市場調査レポート
商品コード
1562522

鉄鋼業の脱炭素化

Decarbonizing the Steel Industry


出版日
発行
GlobalData
ページ情報
英文 31 Pages
納期
即納可能 即納可能とは
カスタマイズ可能
適宜更新あり
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=153.81円
鉄鋼業の脱炭素化
出版日: 2024年08月31日
発行: GlobalData
ページ情報: 英文 31 Pages
納期: 即納可能 即納可能とは
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

鉄鋼は世界の温室効果ガス排出量の8%を占めており、削減が困難な産業と考えられています。鉄鋼需要は2022年から2050年にかけて30%以上増加すると予想されており、2050年までにネットゼロスチール構想(NZI)の目標であるネットゼロを達成するためには、大きな変革が必要となります。

鉄スクラップの利用可能性は高まるとみられていますが、二次加工(リサイクル)は世界の鉄鋼需要を満たさないと予想されます。費用対効果の高い解決策として、製鉄の一般的な効率向上が提案されていますが、これらは小幅な排出削減しかもたらしません。意味のある排出削減を達成するには、火力発電からの脱却が必要です。

鉄鋼業のバリューチェーンで最も炭素集約的な段階は、鉄鋼製造です。一次製鉄を脱炭素化するために提案されている技術には、炭素の回収・利用・貯蔵(CCUS)、鉄の直接還元(HDRI)における水素(石炭の代替)、電解などがあります。しかし、「グリーン・スチール」を生産するこれらの方法はコスト競争力に苦戦しており、そのため導入は低いままです。ネットゼロ目標を達成するためには、これらの技術のイントロダクションを加速する必要があります。

電解はまだ商業規模で実証されておらず、CCUSは資本コストが高いため、鉄鋼メーカーは慎重になっています。HDRIは最も発展した技術と見られ、グリーンスチールプロジェクトの大半を占めると予想されています。しかし、水素インフラの不足と、水素の将来的な平準化コストをめぐる不確実性が課題として残っています。

こうした新しい製造方法がコスト競争力を増すにつれて、今後数十年の間に、石炭からHDRIと電解へのシフトが進むと思われます。このプロセスは、CBAMのような政策や、グリーンスチールの購入を約束する企業によって加速される可能性があります。

当レポートでは、世界の鉄鋼業の脱炭素化について調査し、世界の鉄鋼生産の動向と同部門の排出フットプリント、各分野におけるこのセクターの脱炭素化のための主要技術の概要、主要参入企業と政策、イニシアチブについて論じています。

目次

エグゼクティブサマリー

  • 世界の鉄鋼業界
  • 世界の鉄鋼生産の最近の動向
  • 鉄鋼業界からの炭素排出量
  • 鉄鋼における排出削減を実現するための主要技術
  • 鉄鋼業界の脱炭素化の課題
  • 2023年における大手鉄鋼メーカーの排出量実績
  • 主な政策と取り組み
  • 鉄鋼バリューチェーン全体の排出量
  • 鉱業の脱炭素化
  • 再生可能エネルギー
  • 電化
  • 鉱山会社全体で電動LHDとトラックの採用
  • 製造業の脱炭素化
  • 鉄鋼製造の脱炭素化技術
  • 鉄鋼製造における低炭素水素とHDRI
  • 鉄鋼用低炭素水素を開発する主要地域
  • 鉄鋼分野に注力する主要な水素開発企業
  • HDRIケーススタディ
  • 鉄鋼製造におけるCCUS
  • 鉄鋼業にCCUSを適用する主要企業
  • 電気分解別製造業の脱炭素化
  • 電気分解のケーススタディ
  • 鉄鋼二次製造業
  • 二次ストリーム製造のケーススタディ
  • 製造業における排出削減戦略の評価
  • 海運と物流の脱炭素化
図表

List of Tables

  • Emissions performance of the largest steel producers in 2023
  • Technologies for decarbonizing manufacturing
  • Assessing electrolysis technologies
  • World trade in iron ore by region, 2023

List of Figures

  • Historical crude steel production, 1950 - 2023
  • CO2 emissions by sector, 2019 - 2022
  • CO2 emissions per tonne of crude steel cast, 2012 - 2022
  • Key technologies for achieving emission reductions within steel
  • Key challenges for decarbonizing the steel industry
  • The steel value chain
  • Active and upcoming iron ore projects by development stage and grid status
  • Renewable capacity associated with iron ore projects by mine start year, 2021 - 2030
  • Split of scope 1 carbon emissions in mining
  • Adoption of BEVs within mining according to GlobalData's mine site technology survey
  • Adoption of electric LHDs and trucks across miners
  • Maximum low-carbon hydrogen being supplied to the steel sector, 2022 - 2030
  • Regional split of low-carbon hydrogen capacity being allocated to the steel sector
  • Top 10 countries by low-carbon hydrogen capacity supplying the steel sector in 2030
  • Leading owners of hydrogen projects allocating capacity to the steel sector in 2030
  • CCUS capacity within the iron and steel sector, 2022 - 2030
  • Scrap share of metallic inputs under a net-zero scenario, 2018 - 2030
目次
Product Code: GDUKOG129647

Steel contributes to 8% of global GHG emissions and is considered a hard to abate industry. As steel demand is expected to grow by more than 30% from 2022-2050, major changes will be needed to achieve the Net-Zero Steel Initiative's (NZI) target of net-zero by 2050.

