市場調査レポート
商品コード
1744006

直接リチウム抽出の世界市場(2026年~2036年)

The Global Direct Lithium Extraction Market 2026-2036


出版日
ページ情報
英文 169 Pages, 87 Tables, 20 Figures
納期
即納可能 即納可能とは
価格
価格表記: GBPを日本円(税抜)に換算
本日の銀行送金レート: 1GBP=198.16円
直接リチウム抽出の世界市場(2026年~2036年)
出版日: 2025年06月09日
発行: Future Markets, Inc.
ページ情報: 英文 169 Pages, 87 Tables, 20 Figures
納期: 即納可能 即納可能とは
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

世界の直接リチウム抽出(DLE)市場は、リチウム採掘産業における変革の象徴であり、従来の採掘の限界と、世界の需要の増加とのギャップを埋める重要なソリューションとして浮上しています。電気自動車革命、再生可能エネルギー貯蔵の拡大、ポータブルエレクトロニクスの普及によってリチウム消費がかつてない軌道を描き続ける中、DLE技術は持続可能なリチウムサプライチェーンを実現する重要な技術として位置づけられています。

市場力学は、リチウム資源の分布と現在の生産法との間に、説得力のあるミスマッチがあることを明らかにしています。かん水資源は世界のリチウム埋蔵量の約60%を占めますが、従来の蒸発池法の制約が主因となり、総生産の35%しか寄与していません。この格差は、特に産業が供給源の多様化と地理的集中リスクの低減を目指す中で、DLE技術が解き放つことのできる未開発の大きな可能性を浮き彫りにしています。従来の蒸発池を利用したかん水抽出は、処理に12~24ヶ月を要し、回収率はわずか40~60%という、経営上の大きな制約に直面しています。このような制約に加え、特定の気候や地理的条件により、かん水抽出はこれまで硬岩採掘よりも競争力が低いものでした。DLEは、80~95%を超える回収率での迅速なリチウム抽出を可能にすると同時に、環境フットプリントを削減し、採掘可能なかん水資源の範囲を拡大することで、この方程式を根本的に変えます。

DLE市場には6つの異なる技術クラスがあり、それぞれが特定の経営課題とかん水組成に対応しています。吸着式DLEは現在、特にアルゼンチンと中国での商業展開をリードしており、アルミニウム由来の吸着剤と水性の脱着プロセスを利用しています。イオン交換技術は、リチウム濃度が100mg/L未満の低品位かん水を処理する一方で、2,000mg/Lを超える高濃度の溶出物を生産する優れた能力を実証しています。この技術は、濃縮前と濃縮後の必要条件をなくすことができるため、経営上の大きな利点となりますが、酸の取り扱いやマテリアルハンドリングの劣化の懸念があるため、継続的なモニタリングが必要です。

膜分離、電気化学抽出、化学沈殿などの新しいDLE技術は、パイロット実証から研究室での研究まで、さまざまな開発段階にあります。これらの技術は、選択性の向上と化学品消費の削減を約束するものですが、商業的な検証はまだ保留されています。注目すべきは、かん水の組成にばらつきがあるため、最適な性能を得るためには個々の技術に合わせたアプローチが必要であり、業界は普遍的なDLEソリューションが存在しないことを認めていることです。

DLE市場は、有望な原理にもかかわらず、技術検証、従来の方法との経済的競合、持続可能性指標の向上の必要性など、導入上の課題に直面しています。しかし、継続的な技術の進歩や商業展開の拡大、業界の専門知識の向上がこれらの課題に対処し続けており、DLEを将来のリチウム需要を持続的かつ効率的に満たすための基礎的な技術として位置づけています。

リチウム採掘産業は2036年までCAGR9.7%で成長すると予測される中、DLE部門は突出した業績を上げ、CAGRで19.6%の異例の成長が予測されます。この目覚ましい成長軌道は、この技術が従来はアクセスできなかったリチウム資源を解き放つ可能性を秘めていることを反映しており、同時に、従来の抽出方法が直面している持続可能性に関する重大な課題にも対処しています。

市場力学は、世界のリチウム埋蔵量の60%を占めながら、現在の生産の35%にしか寄与していないかん水資源が膨大な未開発の可能性を秘めていることから、魅力的な機会があることを明らかにしています。DLE技術は、従来の蒸発池の40~60%に比べ、80~95%の回収率を達成し、処理時間を12~24ヶ月からわずか数時間または数日に短縮することで、この方程式を根本的に変えます。この劇的な効率向上は、環境フットプリントの大幅な削減とESGコンプライアンスの強化もあり、DLEを次世代リチウム生産に適したソリューションとして位置づけています。

