH Batteries

Auto Catalysts

Diesel Engines

Fluid Cracking Catalyst

Phosphers

Glass

Polishing Powders

Others

Magnets dominate the market

A detailed breakup and analysis of the market based on the application has also been provided in the report. This includes the magnets, NiMH batteries, auto catalysts, diesel engines, fluid cracking catalyst, phosphers, glass, polishing powders, and others. According to the report, the magnets accounted for the largest market share.

Rare earth elements, particularly neodymium, dysprosium, and samarium, play a critical role in the development of high-performance magnets. These are not ordinary magnets; they offer superior magnetic properties as compared to traditional ferrite or alnico magnets. Neodymium magnets, often combined with small amounts of dysprosium to improve temperature stability, are widely used in a variety of applications requiring strong, compact magnets. In the renewable energy sector, these magnets are essential components in wind turbine generators. Their high magnetic force allows for more efficient energy conversion, thereby maximizing the electrical output. In the automotive industry, they are used in electric and hybrid vehicle motors, contributing to both power and efficiency. These magnets are also prevalent in consumer electronics like headphones, smartphones, and hard disk drives, where their small size and high magnetic strength are particularly beneficial. Additionally, they are crucial in medical technologies such as MRI machines, which rely on strong magnetic fields for imaging.

Breakup by Region:

China

Japan & Northeast Asia

United States

China represents the largest market segment

The report has also provided a comprehensive analysis of all the major regional markets, which include China, Japan & Northeast Asia, and the United States. According to the report, China accounted for the largest market share.

In China, which controls a significant portion of the global supply of rare earth elements, several factors drive the market, both domestically and internationally. China has a booming electronics manufacturing sector that heavily relies on rare earth elements. As a global hub for consumer electronics, the internal demand for these elements is high. The Chinese government is implementing strategic policies to regulate and promote the rare earth industry. These include export quotas, strategic stockpiling, and subsidies to encourage domestic production. China's dominant position in the rare earth supply chain allows it to impact global prices and availability. This creates a virtuous cycle, which is attracting further investment into mining and processing facilities within the country. China is heavily investing in renewable energy technologies, such as wind turbines and electric vehicles, which require rare earth elements. This aligns with the country's ambitious environmental goals. Investments in research and technology aim to make the extraction and processing of rare earth elements more efficient and environmentally sustainable, which is maintaining China's competitive edge.

Competitive Landscape:

In the rare earth elements market, key players are engaging in a range of strategic initiatives to strengthen their position and capitalize on growing demand. This includes investments in research and development to enhance extraction technologies and improve the efficiency of refining processes. Companies are also exploring partnerships and collaborations, not just with other mining and chemical firms, but also with end-users like technology companies, defense contractors, and renewable energy providers. Some leading players are working closely with governments to ensure stable supply chains, especially given the geopolitical sensitivities surrounding rare earth elements. Strategic stockpiling and long-term contracts are becoming more common as both companies and nations aim to mitigate supply risks. Additionally, market leaders are expanding their geographical footprint to tap into emerging markets where demand is rising due to technological adoption and industrial growth. Diversification of supply sources is also a key strategy, aimed at reducing dependence on specific regions.

The report has provided a comprehensive analysis of the competitive landscape in the market. Detailed profiles of all major companies have also been provided. Some of the key players in the market include:

Lynas Corporation Ltd.

Arafura Resources Limited

Great Western Minerals Group Ltd.

Avalon Advanced Materials Inc.

Greenland Minerals Ltd

Alkane Resources Ltd

Neo Performance Materials

Iluka Resource Limited

IREL (India) Limited

Canada Rare Earths Corporation

Recent Developments:

In April 2023, Hyderabad-based National Geophysical Research Institute has found large deposits of 15 Rare Earth Elements (REE) in Andhra Pradesh's Anantapur city. REE is a key component in many electronic devices and various industrial applications, including medical technology, aerospace, and defense.

In December 2021, China Rare Earth Group Co. Ltd, a state-owned enterprise (SOE) directly supervised by China's state assets regulator was formally established in East China's Ganzhou, Jiangxi Province. The newly launched rare earth mega SOE is a conglomerate of some top industrial producers, including the rare earth units of three of the "Big Six" SOEs that dominate the rare earth industry - Aluminum Corporation of China (CHALCO), China Minmetals Corporation, and Ganzhou Rare Earth Group Co., Ltd and two research companies - China Iron & Steel Research Institute Group and Grinm Group Corporation Ltd.

In December 2022, Japan to begin extracting rare earth metals from seabed in 2024 for electric vehicles and hybrids from the mud on the deep-sea bottom in an area off Minami-Torishima Island, a coral atoll in the Pacific Ocean about 1,900 kilometers southeast of Tokyo. Japan is aiming to reduce its reliance on China for rare earth metals.

Key Questions Answered in This Report

  • 1. What was the size of the global rare earth elements market in 2023?
  • 2. What is the expected growth rate of the global rare earth elements market during 2024-2032?
  • 3. What has been the impact of COVID-19 on the global rare earth elements market?
  • 4. What are the key factors driving the global rare earth elements market?
  • 5. What is the breakup of the global rare earth elements market based on the application?
  • 6. What are the key regions in the global rare earth elements market?
  • 7. Who are the key players/companies in the global rare earth elements market?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 What are Rare Earth Elements?

5 Rare Earth Elements: Are they Really Rare?

  • 5.1 Reserve Estimates
  • 5.2 How Long Will They Last?