Although scrap steel availability will increase, secondary stream steelmaking (recycling) is not expected to meet global steel demand. General efficiency increases in steelmaking have been proposed as a cost-effective solution, however these only yield modest emission reductions. A departure from thermal power sources is required to achieve meaningful emission reduction.

The most carbon intensive stage in the industry's value chain is steel manufacturing. Proposed technologies to decarbonize primary steelmaking include carbon capture, utilization and storage (CCUS), hydrogen (to replace coal) in direct reduction of iron (HDRI) and electrolysis. However, these methods of producing "green steel" struggle to be cost-competitive and so adoption remains low. An accelerated introduction of these technologies will be needed to meet net zero targets.

Electrolysis has not yet been proven at commercial scale, and steel manufacturers have been wary of CCUS due to its high capital costs. HDRI is seen as the most developed technology and is expected to make up the majority of green steel projects. However, a lack of hydrogen infrastructure and uncertainty surrounding the future levelized cost of hydrogen remains a challenge.

As these new production methods become more cost-competitive, there will be a shift from coal to HDRI and electrolysis over the coming decades. This process has the potential to be sped up by policies such as CBAM or by companies making commitments to purchase green steel.

Current trends in global steel production and the sector's emission footprint. Overview of the key technologies for decarbonizing the sector across the mining, manufacturing and logistics segments of the supply chain, including low-carbon hydrogen, CCUS, electrification. In addition, the report discuses the key players, policies, and initiatives throughout.

Scope

  • Steel production has steadily increased over time, rising by a CAGR of 3.2% between 1950 and 2023 according to the World Steel Association. This growth has been driven by the industrialization of different regions over time, with the economic rise of China and India over the time frame contributing strongly to the global growth of steel production.
  • 95% of carbon emissions in the steel industry are due to the manufacturing process - the direct reduction of iron ore is a very energy intensive process, requiring high levels of heat for the oxygen to be displaced from the iron ore.
  • Despite the potential efficiency increases and emission reduction associated with electrification, adoption of battery powered loading equipment within mining remains relatively limited, with GlobalData's 2024 Mine Site Technology Survey revealing that 46% of miners had not invested in battery/ electric powered mining vehicles at all, compared to 2.7% for full implementation and 9.6% for considerable investment in the technology.
  • According to GlobalData Hydrogen Analytics, the capital expenditure of low-carbon hydrogen projects that will come online by the end of the decade and supply the steel sector amounts to $136 billion.
  • CCUS capacity within the steel sector accounts for 1.22Mt/year, so significant investment would be needed for the technology to meaningfully curb the steel industry's emissions.

Reasons to Buy

  • Identify the market trends within the industry and assess what the biggest players in steel production are doing to reduce emissions.
  • Develop market insight of the major technologies used to decarbonize the industry, as well as the policy framework laid out by governments to support their adoption.
  • Facilitate the understanding of what is happening within hard to abate industries as they aim to become carbon neutral by 2050.

Table of Contents

Table of Contents

Executive summary

  • The global steel industry
  • Recent trends in global steel production
  • Carbon emissions from the steel industry
  • Key technologies for achieving emission reduction in steel
  • Challenges for decarbonizing the steel industry
  • Emissions performance of the largest steel producers in 2023
  • Key policies and initiatives
  • Emissions across the steel value chain
  • Decarbonizing mining
  • Renewable energy
  • Electrification
  • Adoption of electric LHDs and trucks across miners
  • Decarbonizing manufacturing
  • Technologies for decarbonizing steel manufacturing
  • Low-carbon hydrogen and HDRI in steel manufacturing
  • Key regions developing low-carbon hydrogen for steel
  • Key hydrogen developers focusing on the steel sector
  • HDRI case studies
  • CCUS in steel manufacturing
  • Key players applying CCUS to steel
  • Decarbonizing manufacturing through electrolysis
  • Electrolysis case studies
  • Secondary stream manufacturing within steel
  • Secondary stream manufacturing case studies
  • Assessing emission reduction strategies for manufacturing
  • Decarbonizing shipping and logistics