当レポートでは、世界の直接リチウム抽出市場について調査し、リチウムの生産と需要の分析、市場の成長軌道と投資機会、各技術の評価などの情報を提供しています。

目次

第1章 エグゼクティブサマリー

  • 市場の概要
    • リチウムの生産と需要
  • 従来の抽出方法の問題点
  • DLE法
    • 技術の利点、欠点、コスト
  • 直接リチウム抽出市場
    • 直接リチウム抽出市場の成長軌道
    • 市場予測(~2036年)
    • DLE生産の予測:国別(ktpa LCE)
    • DLEの市場規模:技術タイプ別(2024年~2036年)
    • 主な市場セグメント
    • 短期見通し(2024年~2026年)
    • 中期予測(2026年~2030年)
    • 長期予測(2030年~2035年)
  • 市場促進要因
    • 電気自動車の成長
    • エネルギー貯蔵需要
    • 政府の政策
    • 技術の進歩
    • 持続可能性目標
    • 供給の安全性
  • 市場の課題
    • 技術的な障壁
    • 経済的実現可能性
    • 規模拡大の問題
    • 資源の可用性
    • 規制上のハードル
    • 競合
  • 商業活動
    • 市場マップ
    • 世界のリチウム抽出プロジェクト
    • DLEプロジェクト
    • ビジネスモデル
    • 投資

第2章 イントロダクション

  • リチウムの用途
  • リチウムかん水埋蔵物
  • 定義と動作原則
  • DLE技術のタイプ
  • 従来の抽出法に対する優位性
  • DLE技術の比較
  • 価格
  • 環境に対する影響と持続可能性
  • エネルギー要件
  • 水使用
  • 回収率
  • スケーラビリティ
  • 資源分析

第3章 世界市場の分析

  • 市場規模と成長
  • 地域の市場シェア
    • 北米
    • 南米
    • アジア太平洋
    • 欧州
  • コスト分析
    • 設備投資の比較
    • OPEXの内訳
    • 1トン当たりのコストの分析
  • 需給力学
    • 現在の供給
    • 需要予測
  • 規制
  • 競合情勢

第4章 企業プロファイル(企業67社のプロファイル)

