![]() |
市場調査レポート
商品コード
1771505
自動車エンジン管理システムの市場規模、シェア、動向分析レポート:コンポーネント別、エンジンタイプ別、車両タイプ別、地域別、セグメント予測、2025~2030年Automotive Engine Management System Market Size, Share & Trends Analysis Report By Component (Electronic Control Unit, Sensors), By Engine Type (Gasoline, Diesel, Hybrid, Electric), By Vehicle Type, By Region, And Segment Forecasts, 2025 - 2030 |
||||||
カスタマイズ可能
|
自動車エンジン管理システムの市場規模、シェア、動向分析レポート:コンポーネント別、エンジンタイプ別、車両タイプ別、地域別、セグメント予測、2025~2030年 |
出版日: 2025年06月05日
発行: Grand View Research
ページ情報: 英文 130 Pages
納期: 2~10営業日
|
自動車エンジン管理システム市場のサマリー
自動車エンジンマネジメントシステムの世界市場規模は、2024年に655億4,000万米ドルと推計され、2025~2030年にかけてCAGR 3.6%で成長し、2030年には802億5,000万米ドルに達すると予測されます。最新のエンジン管理システムは、再生可能燃料や代替燃料に対応するように設計されることが多くなっています。これは、温室効果ガスの排出量と化石燃料への依存度を削減する必要性に後押しされた変化であり、市場の成長を後押ししています。
米国エネルギー省は、内燃エンジン(ICE)は天然ガス、プロパン、バイオディーゼル、エタノールなどの燃料で、既存のインフラに大きな変更を加えることなく運転できると強調しています。
例えば、水素燃焼エンジンは極めて重要な技術革新であり、Sandia National Laboratoriesは、水素を燃料とするICEが、窒素酸化物(NOx)排出をほぼゼロにしながら、燃料対電気効率50%を達成することを実証しています。この能力により、水素はハイブリッド車や据置型動力用途の移行燃料として実行可能な位置づけとなります。EMSの多様な燃料化学物質への適応性は、カーボンニュートラルの未来を実現するために不可欠です。先進燃焼エンジンサブプログラムの研究は、エンジン設計と燃料特性の協調最適化に重点を置き、従来型燃料と代替燃料の両方で最適な燃焼力学を保証します。例えば、エタノールはオクタン価が高いため、火花点火エンジンの圧縮比を高くすることができ、ガソリンと比較して熱効率を10~15%向上させることができます。このような進歩は、既存のICEアーキテクチャと将来の再生可能燃料エコシステムとのギャップを埋めるEMSの役割を強調しています。
ハイブリッド電気パワートレインと先進EMSの統合は、燃費向上と排出ガス削減のための基本戦略として浮上しています。DOEの研究によると、内燃機関とハイブリッド電気システムを組み合わせることで、車両クラスや走行条件にもよりますが、燃費を25~50%向上させることができます。その顕著な例がプラグインハイブリッド電気自動車(PHEV)構想であり、Oak Ridge National Laboratoryは、ハイブリッドシステムの根強い課題であるコールドスタート時の排出ガスを最小限に抑えるエンジン制御戦略を開発しました。
シリーズハイブリッド構成では、エンジンの動作をドライバーの即時の要求から切り離すことで、ウォームアップサイクルを最適化し、コールドスタート時の炭化水素排出量を45%削減します。さらに、エンジンのダウンサイジングやターボ過給などの相乗技術を適用することで、メーカーは排気量を減らしながら性能を維持することができます。Ricardoのガソリンエンジン効率化ロードマップでは、2.0Lエンジンを1.4Lにダウンサイジングし、直噴と可変バルブタイミングを組み合わせることで、出力を犠牲にすることなく燃費を20%改善できることを強調しています。これらの進化は、空燃比、点火時期、ブースト圧を動的に調整し、効率とドライバビリティのバランスをとるEMSアルゴリズムに依存しています。
より高いエンジン効率の追求が市場の成長を後押ししており、極端な温度と圧力に耐える材料が必要とされています。DOEのVehicle Technologies Office(VTO)は、軽量合金と先進セラミックを次世代エンジンのための重要なイネーブラーとして特定しており、米国車両の25%に導入された場合、2030年までに年間50億ガロンの燃料を節約できる可能性があるとしています。例えば、ピストンクラウンとシリンダーライナーに施された炭化ケイ素(SiC)コーティングは、熱損失を減らし、1,500℃を超える燃焼温度を可能にします。大型エンジンでも同様に、耐疲労性が向上した鉄ベースの鋳造合金の恩恵を受けており、ディーゼルエンジンにおけるシリンダー圧力のピーク値を高めることができます。マテリアルゲノムイニシアティブは、計算モデリングによってこれらの材料の開発を加速し、試作サイクルを40%短縮しました。このような技術革新は、2030年までに大型エンジンのブレーキ熱効率を現在の45%から55%に引き上げるというDOEの目標達成に不可欠です。
DOEの協調最適化イニシアチブは、EMS設計のパラダイムシフトを象徴するもので、燃料配合とエンジンアーキテクチャーを同時に開発するものです。このアプローチは、燃料化学と燃焼力学の相互作用を活用して効率を最大化するものです。例えば、Argonne National Laboratoryが注力しているガソリン圧縮着火(GCI)エンジンは、低オクタン価燃料を利用して希薄燃焼を可能にし、従来の火花点火エンジンと比べて35%の燃費向上を達成しています。
同様に、Sandia National Laboratoriesの燃焼研究施設では、ディーゼル燃料にジメチルエーテル(DME)を混合することで、着火安定性を維持しながら煤の発生を90%低減できることを実証しています。これらのブレークスルーは、噴射タイミングと噴射圧をリアルタイムで調整し、多様な混合燃料に最適な燃焼位相を確保するEMS機能に依存しています。DOEは、共同最適化によって2030年までに小型車の効率が10%向上し、先進エンジンの研究だけで期待される25%の改善を補完できると見積もっています。
Automotive Engine Management System Market Summary
The global automotive engine management system market size was estimated at USD 65.54 billion in 2024 and is projected to reach USD 80.25 billion by 2030, growing at a CAGR of 3.6% from 2025 to 2030. Modern engine management systems are increasingly designed to accommodate renewable and alternative fuels, a shift driven by the need to reduce greenhouse gas emissions and dependence on fossil fuels, which boosts the market growth.