6 Rare Earth Elements: Mining Economics

  • 6.1 Mine Valuation: Grades & Composition are Key
  • 6.2 Development of a New Project: Can Take Several Years
  • 6.3 Rare Earth Mining Costs: Largely Location and Grade Development
  • 6.4 Infrastructure & Capital Costs
  • 6.5 Operating Costs
  • 6.6 Key Projects
    • 6.6.1 Arafura Resources Limited-Noland Project
    • 6.6.2 Nechalacho Rare Earth Elements Project
    • 6.6.3 Kvanefjeld Project-Greenland Minerals & Energy Limited
    • 6.6.4 Dubbo Zirconia-Alkane Resources Limited
  • 6.7 Mining and Processing
    • 6.7.1 Mining
    • 6.7.2 Downstream Processing
  • 6.8 Prices
    • 6.8.1 Factors Affecting Rare Earth Element Prices
    • 6.8.2 Historical Prices
    • 6.8.3 Pricing Forecast

7 China's Role in the Global Rare Earth Elements Market

  • 7.1 China has a Monopoly Over Rare Earth Elements
  • 7.2 Mining Costs in China Are Significantly Lower Than Other Rare Earth Producers
  • 7.3 Miners Have Benefitted from the Lack of Proper Working Standards and Environmental Regulations
  • 7.4 China Has a Significantly Higher In-house Expertise Compared to Other Rare Earth Producers
  • 7.5 China is Strategically Increasing Production Quotas to Sustain Global Dominance in Rare Earth Elements Market
  • 7.6 China Aims to Become an Exporter of Higher Value Goods

8 Global Rare Earth Elements Market

  • 8.1 Total Sales and Production of Rare Earth Elements
  • 8.2 Production of Rare Earth Elements by Region
    • 8.2.1 Current Operational Mines
      • 8.2.1.1 Bayan Obo, China
      • 8.2.1.2 Longnan, China
      • 8.2.1.3 Xunwu, China
      • 8.2.1.4 India
      • 8.2.1.5 Eastern Coast, Brazil
      • 8.2.1.6 Lahat, Malaysia
      • 8.2.1.7 Mt. Weld, Australia
      • 8.2.1.8 Mountain Pass, United States
      • 8.2.1.9 Nolans, Australia
      • 8.2.1.10 Steenkampskraal, South Africa
      • 8.2.1.11 Kvanefjeld, Greenland
      • 8.2.1.12 Dong Pao, Vietnam
      • 8.2.1.13 Dubbo Zirconia, Australia
    • 8.2.2 Potential Operational Mines
      • 8.2.2.1 Nechalacho, Canada
  • 8.3 Consumption of Rare Earth Elements by Region
    • 8.3.1 China
    • 8.3.2 Japan & Northeast Asia
    • 8.3.3 United States

9 Supply & Demand of Individual Rare Earth Elements

  • 9.1 Elements that will Face Supply Shortages in the Near Future
    • 9.1.1 Praseodymium
      • 9.1.1.1 Elements Overview & Supply Risks
      • 9.1.1.2 Supply & Demand
    • 9.1.2 Neodymium
      • 9.1.2.1 Elements Overview & Supply Risks
      • 9.1.2.2 Supply & Demand
  • 9.2 Elements that be Oversupplied in the Near Future
    • 9.2.1 Terbium
      • 9.2.1.1 Elements Overview & Supply Risks
      • 9.2.1.2 Supply & Demand
    • 9.2.2 Yttrium
      • 9.2.2.1 Elements Overview & Supply Risks
      • 9.2.2.2 Supply & Demand
    • 9.2.3 Lanthanum
      • 9.2.3.1 Elements Overview & Supply Risks
      • 9.2.3.2 Supply & Demand
    • 9.2.4 Cerium
      • 9.2.4.1 Elements Overview & Supply Risks
      • 9.2.4.2 Supply & Demand
    • 9.2.5 Dysprosium
      • 9.2.5.1 Elements Overview & Supply Risks
      • 9.2.5.2 Supply & Demand
    • 9.2.6 Samarium
      • 9.2.6.1 Elements Overview & Supply Risks
      • 9.2.6.2 Supply & Demand
    • 9.2.7 Europium
      • 9.2.7.1 Elements Overview & Supply Risks
      • 9.2.7.2 Supply & Demand

10 Market by Application

  • 10.1 Magnets
  • 10.2 NiMH Batteries
  • 10.3 Auto Catalysts
  • 10.4 Diesel Engines
  • 10.5 Fluid Cracking Catalyst
  • 10.6 Phosphers
  • 10.7 Glass
  • 10.8 Polishing Powders
  • 10.9 Other Applications

11 Overview on Mining and Processing of Ion-Adsorption Clays

  • 11.1 Current Technologies
  • 11.2 Typical Costs Involved With Processing RE Oxides

12 Overcoming the Potential Shortfalls in Supply

  • 12.1 Stockpiling
  • 12.2 Recycling
  • 12.3 Substitution
  • 12.4 Material Shortfall Strategies by Various Rare Earth Consumers

13 Competitive Landscape

  • 13.1 Market Structure
  • 13.2 Key Players
  • 13.3 Profiles of Key Players
    • 13.3.1 Lynas Corporation Ltd.
    • 13.3.2 Arafura Resources Limited
    • 13.3.3 Great Western Minerals Group Ltd.
    • 13.3.4 Avalon Advanced Materials Inc.
    • 13.3.5 Greenland Minerals Ltd
    • 13.3.6 Alkane Resources Ltd
    • 13.3.7 Neo Performance Materials
    • 13.3.8 Iluka Resource Limited
    • 13.3.9 IREL (India) Limited
    • 13.3.10 Canada Rare Earths Corporation