第5章 付録

第6章 参考文献

図表

List of Tables

  • Table 1. Lithium sources and extraction methods
  • Table 2. Global Lithium Production 2023, by country
  • Table 3. Factors Affecting Lithium Production Outlook
  • Table 4. Worldwide Distribution of DLE Projects
  • Table 5. Announced vs Assumed DLE Outlook
  • Table 6. Global Lithium Production and Demand 2020-2024 (ktpa LCE)
  • Table 7. Lithium Production Forecast 2025-2035
  • Table 8. Li Production Contribution by Resource Type (%)
  • Table 9. Li Production Contribution from Brine Extraction (ktpa LCE)
  • Table 10. Lithium Supply vs Demand Outlook 2023-2035 (ktpa LCE)
  • Table 11. Comparison of lithium extraction methods
  • Table 12. DLE Technologies Comparison
  • Table 13. Global DLE Market Size 2020-2024
  • Table 14. DLE Market Growth Projections 2024-2036
  • Table 15. DLE Production Forecast by Country (ktpa LCE)
  • Table 16. DLE Market Size by Technology Type (2024-2036)
  • Table 17. DLE forecast segmented by brine type
  • Table 18. Direct Lithium Extraction Key Market Segments
  • Table 19. Market Drivers for DLE
  • Table 20. Market Challenges in Direct Lithium Extraction
  • Table 21. Alternative Technologies Comparison
  • Table 22. Global lithium extraction projects
  • Table 23. Current and Planned DLE Projects
  • Table 24. Traditional Brine Operations
  • Table 25. Hard Rock Operations
  • Table 26. Conversion Plants
  • Table 27. Business Models by DLE Player Activity
  • Table 28. Business Models by Li Recovery Process
  • Table 29. DLE Investments
  • Table 30. Lithium applications
  • Table 31. Types of lithium brine deposits
  • Table 32. Existing and emerging methods for lithium mining & extraction
  • Table 33. Technology Evolution Timeline and Characteristics
  • Table 34. Types of DLE Technologies
  • Table 35. Brine Evaporation vs Brine DLE Comparison
  • Table 36. Commercial Hard Rock (Spodumene) Projects
  • Table 37. Companies in Sedimentary Lithium Processing
  • Table 38. Ion exchange processes for lithium extraction
  • Table 39. Ion Exchange DLE Projects and Companies
  • Table 40. Companies in ion exchange DLE
  • Table 41. Adsorption vs Absorption
  • Table 42. Adsorption Processes for Lithium Extraction
  • Table 43. Adsorption vs ion exchange
  • Table 44. Types of Sorbent Materials
  • Table 45. Commercial brine evaporation projects
  • Table 46. Comparison of Al/Mn/Ti-based Sorbents
  • Table 47. Adsorption DLE Projects
  • Table 48. Companies in adsorption DLE
  • Table 49. Membrane processes for lithium recovery
  • Table 50. Membrane Materials
  • Table 51. Membrane Filtration Comparison
  • Table 52. Potential-assisted Membrane Technologies
  • Table 53. Companies in membrane technologies for DLE
  • Table 54. Membrane technology developers by Li recovery process
  • Table 55. Solvent extraction processes for lithium extraction
  • Table 56. Companies in solvent extraction DLE
  • Table 57. Electrochemical technologies for lithium recovery
  • Table 58. Companies in electrochemical extraction DLE
  • Table 59. Chemical Precipitation Agents
  • Table 60. Novel Hybrid DLE Approaches
  • Table 61. Cost Comparison: DLE vs Traditional Methods
  • Table 62. Recovery Rate Comparison
  • Table 63. Environmental Impact Comparison
  • Table 64. Processing Time Comparison
  • Table 65. Product Purity Comparison
  • Table 66. Comparison of DLE Technologies
  • Table 67. Lithium Prices 2019-2024 (Battery Grade Li2CO3)
  • Table 68. Energy Consumption Comparison
  • Table 69. Water Usage by Technology Type
  • Table 70. Recovery Rates Comparison
  • Table 71. Recovery Rates By Technology Type
  • Table 72. Recovery Rates By Resource Type
  • Table 73. Global Lithium Resource Distribution,
  • Table 74. Quality Parameters
  • Table 75. Brine Chemistry Comparison
  • Table 76. Resource Quality Matrix
  • Table 77. Extraction Potential by Resource Type
  • Table 78. Global DLE Market Size by Region
  • Table 79. CAPEX Breakdown by Technology
  • Table 80. Cost Comparisons Between Lithium Projects
  • Table 81. OPEX Breakdown Table (USD/tonne LCE)
  • Table 82. Production Cost Comparison (USD/tonne LCE)
  • Table 83. Sustainability Comparisons
  • Table 84. Regulations and incentives related to lithium extraction and mining
  • Table 85. DLE Patent Filing Trends 2015-2024
  • Table 86. Glossary of Terms
  • Table 87. List of Abbreviations

List of Figures

  • Figure 1. Schematic of a conventional lithium extraction process with evaporation ponds
  • Figure 2. Schematic for a direct lithium extraction (DLE) process.
  • Figure 3. Global DLE Market Size 2020-2024
  • Figure 4. DLE Market Growth Projections 2024-2036
  • Figure 5. Market map of DLE technology developers
  • Figure 6. Direct Lithium Extraction Process
  • Figure 7. Direct lithium extraction (DLE) technologies
  • Figure 8. Ion Exchange Process Flow Diagram
  • Figure 9. SWOT analysis for ion exchange technologies
  • Figure 10. SWOT analysis for adsorption DLE
  • Figure 11. Membrane Separation Schematic
  • Figure 12. SWOT analysis for membrane DLE
  • Figure 13. SWOT analysis for solvent extraction DLE
  • Figure 14. SWOT analysis for electrochemical extraction DLE
  • Figure 15. SWOT analysis for chemical precipitation
  • Figure 16. Conventional vs. DLE processes
  • Figure 17. Global DLE Market Size by Region
  • Figure 18. Competitive Position Matrix
  • Figure 19. Flionex-R process
  • Figure 20. Volt Lithium Process
目次

The global direct lithium extraction (DLE) market represents a transformative shift in the lithium mining industry, emerging as a critical solution to bridge the gap between conventional extraction limitations and escalating global demand. As lithium consumption continues its unprecedented trajectory, fuelled by the electric vehicle revolution, renewable energy storage expansion, and the proliferation of portable electronics, DLE technologies are positioning themselves as the key enabler for sustainable lithium supply chains.