The U.S. Department of Energy emphasizes that internal combustion engines (ICEs) can operate on fuels such as natural gas, propane, biodiesel, and ethanol without significant modifications to existing infrastructure.
For instance, hydrogen combustion engines represent a pivotal innovation, with Sandia National Laboratories demonstrating that hydrogen-powered ICEs achieve 50% fuel-to-electricity efficiency while producing near-zero nitrogen oxide (NOx) emissions. This capability positions hydrogen as a viable transitional fuel for hybrid vehicles and stationary power applications. The adaptability of EMS to diverse fuel chemistries is critical for enabling a carbon-neutral future. Research under the Advanced Combustion Engines subprogram focuses on co-optimizing engine designs with fuel properties, ensuring optimal combustion dynamics for both conventional and alternative fuels. For example, ethanol's high octane rating allows for higher compression ratios in spark-ignition engines, improving thermal efficiency by 10-15% compared to gasoline. Such advancements underscore the EMS's role in bridging the gap between existing ICE architectures and future renewable fuel ecosystems.
The integration of hybrid electric powertrains with advanced EMS has emerged as a cornerstone strategy for improving fuel economy and reducing emissions. DOE studies reveal that combining internal combustion engines with hybrid electric systems can enhance fuel efficiency by 25-50%, depending on vehicle class and driving conditions. A notable instance is the Plug-in Hybrid Electric Vehicle (PHEV) initiative, where Oak Ridge National Laboratory developed engine control strategies to minimize cold-start emissions, a persistent challenge in hybrid systems.
By decoupling engine operation from immediate driver demand, series hybrid configurations enable optimized warm-up cycles, reducing hydrocarbon emissions by 45% during cold starts. Furthermore, the application of synergistic technologies, such as engine downsizing and turbocharging, allows manufacturers to maintain performance while reducing displacement. Ricardo's roadmap for gasoline engine efficiency highlights that downsizing a 2.0L engine to 1.4L, coupled with direct injection and variable valve timing, can improve fuel economy by 20% without sacrificing power output. These advancements rely on EMS algorithms that dynamically adjust air-fuel ratios, ignition timing, and boost pressure to balance efficiency and drivability.
The pursuit of higher engine efficiencies propelled the market growth, which necessitates materials capable of withstanding extreme temperatures and pressures. DOE's Vehicle Technologies Office (VTO) identifies lightweight alloys and advanced ceramics as critical enablers for next-generation engines, with the potential to save 5 billion gallons of fuel annually by 2030 if deployed across 25% of the U.S. fleet. For instance, silicon carbide (SiC) coatings on piston crowns and cylinder liners reduce heat loss, enabling combustion temperatures exceeding 1,500°C, a 15% improvement in thermal efficiency over conventional aluminum components. Heavy-duty engines benefit similarly from iron-based cast alloys with enhanced fatigue resistance, allowing higher peak cylinder pressures in diesel engines. The Materials Genome Initiative has accelerated the development of these materials through computational modeling, reducing prototyping cycles by 40%. Such innovations are integral to achieving the DOE's target of 55% brake thermal efficiency for heavy-duty engines by 2030, up from the current 45% baseline.
The DOE's co-optimization initiative represents a paradigm shift in EMS design, where fuel formulations and engine architectures are developed in tandem. This approach leverages the interplay between fuel chemistry and combustion dynamics to maximize efficiency. For example, gasoline compression ignition (GCI) engines, a focus of Argonne National Laboratory, utilize low-octane fuels to enable lean-burn combustion, achieving 35% higher fuel economy compared to conventional spark-ignition engines.
Similarly, the Combustion Research Facility at Sandia National Laboratories has demonstrated that tailored fuel blends, such as di-methyl ether (DME) mixed with diesel, reduce soot formation by 90% while maintaining ignition stability. These breakthroughs rely on EMS capabilities to adjust injection timing and pressure in real-time, ensuring optimal combustion phasing across diverse fuel mixtures. The DOE estimates that co-optimization could yield a 10% efficiency gain in light-duty vehicles by 2030, complementing the 25% improvement expected from advanced engine research alone.
Global Automotive Engine Management System Market Report Segmentation
This report forecasts revenue growth at the global, regional, and country levels and provides an analysis of the latest industry trends in each of the sub-segments from 2018 to 2030. For this study, Grand View Research has segmented the global automotive engine management system market report based on component, engine type, vehicle type, and region: