表紙:先進プラスチックリサイクルの世界市場(2026年~2040年)
市場調査レポート
商品コード
1660101

先進プラスチックリサイクルの世界市場(2026年~2040年)

The Global Advanced Plastics Recycling Market 2026-2040


出版日
ページ情報
英文 409 Pages, 117 Tables, 54 Figures
納期
即納可能 即納可能とは
価格
価格表記: GBPを日本円(税抜)に換算
本日の銀行送金レート: 1GBP=202.05円
先進プラスチックリサイクルの世界市場(2026年~2040年)
出版日: 2025年07月31日
発行: Future Markets, Inc.
ページ情報: 英文 409 Pages, 117 Tables, 54 Figures
納期: 即納可能 即納可能とは
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

規制圧力、環境上の要請、そして技術的な飛躍的進歩に後押しされ、世界の廃棄物管理の情勢は大きく変わりつつあります。欧州連合(EU)は、2030年までに包装材料の10%を再生原料から調達することを義務付けており、革新的なリサイクルソリューションに対する緊急性はかつてないほど高まっています。この規制枠組みは、循環型経済の原則に向けた世界の動きのほんの一面に過ぎず、世界各国の政府は、深刻化するプラスチック廃棄物の危機に対処するため、ますます厳しい政策を実施しています。

市場の成長軌道は、プラスチック生産の増加と照らし合わせると、特に説得力があります。プラスチック生産は今後35年間で3倍になる可能性があると予測されており、プラスチック廃棄物の管理という課題は飛躍的に強まるとみられます。そのため、先進のリサイクル技術を迅速かつ効率的に拡大することは、かつてない好機であると同時に、必要不可欠な課題でもあります。

世界の高度プラスチックリサイクル市場は、複数の部門で堅調な拡大を見せています。中国が大規模な先進のリサイクルに参入したことは、産業の進化における重要なマイルストーンとなります。広東省掲陽市に新設された施設は、Guangdong Dongyue Chemical Technologyが開発した独自の一段階深層接触分解技術を使用し、年間20万トンを超える処理能力を持っています。

メカニカルリサイクルの限界は、先進のケミカルリサイクル技術に大きな機会をもたらしています。メカニカルリサイクルは、高品質で比較的きれいに分別された廃棄物に対してもっとも効果的で、適切な原料のプールが限られていることや、最終市場での用途を制限する材料特性などの構造的な限界に直面しています。対照的に、先進のリサイクルはリサイクル可能なプラスチックの種類を増やすだけでなく、食品用軟包装などの高価値用途に適した、分子量分布やコモノマーの調整されたプラスチックを生産することができます。

複数の要因が市場成長を後押ししています。プラスチックのリサイクルに向けた政府の取り組みと高額の投資が、プラスチックのケミカルリサイクルに対する需要を促進しています。さらに、消費財や包装産業のリサイクル可能で持続可能な材料へのシフトは、市場成長を増大させると予測されます。

先進技術により、2030年までに年間1,500万トンものプラスチック廃棄物を処理できる可能性があり、この産業は、廃棄物の流れを新製品に使う貴重な原料に変換することで実質的な経済的価値を生み出しながら、世界のプラスチック廃棄物問題に取り組む上で重要な役割を果たすと考えられています。

当レポートでは、世界の先進プラスチックリサイクル市場について調査分析し、新技術、市場力学、競合情勢、戦略的機会などの情報を提供しています。また、厳しい規制政策、企業の持続可能性への取り組み、技術の進歩、世界の主要地域における循環型経済の採用など、市場の促進要因に関する重要な知見を提供しています。

目次

第1章 リサイクル技術の分類

第2章 調査手法

第3章 イントロダクション

  • 世界のプラスチック生産
  • プラスチックの重要性
  • プラスチック使用に関する問題
  • バイオベースまたは再生可能なプラスチック
  • 生分解性の堆肥化可能なプラスチック
  • プラスチック汚染
  • 政策と規制
  • 循環型経済
  • プラスチックリサイクル
  • ライフサイクルアセスメント

第4章 先進プラスチックリサイクル市場

  • 市場の促進要因と動向
  • 市場の課題と抑制要因
  • 産業ニュース、資金調達、開発(2020年~2025年)
  • 処理能力
  • 世界のポリマー需要:リサイクル技術別(2022年~2040年)
  • 世界のポリマー需要:リサイクル技術別、地域別(2022年~2040年)
  • ケミカルリサイクルされたプラスチック製品
  • 市場地図
  • バリューチェーン
  • 先進のプラスチックリサイクルプロセスのライフサイクルアセスメント(LCA)
  • リサイクルプラスチックの歩留まりとコスト

第5章 先進プラスチックリサイクル技術

  • 用途
  • ポリマー廃棄物のケミカルリサイクルと先進のメカニカルリサイクルに用いる現在の技術と新技術
  • 熱処理プロセス
  • 溶剤ベースのリサイクル技術
  • その他の先進プラスチックリサイクル技術
  • 熱硬化性材料の先進のリサイクル
  • 従来のリサイクル方法との比較
  • 新しい先進のメカニカル技術
  • 環境への影響の評価
  • 新技術

第6章 材料分析

  • プラスチック
  • 金属
  • 卑金属
  • 希土類元素
  • 電子廃棄物
  • テキスタイル
  • 合成繊維

第7章 最終製品の分析

  • 化学原料
  • 燃料
  • 原材料
  • エネルギー製品

第8章 企業プロファイル(企業191社のプロファイル)

第9章 用語集

第10章 参考文献

図表

List of Tables

  • Table 1. Types of recycling
  • Table 2. Issues related to the use of plastics
  • Table 3. Type of biodegradation
  • Table 4. Overview of the recycling technologies
  • Table 5. Polymer types, use, and recovery
  • Table 6. Composition of plastic waste streams
  • Table 7. Comparison of mechanical and advanced chemical recycling
  • Table 8. Life cycle assessment of virgin plastic production, mechanical recycling and chemical recycling
  • Table 9. Life cycle assessment of chemical recycling technologies (pyrolysis, gasification, depolymerization and dissolution)
  • Table 10. Market drivers and trends in the advanced plastics recycling market
  • Table 11. Global regulations driving plastics recycling
  • Table 12. Corporate Sustainability Initiatives
  • Table 13. Technological Advancements
  • Table 14. Technical Challenges
  • Table 15. Technological Barriers
  • Table 16. Cost Competitiveness Analysis
  • Table 17. Advanced plastics recycling industry news, funding and developments 2020-2025
  • Table 18. Advanced plastics recycling capacities, by technology
  • Table 19. Global polymer demand 2022-2040, segmented by recycling technology for PE (million tonnes)
  • Table 20. Global polymer demand 2022-2040, segmented by recycling technology for PP (million tonnes)
  • Table 21. Global polymer demand 2022-2040, segmented by recycling technology for PET (million tonnes)
  • Table 22. Global polymer demand 2022-2040, segmented by recycling technology for PS (million tonnes)
  • Table 23. Global polymer demand 2022-2040, segmented by recycling technology for Nylon (million tonnes)
  • Table 24. Global polymer demand 2022-2040, segmented by recycling technology for Other types (million tonnes)*
  • Table 25. Global polymer demand in Europe, by recycling technology 2022-2040 (million tonnes)
  • Table 26. Global polymer demand in North America, by recycling technology 2022-2040 (million tonnes)
  • Table 27. Global polymer demand in South America, by recycling technology 2022-2040 (million tonnes)
  • Table 28. Global polymer demand in Asia, by recycling technology 2022-2040 (million tonnes)
  • Table 29. Global polymer demand in Oceania, by recycling technology 2022-2040 (million tonnes)
  • Table 30. Global polymer demand in Africa, by recycling technology 2022-2040 (million tonnes)
  • Table 31. Example chemically recycled plastic products
  • Table 32. Life Cycle Assessments (LCA) of Advanced plastics recycling Processes
  • Table 33. Life cycle assessment of mechanically versus chemically recycling polyethylene (PE)
  • Table 34. Life cycle assessment of mechanically versus chemically recycling polypropylene (PP)
  • Table 35. Life cycle assessment of mechanically versus chemically recycling polyethylene terephthalate (PET)
  • Table 36. Plastic yield of each chemical recycling technologies
  • Table 37. Chemically recycled plastics prices in USD
  • Table 38. Applications of chemically recycled materials
  • Table 39. Current and Emerging Technologies for Chemical and Advanced Mechanical Recycling of Polymer Waste
  • Table 40. Pyrolysis Technology Comparison for Multilayer Packaging Processing
  • Table 41. Summary of non-catalytic pyrolysis technologies
  • Table 42. Summary of catalytic pyrolysis technologies
  • Table 43. Steam Cracking Technology Specifications for Polymer Waste Processing
  • Table 44. Product Yields and Quality Specifications for Polymer Waste Steam Cracking
  • Table 45. Refinery Integration Requirements for Polymer Waste Steam Cracking
  • Table 46. Commercial Steam Cracking Applications for Polymer Waste Processing
  • Table 47. Summary of pyrolysis technique under different operating conditions
  • Table 48. Biomass materials and their bio-oil yield
  • Table 49. Biofuel production cost from the biomass pyrolysis process
  • Table 50. Pyrolysis companies and plant capacities, current and planned
  • Table 51. Summary of gasification technologies
  • Table 52. Gasification Technology Specifications for Multilayer Packaging Waste
  • Table 53. Advanced recycling (Gasification) companies
  • Table 54. Summary of dissolution technologies
  • Table 55. Dissolution Technology Performance for Multilayer Packaging Recycling
  • Table 56. Switchable Solvent Technologies
  • Table 57. Advanced recycling (Dissolution) companies
  • Table 58. Delamination Method Performance for Multilayer Packaging Separation
  • Table 59. Aluminum Recovery Methods
  • Table 60. Economic and Environmental Benefits of Delamination Technologies
  • Table 61. Novel Approaches in Delamination Technologies - Comprehensive Analysis
  • Table 62. Primary Solvent Categories and Applications
  • Table 63. Process Economics and Operating Parameters
  • Table 64. Solvent Recovery and Recycling Systems
  • Table 65. Polyolefin Dissolution Systems
  • Table 66. Solvent System Performance Comparison
  • Table 67. Membrane separation technologies
  • Table 68. Life cycle assessment (LCA) of solvent systems
  • Table 69. Commercial Development and Scale-Up
  • Table 70. Pilot and Demonstration Plants
  • Table 71. Industrial Implementation Challenges
  • Table 72. Technical Implementation Barriers
  • Table 73. Economic Implementation Barriers
  • Table 74. Economic Viability Assessment
  • Table 75. Technology-Specific Economics
  • Table 76. Depolymerisation processes for PET, PU, PC and PA, products and yields
  • Table 77. Summary of hydrolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers
  • Table 78. Summary of Enzymolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers
  • Table 79. Summary of methanolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers
  • Table 80. Summary of glycolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers
  • Table 81. Summary of aminolysis technologies
  • Table 82. Advanced recycling (Depolymerisation) companies and capacities (current and planned)
  • Table 83. Hydrothermal Liquefaction Operating Parameters for Multilayer Packaging
  • Table 84. Overview of Pyrolysis with in-line reforming for advanced chemical recycling
  • Table 85. Overview of microwave-assisted pyrolysis for advanced chemical recycling
  • Table 86. Overview of plasma pyrolysis for advanced chemical recycling
  • Table 87. Overview of plasma gasification for advanced chemical recycling
  • Table 88. Summary of carbon fiber (CF) recycling technologies. Advantages and disadvantages
  • Table 89. Retention rate of tensile properties of recovered carbon fibres by different recycling processes
  • Table 90. Recycled carbon fiber producers, technology and capacity
  • Table 91. Advanced Recycling Technologies for Specialized Packaging Applications
  • Table 92. Current thermoset recycling routes
  • Table 93. Companies developing advanced thermoset recycing routes
  • Table 94. Comparison of Advanced Chemical Recycling with Traditional Recycling Methods
  • Table 95. Energy Efficiency Comparison: Advanced Chemical Recycling vs. Mechanical Recycling
  • Table 96. Quality of Output Comparison
  • Table 97. Cost Analysis of advanced plastic recycling versus traditional recycling methods
  • Table 98. Carbon Footprint Analysis
  • Table 99. Energy Consumption Assessment
  • Table 100. Sustainability Metrics
  • Table 101. AI and Machine Learning Applications
  • Table 102. Types of Nano-catalysts
  • Table 103. Types of bio-catalysts
  • Table 104. Advanced polyethylene recovery methods
  • Table 105. Polypropylene processing methods for chemical recycling
  • Table 106. PP Quality Grades from Chemical Recycling
  • Table 107. Advanced PET recovery technologies
  • Table 108. Advanced chemical recycling of metals
  • Table 109. Precious metals recovery methods
  • Table 110. Advanced processing technologies for base metal recycling
  • Table 111. Rare Earth Elements Extraction Methods
  • Table 112. Recovery Processes for Batteries
  • Table 113. Advanced technologies for materials recovery in displays
  • Table 114. Processing Methods for Natural Fiber Recycling
  • Table 115. Recovery Technologies for Synthetic Fibers
  • Table 116. Monomers from chemical recycling
  • Table 117. Oligomers from advanced recycling