The market dynamics reveal a compelling mismatch between lithium resource distribution and current production methodologies. While brine resources constitute approximately 60% of global lithium reserves, they contribute only 35% of total production, primarily due to the constraints of conventional evaporation pond methods. This disparity highlights the substantial untapped potential that DLE technologies can unlock, particularly as the industry seeks to diversify supply sources and reduce geographical concentration risks. Traditional brine extraction through evaporation ponds faces significant operational constraints, requiring 12-24 months for processing with recovery rates of only 40-60%. These limitations, combined with specific climatic and geographical requirements, have historically made brine extraction less competitive than hard rock mining. DLE fundamentally transforms this equation by enabling rapid lithium extraction with recovery rates exceeding 80-95%, while simultaneously reducing environmental footprint and expanding the range of exploitable brine resources.

The DLE market encompasses six distinct technology classes, each addressing specific operational challenges and brine compositions. Adsorption DLE currently leads commercial deployment, particularly in Argentina and China, utilizing aluminum-based sorbents with water-based desorption processes. Ion exchange technologies demonstrate exceptional capability in processing lower-grade brines below 100 mg/L lithium concentration while producing highly concentrated eluates exceeding 2000 mg/L. This technology's ability to eliminate pre- and post-concentration requirements represents a significant operational advantage, though acid handling and material degradation concerns require ongoing monitoring.

Emerging DLE technologies including membrane separation, electrochemical extraction, and chemical precipitation remain in various development stages, from pilot demonstrations to laboratory research. These technologies promise enhanced selectivity and reduced chemical consumption, though commercial validation remains pending. Notably, the industry acknowledges that no universal DLE solution exists, as brine composition variability necessitates tailored technological approaches for optimal performance.

Despite promising fundamentals, the DLE market faces implementation challenges including technology validation, economic competitiveness with conventional methods, and the need for improved sustainability metrics. However, ongoing technological advancement, increasing commercial deployment, and growing industry expertise continue to address these challenges, positioning DLE as the cornerstone technology for meeting future lithium demand sustainably and efficiently.

"The Global Direct Lithium Extraction Market 2026-2036" provides an exhaustive analysis of the DLE industry, delivering strategic insights into the fastest-growing segment of the lithium mining sector. With the lithium mining industry projected to grow at a compound annual growth rate (CAGR) of 9.7% through 2036, the DLE segment emerges as the standout performer, forecasted to achieve an exceptional 19.6% CAGR. This remarkable growth trajectory reflects the technology's potential to unlock previously inaccessible lithium resources while addressing critical sustainability challenges facing traditional extraction methods. The report examines six distinct DLE technology classes-ion exchange, adsorption, membrane separation, electrochemical extraction, solvent extraction, and chemical precipitation-providing detailed technical assessments, commercial viability analyses, and market penetration forecasts. Each technology receives comprehensive SWOT analysis, enabling stakeholders to make informed investment decisions in this rapidly evolving landscape.

Market dynamics reveal compelling opportunities as brine resources, constituting 60% of global lithium reserves but contributing only 35% of current production, present vast untapped potential. DLE technologies fundamentally transform this equation by achieving 80-95% recovery rates compared to conventional evaporation ponds' 40-60%, while reducing processing time from 12-24 months to mere hours or days. This dramatic improvement in efficiency, combined with significantly reduced environmental footprint and enhanced ESG compliance, positions DLE as the preferred solution for next-generation lithium production.

Comprehensive cost analysis including CAPEX comparisons, OPEX breakdowns, and production cost benchmarking enables accurate financial modeling and investment planning. The report quantifies DLE's economic advantages, demonstrating how technological improvements are rapidly closing cost gaps with traditional methods while delivering superior operational metrics. The competitive landscape analysis profiles 67 key industry players, from established mining giants to innovative technology startups, examining their strategic positioning, technological approaches, and market penetration strategies. This intelligence enables stakeholders to identify potential partners, competitors, and acquisition targets in the dynamic DLE ecosystem.

