表紙:高密度実装(MCM、MCP、SIP、3D-TSV):市場分析と技術動向
市場調査レポート
商品コード
1478709

高密度実装(MCM、MCP、SIP、3D-TSV):市場分析と技術動向

High-Density Packaging (MCM, MCP, SIP, 3D-TSV): Market Analysis and Technology Trends

出版日: | 発行: Information Network | ページ情報: 英文 | 納期: 2~3営業日

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=160.56円
高密度実装(MCM、MCP、SIP、3D-TSV):市場分析と技術動向
出版日: 2024年05月14日
発行: Information Network
ページ情報: 英文
納期: 2~3営業日
  • 全表示
  • 概要
  • 図表
  • 目次
概要

急速に進化する半導体業界において、アドバンストパッケージングングは、ハイパフォーマンスコンピューティングからコンシューマエレクトロニクスに至るまで、幅広い用途において、性能向上と統合能力の次の波を推進する、イノベーションの最前線に立っています。デバイスの小型化と複雑化に伴い、従来のパッケージング技術は物理的・機能的な限界に達しています。

人工知能(AI)、5G通信、オートモーティブエレクトロニクス、モノのインターネット(IoT)などの技術の出現により、より高い性能、低消費電力、高機能を、ますますコンパクトなフットプリントで実現するチップへの需要が急増しています。これに対応するため、3Dインテグレーション、チップレット、ファンアウトウエハーレベル・パッケージング(FOWLP)、シリコン貫通電極(TSV)などのアドバンストパッケージングング技術が重要なイネーブラーとして登場し、かつてないレベルの集積化とシステムの複雑化が可能になりました。これらの技術革新は、従来の微細化の限界を克服するだけでなく、回路設計、システムアーキテクチャ、材料科学に新たな道を開き、半導体機能の新時代を告げるものです。

急速に進化する半導体製造において、アドバンストパッケージング技術は、高性能でコンパクト、かつエネルギー効率の高い電子デバイスの開発を可能にする上で極めて重要な役割を果たしています。無数のアドバンストパッケージングング技術の中でも、ファンアウト・ウェーハレベル・パッケージング(FOWLP)、シリコン貫通ビア(TSV)、高帯域幅メモリー(HBM)、チップ・オン・ウェーハ・オン・サブストレート(CoWoS)、フォーボロスは、業界を革新する重要なイノベーションとして浮上しています。

当レポートでは、半導体アドバンストパッケージングングの現状を深く掘り下げ、最新の技術進歩、材料イノベーション、プロセス改善に関する洞察を提供しています。競合情勢を調査し、市場シェアを獲得し業界標準を推進するための主要企業とその戦略的取り組みをハイライトしています。さらに、世界のサプライチェーンダイナミクス、規制環境、地政学的要因がアドバンストパッケージングング市場に与える影響を評価し、利害関係者に今後の課題と機会に関する包括的な理解を提供しています。

目次

第1章 イントロダクション

第2章 エグゼクティブサマリー

第3章 技術の課題と動向

  • HDP技術の概要
  • 2Dパッケージ
  • 2.5Dおよび3Dパッケージ

第4章 用途

  • 最終市場別半導体産業
  • メモリ
  • 鋳造部門

第5章 競合環境

  • HDPメーカー

第6章 3D-TSV技術

  • 3D-TSVの促進要因
  • 3Dパッケージの種類
  • TSVプロセス
  • 重要な処理技術
  • 用途
  • 3Dパッケージング技術の限界
  • 企業プロファイル

第7章 市場予測

  • アドバンストパッケージングの概要
  • 促進要因
  • システムインパッケージ(SiP)
  • フリップチップ/ウエハーレベルパッケージング
  • 世界のIC市場予測
  • 世界のパッケージング市場予測
  • 世界のアドバンストパッケージング予測
図表

List of Tables

  • 3.1. Multichip Modules Vs. Circuit Board Assemblies
  • 3.2. MCM Cost Comparison
  • 3.3. Materials Challenge For Packaging
  • 3.4. Substrate Technology Features
  • 3.5. Comparison of SoC and SiP Architectures
  • 3.6. Comparison of CSP and PoP Architectures
  • 4.1. Global Semiconductor Forecast By End Market
  • 4.2. Global Semiconductor Revenue Forecast By Device Type
  • 4.3. Global Semiconductor Unit Forecast By Device Type
  • 4.4. DRAM Supply
  • 4.5. DRAM Demand
  • 4.6. DRAM Revenues
  • 4.7. NAND Supply
  • 4.8. NAND Supply-Demand
  • 4.9. NAND Unit Demand By Application
  • 4.10. NAND Revenues
  • 4.11. Comparison Of HDD and SSD For Storage
  • 4.12. Foundry Market Forecast
  • 4.13. Comparison Of Foundry Capacities
  • 5.1. MCM Manufacturers
  • 6.1. 3-D Mass Memory Volume Comparison Between Other Technologies and TI's 3D Technology In Cm3/Gbit
  • 6.2. 3-D Mass Memory Weight Comparison Between Other Technologies and TI's 3D Technology In Grams3/Gbit
  • 7.1. Semiconductor Forecast by Revenues
  • 7.2. Worldwide IC Package Market Forecast
  • 7.3. Worldwide Advanced Package Market
  • 7.4. TSMC'S CoWoS Revenue Analysis
  • 7.5. HBM TAM Demand 2023-2026

List of Figures

  • 1.1. Schematic Cross-Section View Of An MCM-D
  • 1.2. Cross-Section Of The RF And Microwave MCM-D Structure
  • 1.3. Thin Film Layers On The Planarized Core Layer Of MCM-SL/D Technology
  • 1.4. Flip Chip MCP
  • 1.5. SIP Cross Section
  • 3.1. IC Packaging Trends
  • 3.2. Technology Tree For HDP Types
  • 3.3. Form Factor Decrease By Package Type
  • 3.4. Wafer Level Packaging Processing Line
  • 3.5. TSMC's InFO
  • 3.6. SLIM and SWIFT Package Definition
  • 4.1. Global Semiconductor Forecast By End Market
  • 4.2. DRAM Roadmap By Die Shrink
  • 4.3. 3D NAND Roadmap By Die Layers
  • 4.4. HDD and SSD Shipments Forecast
  • 4.5. HDD and SSD ASP
  • 4.6. HDD and SSD Zetabytes
  • 4.7. Pure-Play Foundry Market Shares
  • 6.1. 3-D Technology On DRAM Density
  • 6.2. 3-D Through-Silicon Via (TSV)
  • 6.3. Graphical Illustration Of The Silicon Efficiency Between MCMs And 3D Technology
  • 6.4. Silicon Efficiency Comparison Between 3D Packaging Technology And Other Conventional Packaging Technologies
  • 6.5. 3D Packages
  • 6.6. Via First, Middle, And Last Process Flows
  • 6.7. Via First TSV Process Flow
  • 6.8. New Applications Driving TSV Growth
  • 6.9. Projection Of TSV Applications And Process Requirements
  • 6.10. 3-D Technology For DRAM
  • 6.11. Moore's Law For Active Element Density
  • 7.1. Various System-In-Package (SiP) Applications
  • 7.2. SiP Structures
  • 7.3. Wire Bond Versus Flip Chip
  • 7.4. Flip Chip And Wire Bond Equipment Forecast
  • 7.5. Growth In Copper Wire Bonding
  • 7.6. UNIT SHIPMENTS OF SEMICONDUCTORS
  • 7.7. WLP Demand By Devices
  • 7.8. Device Shipment Forecast FIWLP vs FOWLP
  • 7.9. WLP Demand By Wafers
  • 7.10. Projection of 3-D TSV Applications And Process Requirement
  • 7.11. Market Forecast of 3-D TSV Units
  • 7.12. Market Forecast of 3-D TSV Wafers
  • 7.13. TSMC's CoWoS Advanced Package
  • 7.14. TSMC's CoWoS Advanced Package Revenues
  • 7.15. SK hynix HBM3 Package
目次

Introduction

In the rapidly evolving semiconductor industry, advanced packaging stands at the forefront of innovation, driving the next wave of performance enhancements and integration capabilities across a broad spectrum of applications, from high-performance computing to consumer electronics. As devices shrink in size yet grow in complexity, traditional packaging techniques are reaching their physical and functional limits, prompting the industry to adopt more sophisticated, efficient, and cost-effective solutions. This comprehensive report delves into the intricate world of semiconductor advanced packaging, exploring the latest trends, technologies, and market dynamics shaping the future of this critical sector.

The advent of technologies such as artificial intelligence (AI), 5G communications, automotive electronics, and the Internet of Things (IoT) has precipitated a surge in demand for chips that offer higher performance, lower power consumption, and greater functionality, all within increasingly compact footprints. In response, advanced packaging technologies such as 3D integration, chiplets, fan-out wafer-level packaging (FOWLP), and through-silicon vias (TSVs) have emerged as key enablers, allowing for unprecedented levels of integration and system complexity. These innovations not only overcome the limitations of traditional scaling but also open new avenues for circuit design, system architecture, and material science, heralding a new era of semiconductor functionality.

This report provides a deep dive into the state of the art in semiconductor advanced packaging, offering insights into the latest technological advancements, material innovations, and process improvements. It examines the competitive landscape, highlighting the key players and their strategic initiatives to capture market share and drive industry standards. Moreover, the report assesses the impact of global supply chain dynamics, regulatory environments, and geopolitical factors on the advanced packaging market, providing stakeholders with a comprehensive understanding of the challenges and opportunities ahead.

About This Report

In the rapidly evolving landscape of semiconductor manufacturing, advanced packaging technologies play a pivotal role in enabling the development of high-performance, compact, and energy-efficient electronic devices. Among the myriad of advanced packaging techniques, fan-out wafer-level packaging (FOWLP), through-silicon vias (TSVs), High Bandwidth Memory (HBM), Chip-on-Wafer-on-Substrate (CoWoS), and Foveros have emerged as key innovations revolutionizing the industry. This essay delves into these advanced packaging technologies, exploring their principles, applications, benefits, and impact on the semiconductor ecosystem.

Fan-Out Wafer-Level Packaging (FOWLP):

Fan-out wafer-level packaging (FOWLP) is a cutting-edge packaging technique that offers superior performance, increased functionality, and enhanced miniaturization compared to traditional packaging methods. In FOWLP, the semiconductor die is embedded within a polymer matrix, and redistribution layers (RDLs) are used to redistribute the I/Os to the package perimeter.

Through-Silicon Vias (TSVs):

Through-silicon vias (TSVs) are vertical electrical interconnects that traverse through the silicon substrate, enabling multi-die stacking and 3D integration. TSVs facilitate the vertical integration of heterogeneous devices, such as logic, memory, and sensors, on a single silicon substrate, thereby reducing interconnect length, improving performance, and conserving space. TSVs are instrumental in advanced packaging technologies like 3D stacked memory, system-on-chip (SoC) integration, and interposer-based packaging, driving innovations in high-performance computing, artificial intelligence, and networking applications.

High Bandwidth Memory (HBM):

High Bandwidth Memory (HBM) is an advanced memory technology that leverages vertical stacking and TSVs to achieve unprecedented levels of memory bandwidth and energy efficiency. HBM utilizes multiple DRAM dies vertically stacked on top of each other and interconnected through TSVs, allowing for significantly higher memory bandwidth compared to traditional memory architectures. HBM is widely used in graphics cards, data centers, and highperformance computing systems, where memory bandwidth and power efficiency are critical for handling large datasets and complex workloads.

Chip-on-Wafer-on-Substrate (CoWoS):

Chip-on-Wafer-on-Substrate (CoWoS) is a packaging technology developed by TSMC that enables the integration of multiple silicon dies on a single substrate, or interposer. In CoWoS, individual chips are fabricated on separate wafers and then bonded onto a silicon interposer using microbumps and TSVs. This allows for heterogeneous integration of different functional blocks, such as logic, memory, and analog, on a single package, enabling higher levels of performance, power efficiency, and system-level integration. CoWoS is widely used in highperformance computing, networking, and AI accelerators, where heterogeneous integration is essential for achieving optimal performance and functionality.

Foveros:

Foveros is an advanced packaging technology developed by Intel that enables 3D stacking of logic dies, memory dies, and other components to create highly integrated and compact semiconductor packages. In Foveros, individual dies are fabricated separately and then stacked vertically using microbumps and TSVs, allowing for dense integration of heterogeneous components with minimal footprint. Foveros enables innovative form factors, such as chiplets and system-in-package (SiP), and facilitates the development of power-efficient, highperformance devices for a wide range of applications, including mobile computing, IoT, and edge computing.

The Need for This Report

Investing in a semiconductor advanced packaging report offers several compelling reasons, each of which contributes to enhancing your understanding of the industry and making informed decisions. Here's why you should consider purchasing such a report:

Industry Insights: A semiconductor advanced packaging report provides comprehensive insights into the latest trends, developments, and innovations shaping the semiconductor packaging landscape. It offers valuable information on emerging technologies, market dynamics, and competitive landscape, helping you stay updated with the latest industry advancements.

Market Analysis: The report offers in-depth analysis of the semiconductor packaging market, including market size, growth potential, and key drivers and challenges. It provides detailed segmentation by packaging type, application, and region, for FOWLP, through-silicon vias (TSVs), and 3D integration, as well as AI-based technologies including HBM3, CoWoS, and Foveros.

Competitive Intelligence: By examining the strategies, product portfolios, and market positioning of key players in the semiconductor packaging industry, the report offers valuable competitive intelligence. It helps you benchmark your company's performance against industry leaders, identify potential collaborators or acquisition targets, and develop effective market entry or expansion strategies.

Technology Trends: Semiconductor advanced packaging reports delve into the latest technological advancements and innovations in packaging techniques such as fan-out waferlevel packaging (FOWLP), through-silicon vias (TSVs), and 3D integration, as well as AI-based technologies including HBM3, CoWoS, and Foveros. By understanding the evolving technological landscape, you can anticipate future trends, align your R&D efforts with market demands, and gain a competitive edge in the industry.

Investment Opportunities: Armed with comprehensive market insights and competitive analysis, a semiconductor advanced packaging report enables you to identify attractive investment opportunities across different segments of the semiconductor packaging market. Whether you're a semiconductor manufacturer, equipment supplier, or investor, the report provides valuable guidance for making strategic investment decisions and maximizing returns on investment.

Table of Contents

Chapter 1. Introduction

Chapter 2. Executive Summary

  • 2.1. Summary of Technology Issues
  • 2.2. Summary of Market Forecasts

Chapter 3. Technology Issues and Trends

  • 3.1. Overview of HDP Technology
    • 3.1.1. Need for Multiple IC Integration
    • 3.1.2. Challenges of Multiple IC Integration
    • 3.1.3. Technical Constraints of Integration
    • 3.1.4. Economic Benefits of HDP
    • 3.1.5. Technology Issues
  • 3.2 2D Packages
    • 3.2.1. MCMs
      • 3.2.1.1. Substrates
      • 3.2.1.2. Thermal Management
      • 3.2.1.3. Design
      • 3.2.1.4. Known Good Die
    • 3.2.2. System In Package (SiP)
      • 3.2.2.1. SiP Challenges
      • 3.2.2.2. Cost
      • 3.2.2.3. SiP Design
      • 3.2.2.4. SoC Versus SiP
    • 3.2.3. Multichip Package (MCP)
    • 3.2.4. Package-On-Package (PoP)
  • 3.3 2.5D and 3D Packages
    • 3.3.1. Conventional Wafer Fan-Out Technologies
    • 3.3.2. Silicon Interposers
    • 3.3.3. 3D-IC Stacks

Chapter 4. Applications

  • 4.1. Semiconductor Industry by End Market
  • 4.2. Memory
    • 4.2.1. DRAM
    • 4.2.2. NAND
    • 4.2.3. China Memory
    • 4.2.4. HDD vs SSD
  • 4.3. Foundry Sector

Chapter 5. Competitive Environment

  • 5.1. HDP Manufacturers

Chapter 6 3-D-TSV Technology

  • 6.1. Driving Forces In 3D-TSV
  • 6.2 3-D Package Varieties
  • 6.3. TSV Processes
  • 6.4. Critical Processing Technologies
    • 6.4.1. Plasma Etch Technology
    • 6.4.2. Cu Plating
    • 6.4.3. Thin Wafer Bonding
    • 6.4.4. Wafer Thinning/CMP
    • 6.4.5. Lithography
  • 6.5. Applications
  • 6.6. Limitations Of 3-D Packaging Technology
    • 6.6.1. Thermal Management
    • 6.6.2. Cost
    • 6.6.3. Design Complexity
    • 6.6.4. Time To Delivery
  • 6.7. Company Profiles

Chapter 7. Market Forecast

  • 7.1. Overview of Advanced Packages
  • 7.2. Driving Forces
  • 7.3. System-in-Package (SiP)
  • 7.4. Flip Chip/Wafer Level Packaging
  • 7.5. Worldwide IC Market Forecast
  • 7.6. Worldwide Packaging Market Forecast
  • 7.7. Worldwide Advanced Package Forecast
    • 7.7.1. Worldwide 3-D Through Silicon Via (TSV) Market
      • 7.7.1.1. TSMC CoWoS
      • 7.7.1.2. Intel Foveros
      • 7.7.1.3. HBM (High Bandwidth Memory) Packages
      • 7.7.1.4. Chiplets