List of Figures

  • Figure 1. Global plastics production 1950-2021, millions of tonnes
  • Figure 2. Coca-Cola PlantBottle-R
  • Figure 3. Interrelationship between conventional, bio-based and biodegradable plastics
  • Figure 4. Global production, use, and fate of polymer resins, synthetic fibers, and additives
  • Figure 5. The circular plastic economy
  • Figure 6. Current management systems for waste plastics
  • Figure 7. Overview of the different circular pathways for plastics
  • Figure 8. Global polymer demand 2022-2040, segmented by recycling technology for PE (million tonnes)
  • Figure 9. Global polymer demand 2022-2040, segmented by recycling technology for PP (million tonnes)
  • Figure 10. Global polymer demand 2022-2040, segmented by recycling technology for PET (million tonnes)
  • Figure 11. Global polymer demand 2022-2040, segmented by recycling technology for PS (million tonnes)
  • Figure 12. Global polymer demand 2022-2040, segmented by recycling technology for Nylon (million tonnes)
  • Figure 13. Global polymer demand 2022-2040, segmented by recycling technology for Other types (million tonnes)
  • Figure 14. Global polymer demand in Europe, by recycling technology 2022-2040 (million tonnes)
  • Figure 15. Global polymer demand in North America, by recycling technology 2022-2040 (million tonnes)
  • Figure 16. Global polymer demand in South America, by recycling technology 2022-2040 (million tonnes)
  • Figure 17. Global polymer demand in Asia, by recycling technology 2022-2040 (million tonnes)
  • Figure 18. Global polymer demand in Oceania, by recycling technology 2022-2040 (million tonnes)
  • Figure 19. Global polymer demand in Africa, by recycling technology 2022-2040 (million tonnes)
  • Figure 20. Market map for advanced plastics recycling
  • Figure 21. Value chain for advanced plastics recycling market
  • Figure 22. Schematic layout of a pyrolysis plant
  • Figure 23. Waste plastic production pathways to (A) diesel and (B) gasoline
  • Figure 24. Schematic for Pyrolysis of Scrap Tires
  • Figure 25. Used tires conversion process
  • Figure 26. SWOT analysis-pyrolysis for advanced recycling
  • Figure 27. Total syngas market by product in MM Nm3/h of Syngas
  • Figure 28. Overview of biogas utilization
  • Figure 29. Biogas and biomethane pathways
  • Figure 30. SWOT analysis-gasification for advanced recycling
  • Figure 31. SWOT analysis-dissoluton for advanced recycling
  • Figure 32. Products obtained through the different solvolysis pathways of PET, PU, and PA
  • Figure 33. SWOT analysis-Hydrolysis for advanced chemical recycling
  • Figure 34. SWOT analysis-Enzymolysis for advanced chemical recycling
  • Figure 35. SWOT analysis-Methanolysis for advanced chemical recycling
  • Figure 36. SWOT analysis-Glycolysis for advanced chemical recycling
  • Figure 37. SWOT analysis-Aminolysis for advanced chemical recycling
  • Figure 38. Alterra's Akron Plant in Ohio
  • Figure 39. ChemCyclingTM prototypes
  • Figure 40. ChemCycling circle by BASF
  • Figure 41. Recycled carbon fibers obtained through the R3FIBER process
  • Figure 42. Cassandra Oil process
  • Figure 43. CuRe Technology process
  • Figure 44. MoReTec
  • Figure 45. Chemical decomposition process of polyurethane foam
  • Figure 46. OMV ReOil process
  • Figure 47. Schematic Process of Plastic Energy's TAC Chemical Recycling
  • Figure 48. Easy-tear film material from recycled material
  • Figure 49. Polyester fabric made from recycled monomers
  • Figure 50. A sheet of acrylic resin made from conventional, fossil resource-derived MMA monomer (left) and a sheet of acrylic resin made from chemically recycled MMA monomer (right)
  • Figure 51. Teijin Frontier Co., Ltd. Depolymerisation process
  • Figure 52. The Velocys process
  • Figure 53. The Proesa-R Process
  • Figure 54. Worn Again products
目次

The advanced plastics recycling market stands at an inflection point, driven by regulatory pressures, environmental imperatives, and technological breakthroughs that are reshaping the global waste management landscape. With the European Union mandating that 10% of packaging materials must come from recycled sources by 2030, the urgency for innovative recycling solutions has never been greater. This regulatory framework represents just one facet of a broader global movement toward circular economy principles, as governments worldwide implement increasingly stringent policies to address the mounting plastic waste crisis.

The market's growth trajectory is particularly compelling when viewed against the backdrop of escalating plastic production. With plastic manufacturing projected to potentially triple over the next 35 years, the challenge of managing plastic waste will intensify exponentially. This creates both an unprecedented opportunity and an existential necessity for advanced recycling technologies to scale rapidly and efficiently.

The global advanced plastics recycling market demonstrates robust expansion across multiple segments. China's entry into large-scale advanced recycling marks a significant milestone in the industry's evolution. The new facility in Jieyang, Guangdong province, with its capacity to process over 200,000 tonnes per year using proprietary one-step deep catalytic cracking technology developed by Guangdong Dongyue Chemical Technology, represents the kind of technological breakthrough needed to address the scale of the challenge.

The limitations of mechanical recycling have created substantial opportunities for advanced chemical recycling technologies. Mechanical recycling is most effective with high-quality, relatively clean sorted waste; it faces structural limitations such as limited pools of appropriate feedstock and resulting material properties that limit end-market applications. In contrast, advanced recycling can not only expand the types of plastics that are recyclable but also produce plastics that have tailored molecular weight distributions and comonomers that are suited for high-value applications, such as flexible packaging for food.

Several key factors are propelling market growth. Government initiatives toward recycling of plastics coupled with high investments is likely to propel demand for chemical recycling of plastics. Additionally, the shift of consumer goods and packaging industries toward recyclable and sustainable materials is expected to augment the market growth.

With advanced technologies potentially processing up to 15 million tons of additional plastic waste annually by 2030, the industry is positioned to play a crucial role in addressing the global plastic waste challenge while creating substantial economic value through the transformation of waste streams into valuable feedstock for new products.

"The Global Advanced Plastics Recycling Market 2026-2040" provides definitive analysis of the advanced plastics recycling sector, covering emerging technologies, market dynamics, competitive landscapes, and strategic opportunities through 2040. As plastic production continues its exponential growth trajectory, the urgency for sustainable waste management solutions has never been greater. Advanced plastics recycling technologies-including chemical recycling, pyrolysis, gasification, depolymerization, and dissolution processes-are revolutionizing how the industry approaches plastic waste streams that were previously considered non-recyclable. This report delivers critical insights into market drivers including stringent regulatory policies, corporate sustainability initiatives, technological advancements, and circular economy adoption across key global regions.

The market analysis encompasses detailed examination of thermal processes, solvent-based recycling technologies, chemical depolymerization methods, and emerging technologies such as AI-driven sorting optimization, robotics integration, and novel catalyst development. With over 190 company profiles spanning the entire value chain from technology developers to end-product manufacturers, this report provides unparalleled competitive intelligence for strategic decision-making.

Regional analysis covers Europe, North America, South America, Asia, Oceania, and Africa, with polymer-specific demand forecasts for polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS), nylon, and other specialized materials. The report includes comprehensive capacity projections, technology comparisons, cost analyses, and sustainability metrics essential for investment planning and market entry strategies.

Report contents include:

  • Classification of recycling technologies and comprehensive research methodology
  • Global plastics production trends, environmental impact assessment, and policy landscape
  • Bio-based and biodegradable plastics market integration with recycling ecosystems
  • Circular economy frameworks and plastic waste management systems
  • Advanced vs. mechanical recycling comparison with life cycle assessments
  • Environmental concerns and regulatory compliance requirements driving market expansion
  • Corporate sustainability initiatives and extended producer responsibility programs
  • Technological advancement analysis including breakthrough innovations and patent landscapes
  • Market challenges including high initial investment costs and technical implementation barriers
  • Infrastructure limitations, supply chain complexities, and cost competitiveness analysis
  • Comprehensive industry news, funding developments, and merger & acquisition activity (2020-2025)
  • Global capacity analysis by technology type with current and planned facility databases
  • Regional polymer demand forecasts segmented by recycling technology (2022-2040)
  • Market mapping and value chain analysis from feedstock to end products
  • Pricing analysis and yield optimization strategies for chemical recycling technologies
  • Technology Analysis
    • Thermal processes: pyrolysis (catalytic and non-catalytic), gasification, and steam cracking technologies
    • Solvent-based recycling: dissolution, delamination, and polymer-specific solvent systems
    • Chemical depolymerization: hydrolysis, enzymolysis, methanolysis, glycolysis, and aminolysis processes
    • Emerging technologies: hydrothermal liquefaction, microwave-assisted pyrolysis, plasma processing
    • Advanced thermoset recycling and carbon fiber recovery technologies
  • Materials & End Products Analysis
    • Comprehensive analysis of plastic types: PE, PP, PET, PS, PVC, PC, ABS, and mixed plastic streams
    • Metals recovery including precious metals, base metals, and rare earth elements
    • Electronic waste processing for circuit boards, batteries, displays, and components
    • Textile recycling for natural and synthetic fibers with advanced recovery technologies
    • Chemical feedstocks, fuels, raw materials, and energy products from recycling processes
  • Technology Comparison & Environmental Impact
    • Advanced vs. traditional recycling methods with energy efficiency comparisons
    • Quality of output analysis and cost-benefit assessments
    • Carbon footprint analysis and waste reduction potential evaluation
    • Sustainability metrics and environmental impact assessments
    • Emerging AI, machine learning, and robotics applications in recycling operations
  • Competitive Intelligence
    • SWOT analysis for major technology categories and market segments
    • Innovation pipeline analysis and technology readiness levels
    • Commercial development timelines and scale-up challenges
    • Investment requirements and economic viability assessments
    • Market entry strategies and partnership opportunities
  • Company Profiles. Comprehensive profiles of 191 leading companies shaping the advanced plastics recycling landscape, covering products/technology, funding, TRL, collaborations etc. Companies profiled include Aduro Clean Technologies, Advanced Plastic Purification International (APPI), Aeternal Upcycling, Agilyx, Alpha Recyclage Composites, Alterra Energy, Ambercycle, Anellotech, Anhui Oursun Resource Technology, APChemi, Aquafil, ARCUS Greencycling, Arkema, Axens, BASF, Bcircular, BioBTX, Biofabrik Technologies, Birch Biosciences, Blest, Blue Cycle, BlueAlp Technology, Borealis, Boston Materials, Braven Environmental, Breaking, Brightmark, Cadel Deinking, Carbios, Carboliq, Carbon Fiber Recycling, Cassandra Oil, CIRC, Chian Tianying, Chevron Phillips Chemical, Clariter, Clean Energy Enterprises, Clean Planet Energy, Corsair Group International, Covestro, CreaCycle, CuRe Technology, Cyclic Materials, Cyclize, DeepTech Recycling, DePoly, Dow Chemical Company, DyeRecycle, Eastman Chemical Company, Eco Fuel Technology, Ecopek, Ecoplasteam, Eeden, Emery Oleochemicals, Encina Development Group, Enerkem, Enespa, Enval, Environmental Solutions (Asia), Epoch Biodesign, Equipolymers, ESTER Biotech, Evonik Industries, Evoralis, Evrnu, Extracthive, ExxonMobil, Fairmat, Fulcrum BioEnergy, Futerro, Freepoint Eco-Systems, Fych Technologies, Garbo, GreenMantra Technologies, Greyparrot, Gr3n, Guangdong Dongyue Chemical Technology, Handerek Technologies, Hanwha Solutions, Honeywell, Hyundai Chemical, Impact Recycling, Indaver, InEnTec, INEOS Styrolution, Infinited Fiber Company, Ioncell, Ioniqa Technologies, Itero Technologies, Jeplan, JFE Chemical Corporation, Kaneka Corporation, Khepra, Klean Industries, Lanzatech, Licella, Loop Industries, LOTTE Chemical, Lummus Technology, LyondellBasell Industries, MacroCycle Technologies, Metaspectral, Mint Innovation, Microwave Chemical, Mitsubishi Chemical, MolyWorks Materials, Mote, Mura Technology, Nanya Plastics Corporation, NatureWorks, Neste, New Hope Energy, Nexus Circular, Next Generation Group (NGR), Novoloop, Olefy Technologies, OMV, and more....

TABLE OF CONTENTS

1. CLASSIFICATION OF RECYCLING TECHNOLOGIES

2. RESEARCH METHODOLOGY

3. INTRODUCTION

  • 3.1. Global production of plastics
  • 3.2. The importance of plastic
  • 3.3. Issues with plastics use
  • 3.4. Bio-based or renewable plastics
    • 3.4.1. Drop-in bio-based plastics
    • 3.4.2. Novel bio-based plastics
  • 3.5. Biodegradable and compostable plastics
    • 3.5.1. Biodegradability
    • 3.5.2. Compostability
  • 3.6. Plastic pollution
  • 3.7. Policy and regulations
  • 3.8. The circular economy
  • 3.9. Plastic recycling
    • 3.9.1. Mechanical recycling
      • 3.9.1.1. Closed-loop mechanical recycling
      • 3.9.1.2. Open-loop mechanical recycling
      • 3.9.1.3. Polymer types, use, and recovery
    • 3.9.2. Advanced recycling (molecular recycling, chemical recycling)
      • 3.9.2.1. Main streams of plastic waste
      • 3.9.2.2. Comparison of mechanical and advanced chemical recycling
  • 3.10. Life cycle assessment

4. THE ADVANCED PLASTICS RECYCLING MARKET

  • 4.1. Market drivers and trends
    • 4.1.1. Growing Environmental Concerns
    • 4.1.2. Stringent Regulatory Policies
    • 4.1.3. Corporate Sustainability Initiatives
    • 4.1.4. Technological Advancements
    • 4.1.5. Circular Economy Adoption
  • 4.2. Market Challenges and Restraints
    • 4.2.1. High Initial Investment Costs
    • 4.2.2. Technical Challenges
    • 4.2.3. Infrastructure Limitations
    • 4.2.4. Technological Barriers
    • 4.2.5. Supply Chain Complexities
    • 4.2.6. Cost Competitiveness
  • 4.3. Industry news, funding and developments 2020-2025
  • 4.4. Capacities
  • 4.5. Global polymer demand 2022-2040, segmented by recycling technology
    • 4.5.1. PE
    • 4.5.2. PP
    • 4.5.3. PET
    • 4.5.4. PS
    • 4.5.5. Nylon
    • 4.5.6. Others
  • 4.6. Global polymer demand 2022-2040, segmented by recycling technology, by region
    • 4.6.1. Europe
    • 4.6.2. North America
    • 4.6.3. South America
    • 4.6.4. Asia
    • 4.6.5. Oceania
    • 4.6.6. Africa
  • 4.7. Chemically recycled plastic products
  • 4.8. Market map
  • 4.9. Value chain
  • 4.10. Life Cycle Assessments (LCA) of advanced plastics recycling processes
    • 4.10.1. PE
    • 4.10.2. PP
    • 4.10.3. PET
  • 4.11. Recycled plastic yield and cost
    • 4.11.1. Plastic yield of each chemical recycling technologies
    • 4.11.2. Prices

5. ADVANCED PLASTICS RECYCLING TECHNOLOGIES

  • 5.1. Applications
  • 5.2. Current and Emerging Technologies for Chemical and Advanced Mechanical Recycling of Polymer Waste
  • 5.3. Thermal Processes
    • 5.3.1. Pyrolysis
      • 5.3.1.1. Technical Process and Variations
      • 5.3.1.2. Non-catalytic
      • 5.3.1.3. Catalytic
      • 5.3.1.4. Steam Cracking of Polymer Waste
        • 5.3.1.4.1. Technology Overview
        • 5.3.1.4.2. Process Conditions and Product Yields
        • 5.3.1.4.3. Integration with Refineries
        • 5.3.1.4.4. Commercial Applications
        • 5.3.1.4.5. Polystyrene pyrolysis
        • 5.3.1.4.6. Pyrolysis for production of bio fuel
        • 5.3.1.4.7. Used tires pyrolysis
          • 5.3.1.4.7.1. Conversion to biofuel
        • 5.3.1.4.8. Co-pyrolysis of biomass and plastic wastes
      • 5.3.1.5. Commercial Development and Investment
      • 5.3.1.6. Challenges and Considerations
      • 5.3.1.7. SWOT analysis
      • 5.3.1.8. Companies and capacities
    • 5.3.2. Gasification
      • 5.3.2.1. Technology overview
        • 5.3.2.1.1. Syngas conversion to methanol
        • 5.3.2.1.2. Biomass gasification and syngas fermentation
        • 5.3.2.1.3. Biomass gasification and syngas thermochemical conversion
      • 5.3.2.2. Applications and Potential
      • 5.3.2.3. Multilayer Packaging
      • 5.3.2.4. SWOT analysis
      • 5.3.2.5. Companies and capacities (current and planned)
  • 5.4. Solvent-Based Recycling Technologies
    • 5.4.1. Dissolution
      • 5.4.1.1. Technology overview
      • 5.4.1.2. Selective Dissolution and Precipitation
      • 5.4.1.3. Supercritical Fluid Technologies
      • 5.4.1.4. Advanced Solvent Systems for Mixed Plastics
      • 5.4.1.5. Switchable Solvent Technologies
      • 5.4.1.6. SWOT analysis
      • 5.4.1.7. Companies and capacities (current and planned)
    • 5.4.2. Delamination Technologies for Multilayer Packaging
      • 5.4.2.1. Technical Approaches
      • 5.4.2.2. Switchable Hydrophilicity Solvents (SHS)
      • 5.4.2.3. Chemical Recycling of "Polyal" (Polyethylene-Aluminum Composites)
      • 5.4.2.4. Delamination Process for Carton Packages
      • 5.4.2.5. Aluminum Recovery Methods
      • 5.4.2.6. Polyethylene Purification and Recycling
      • 5.4.2.7. Economic and Environmental Benefits
      • 5.4.2.8. Novel Approaches
    • 5.4.3. Solvent-Based Plastic Recycling
      • 5.4.3.1. Solvent Selection and Classification
        • 5.4.3.1.1. Conventional Organic Solvents
        • 5.4.3.1.2. Ionic Liquids
        • 5.4.3.1.3. Supercritical Fluids
        • 5.4.3.1.4. Deep Eutectic Solvents (DES)
      • 5.4.3.2. Polymer-Specific Solvent Recycling
        • 5.4.3.2.1. Polyolefin Dissolution Systems
        • 5.4.3.2.2. Polystyrene Solvent Recovery
        • 5.4.3.2.3. PET and Polyester Solvolysis
        • 5.4.3.2.4. Mixed Polymer Stream Processing
      • 5.4.3.3. Solvent Recovery and Recycling Systems
        • 5.4.3.3.1. Distillation and Purification
        • 5.4.3.3.2. Membrane Separation Technologies
        • 5.4.3.3.3. Economic Optimization
      • 5.4.3.4. Environmental Considerations
        • 5.4.3.4.1. Solvent Emissions Control
        • 5.4.3.4.2. Waste Stream Management
        • 5.4.3.4.3. Life Cycle Assessment of Solvent Systems
      • 5.4.3.5. Commercial Development and Scale-Up
        • 5.4.3.5.1. Pilot and Demonstration Plants
        • 5.4.3.5.2. Industrial Implementation Challenges
        • 5.4.3.5.3. Economic Viability Assessment
    • 5.4.4. Chemical Depolymerisation
      • 5.4.4.1. Hydrolysis
        • 5.4.4.1.1. Technology overview
        • 5.4.4.1.2. SWOT analysis
      • 5.4.4.2. Enzymolysis
        • 5.4.4.2.1. Technology overview
        • 5.4.4.2.2. SWOT analysis
      • 5.4.4.3. Methanolysis
        • 5.4.4.3.1. Technology overview
        • 5.4.4.3.2. SWOT analysis
      • 5.4.4.4. Glycolysis
        • 5.4.4.4.1. Technology overview
        • 5.4.4.4.2. SWOT analysis
      • 5.4.4.5. Aminolysis
        • 5.4.4.5.1. Technology overview
        • 5.4.4.5.2. SWOT analysis
      • 5.4.4.6. Companies and capacities (current and planned)
  • 5.5. Other advanced plastics recycling technologies
    • 5.5.1. Hydrothermal Liquefaction (HTL)
      • 5.5.1.1. Technical Mechanisms
      • 5.5.1.2. Performance and Application
      • 5.5.1.3. Commercial Development
      • 5.5.1.4. Hydrothermal Liquefaction Targeting Multilayer Packaging Waste
    • 5.5.2. Pyrolysis with in-line reforming
    • 5.5.3. Microwave-assisted pyrolysis
    • 5.5.4. Plasma pyrolysis
    • 5.5.5. Plasma gasification
    • 5.5.6. Carbon fiber recycling
      • 5.5.6.1. Processes
      • 5.5.6.2. Companies
  • 5.6. Advanced recycling of thermoset materials
    • 5.6.1. Thermal recycling
      • 5.6.1.1. Energy Recovery Combustion
      • 5.6.1.2. Anaerobic Digestion
      • 5.6.1.3. Pyrolysis Processing
      • 5.6.1.4. Microwave Pyrolysis
    • 5.6.2. Solvolysis
    • 5.6.3. Catalyzed Glycolysis
    • 5.6.4. Alcoholysis and Hydrolysis
    • 5.6.5. Ionic liquids
    • 5.6.6. Supercritical fluids
    • 5.6.7. Plasma
    • 5.6.8. Chemical Vapor Infiltration (CVI)
    • 5.6.9. Companies
  • 5.7. Comparison with Traditional Recycling Methods
    • 5.7.1. Mechanical Recycling Limitations
    • 5.7.2. Energy Efficiency Comparison
    • 5.7.3. Quality of Output Comparison
    • 5.7.4. Cost Analysis
  • 5.8. Emerging Advanced Mechanical Technologies
    • 5.8.1. Chemical Upcycling Integration
    • 5.8.2. Computational Modelling
    • 5.8.3. Hybrid Approaches
  • 5.9. Environmental Impact Assessment
    • 5.9.1. Carbon Footprint Analysis
    • 5.9.2. Energy Consumption Assessment
    • 5.9.3. Waste Reduction Potential
      • 5.9.3.1. Wastewater
      • 5.9.3.2. Atmospheric Emissions
      • 5.9.3.3. Catalyst and Media Waste
      • 5.9.3.4. Maintenance and Cleaning Waste
      • 5.9.3.5. Waste Management Approaches
      • 5.9.3.6. Regulatory Considerations and Classification
      • 5.9.3.7. Comparative Waste Production
      • 5.9.3.8. Environmental Impact and Future Directions
    • 5.9.4. Sustainability Metrics
  • 5.10. Emerging Technologies
    • 5.10.1. AI and Machine Learning Applications
      • 5.10.1.1. Sorting Optimization
      • 5.10.1.2. Process Control
      • 5.10.1.3. Quality Prediction
      • 5.10.1.4. Maintenance Prediction
    • 5.10.2. Robotics in Sorting
      • 5.10.2.1. Vision Systems
      • 5.10.2.2. Picking Mechanisms
      • 5.10.2.3. Control Systems
      • 5.10.2.4. Integration Methods
    • 5.10.3. Novel Catalyst Development
      • 5.10.3.1. Nano-catalysts
      • 5.10.3.2. Bio-catalysts
      • 5.10.3.3. Hybrid Catalysts

6. MATERIALS ANALYSIS

  • 6.1. Plastics
    • 6.1.1. Polyethylene (PE)
      • 6.1.1.1. HDPE Analysis
      • 6.1.1.2. LLDPE Analysis
      • 6.1.1.3. Recovery Methods
    • 6.1.2. Polypropylene (PP)
      • 6.1.2.1. Homopolymer
      • 6.1.2.2. Copolymer
      • 6.1.2.3. Processing Methods
      • 6.1.2.4. Quality Grades
    • 6.1.3. Polyethylene Terephthalate (PET)
      • 6.1.3.1. Bottle Grade
      • 6.1.3.2. Fiber Grade
      • 6.1.3.3. Film Grade
      • 6.1.3.4. Recovery Technologies
    • 6.1.4. Polystyrene (PS)
      • 6.1.4.1. General Purpose PS
      • 6.1.4.2. High Impact PS
      • 6.1.4.3. Expanded PS
      • 6.1.4.4. Processing Methods
    • 6.1.5. Other Plastics
      • 6.1.5.1. PVC
      • 6.1.5.2. PC
      • 6.1.5.3. ABS
      • 6.1.5.4. Mixed Plastics
  • 6.2. Metals
    • 6.2.1. Precious Metals
      • 6.2.1.1. Gold
      • 6.2.1.2. Silver
      • 6.2.1.3. Platinum Group Metals
      • 6.2.1.4. Recovery Methods
  • 6.3. Base Metals
    • 6.3.1. Copper
    • 6.3.2. Aluminium
    • 6.3.3. Steel
    • 6.3.4. Processing Technologies
  • 6.4. Rare Earth Elements
    • 6.4.1. Light REEs
    • 6.4.2. Heavy REEs
    • 6.4.3. Extraction Methods
  • 6.5. Electronic Waste
    • 6.5.1. Circuit Boards
      • 6.5.1.1. PCB Types
      • 6.5.1.2. Component Separation
      • 6.5.1.3. Metal Recovery
      • 6.5.1.4. Waste Management
    • 6.5.2. Batteries
      • 6.5.2.1. Lithium-ion
      • 6.5.2.2. Lead-acid
      • 6.5.2.3. Nickel-based
      • 6.5.2.4. Recovery Processes
    • 6.5.3. Displays
      • 6.5.3.1. LCD
      • 6.5.3.2. LED
      • 6.5.3.3. OLED
      • 6.5.3.4. Material Recovery
    • 6.5.4. Other Components
      • 6.5.4.1. Capacitors
      • 6.5.4.2. Resistors
      • 6.5.4.3. Semiconductors
      • 6.5.4.4. Connectors
  • 6.6. Textiles
    • 6.6.1. Natural Fibers
    • 6.6.2. Cotton
    • 6.6.3. Wool
    • 6.6.4. Silk
    • 6.6.5. Processing Methods
  • 6.7. Synthetic Fibers
    • 6.7.1. Polyester
    • 6.7.2. Nylon
    • 6.7.3. Acrylic
    • 6.7.4. Recovery Technologies

7. END PRODUCT ANALYSIS

  • 7.1. Chemical Feedstocks
    • 7.1.1. Monomers
    • 7.1.2. Oligomers
    • 7.1.3. Specialty Chemicals
  • 7.2. Fuels
    • 7.2.1. Diesel
    • 7.2.2. Gasoline
    • 7.2.3. Synthetic Gas
  • 7.3. Raw Materials
    • 7.3.1. Recycled Plastics
    • 7.3.2. Recovered Metals
    • 7.3.3. Other Materials
  • 7.4. Energy Products
    • 7.4.1. Electricity
    • 7.4.2. Heat
    • 7.4.3. Biofuels

8. COMPANY PROFILES (191 company profiles)

9. GLOSSARY OF TERMS

10. REFERENCES