Contents include:

  • Comprehensive lithium production and demand analysis (2020-2036)
  • Global DLE project distribution and capacity assessments
  • Traditional extraction method limitations and market gaps
  • DLE technology classification and comparative analysis
  • Market growth trajectories and investment opportunities
  • Technology Assessment and Analysis
    • Ion exchange technologies: resin-based systems, inorganic exchangers, hybrid approaches
    • Adsorption technologies: physical/chemical adsorption, selective materials, ion sieves
    • Membrane separation: pressure-assisted and potential-assisted processes
    • Electrochemical extraction: battery-based systems, intercalation cells, flow-through designs
    • Solvent extraction: conventional and CO2-based extraction systems
    • Chemical precipitation: overview and implementation challenges
    • Novel hybrid approaches combining multiple technologies
  • Market Dynamics and Forecasting
    • Regional market share analysis across four major geographic regions
    • Cost analysis including CAPEX/OPEX comparisons and production economics
    • Supply-demand dynamics and market balance projections
    • Regulatory landscape analysis and policy impact assessment
    • Competitive positioning and industry consolidation trends
  • Resource Analysis and Applications
    • Comprehensive brine resource classification and quality assessment
    • Clay deposits and geothermal water extraction potential
    • Resource quality matrices and extraction potential evaluation
    • Lithium applications across battery, ceramic, and industrial sectors
    • Sustainability comparisons and environmental impact assessments

The report provides comprehensive profiles of 67 leading companies driving innovation and commercial deployment in the DLE sector including Adionics, Aepnus Technology, Albemarle Corporation, alkaLi, Altillion, American Battery Materials, Anson Resources, Arcadium Lithium, Arizona Lithium, BioMettallum, Century Lithium, CleanTech Lithium, Conductive Energy, Controlled Thermal Resources, Cornish Lithium, E3 Lithium Ltd, Ekosolve, ElectraLith, Ellexco, EnergyX, Energy Sourcer Minerals, Eon Minerals, Eramet, Evove, ExSorbiton, Geo40, Geolith, Go2Lithium (G2L), International Battery Metals (IBAT), Jintai Lithium, KMX Technologies, Koch Technology Solutions (KTS), Lake Resources, Lanke Lithium, Lifthium Energy, Lihytech, Lilac Solutions, Lithios, LithiumBank Resources and more.....

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Market Overview
    • 1.1.1. Lithium production and demand
      • 1.1.1.1. DLE Projects
      • 1.1.1.2. Global Lithium Production and Demand 2020-2024 (ktpa LCE)
      • 1.1.1.3. Lithium Production Forecast 2025-2035
  • 1.2. Issues with traditional extraction methods
  • 1.3. DLE Methods
    • 1.3.1. Technology Merits, Demerits, and Costs
      • 1.3.1.1. Ion Exchange Technologies
      • 1.3.1.2. Adsorption Technologies
      • 1.3.1.3. Membrane Technologies
      • 1.3.1.4. Electrochemical Technologies
  • 1.4. The Direct Lithium Extraction Market
    • 1.4.1. Growth trajectory for The Direct Lithium Extraction market
    • 1.4.2. Market forecast to 2036
    • 1.4.3. DLE Production Forecast by Country (ktpa LCE)
    • 1.4.4. DLE Market Size by Technology Type (2024-2036)
    • 1.4.5. Key market segments
    • 1.4.6. Short-term outlook (2024-2026)
    • 1.4.7. Medium-term forecasts (2026-2030)
    • 1.4.8. Long-term predictions (2030-2035)
  • 1.5. Market Drivers
    • 1.5.1. Electric Vehicle Growth
    • 1.5.2. Energy Storage Demand
    • 1.5.3. Government Policies
    • 1.5.4. Technological Advancements
      • 1.5.4.1. Process improvements
      • 1.5.4.2. Efficiency gains
      • 1.5.4.3. Cost reduction
    • 1.5.5. Sustainability Goals
    • 1.5.6. Supply Security
  • 1.6. Market Challenges
    • 1.6.1. Technical Barriers
    • 1.6.2. Economic Viability
    • 1.6.3. Scale-up Issues
    • 1.6.4. Resource Availability
    • 1.6.5. Regulatory Hurdles
    • 1.6.6. Competition
      • 1.6.6.1. Traditional methods
      • 1.6.6.2. Alternative technologies
  • 1.7. Commercial activity
    • 1.7.1. Market map
    • 1.7.2. Global lithium extraction projects
    • 1.7.3. DLE Projects
    • 1.7.4. Business models
    • 1.7.5. Investments

2. INTRODUCTION

  • 2.1. Applications of lithium
  • 2.2. Lithium brine deposits
  • 2.3. Definition and Working Principles
    • 2.3.1. Basic concepts and mechanisms
    • 2.3.2. Process chemistry
    • 2.3.3. Technology evolution
  • 2.4. Types of DLE Technologies
    • 2.4.1. Brine Resources
    • 2.4.2. Hard Rock Resources
      • 2.4.2.1. Spodumene Upgrading
      • 2.4.2.2. Spodumene Refining
      • 2.4.2.3. Logistics
    • 2.4.3. Sediment-hosted deposits
    • 2.4.4. Ion Exchange
      • 2.4.4.1. Resin-based systems
      • 2.4.4.2. Inorganic ion exchangers
      • 2.4.4.3. Hybrid systems
      • 2.4.4.4. Companies
      • 2.4.4.5. SWOT analysis
    • 2.4.5. Adsorption
      • 2.4.5.1. Adsorption vs ion exchange
      • 2.4.5.2. Physical adsorption
      • 2.4.5.3. Chemical adsorption
      • 2.4.5.4. Selective materials
        • 2.4.5.4.1. Ion sieves
        • 2.4.5.4.2. Sorbent Composites
      • 2.4.5.5. Companies
      • 2.4.5.6. SWOT analysis
    • 2.4.6. Membrane Separation
      • 2.4.6.1. Pressure-assisted
        • 2.4.6.1.1. Reverse osmosis (RO)
        • 2.4.6.1.2. Membrane fouling
        • 2.4.6.1.3. Microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF)
      • 2.4.6.2. Potential-assisted
        • 2.4.6.2.1. Electrodialysis
        • 2.4.6.2.2. Bipolar
        • 2.4.6.2.3. Capacitive deionization (CDI)
        • 2.4.6.2.4. Membrane distillation (MD)
      • 2.4.6.3. Companies
      • 2.4.6.4. SWOT analysis
    • 2.4.7. Solvent Extraction
      • 2.4.7.1. Overview
        • 2.4.7.1.1. CO2-based extraction systems
      • 2.4.7.2. Companies
      • 2.4.7.3. SWOT analysis
    • 2.4.8. Electrochemical extraction
      • 2.4.8.1. Overview
      • 2.4.8.2. Cost Analysis and Comparison
      • 2.4.8.3. Advantages of Electrochemical Extraction
      • 2.4.8.4. Battery-based
      • 2.4.8.5. Intercalation Cells
      • 2.4.8.6. Hybrid Capacitive
      • 2.4.8.7. Modified Electrodes
      • 2.4.8.8. Flow-through Systems
      • 2.4.8.9. Companies
      • 2.4.8.10. SWOT analysis
    • 2.4.9. Chemical precipitation
      • 2.4.9.1. Overview
      • 2.4.9.2. SWOT analysis
    • 2.4.10. Novel hybrid approaches
  • 2.5. Advantages Over Traditional Extraction
    • 2.5.1. Recovery rates
    • 2.5.2. Environmental impact
    • 2.5.3. Processing time
    • 2.5.4. Product purity
  • 2.6. Comparison of DLE Technologies
  • 2.7. Prices
  • 2.8. Environmental Impact and Sustainability
  • 2.9. Energy Requirements
  • 2.10. Water Usage
  • 2.11. Recovery Rates
    • 2.11.1. By technology type
    • 2.11.2. By resource type
    • 2.11.3. Optimization potential
  • 2.12. Scalability
  • 2.13. Resource Analysis
    • 2.13.1. Brine Resources
    • 2.13.2. Clay Deposits
    • 2.13.3. Geothermal Waters
    • 2.13.4. Resource Quality Assessment
    • 2.13.5. Extraction Potential

3. GLOBAL MARKET ANALYSIS

  • 3.1. Market Size and Growth
  • 3.2. Regional Market Share
    • 3.2.1. North America
    • 3.2.2. South America
    • 3.2.3. Asia Pacific
    • 3.2.4. Europe
  • 3.3. Cost Analysis
    • 3.3.1. CAPEX comparison
    • 3.3.2. OPEX breakdown
    • 3.3.3. Cost Per Ton Analysis
  • 3.4. Supply-Demand Dynamics
    • 3.4.1. Current supply
    • 3.4.2. Demand projections
  • 3.5. Regulations
  • 3.6. Competitive Landscape

4. COMPANY PROFILES (67 company profiles)

5. APPENDICES

  • 5.1. Glossary of Terms
  • 5.2. List of Abbreviations
  • 5.3. Research Methodology

6. REFERENCES