表紙:ヒューマノイドロボットの世界市場(2025年~2035年)
市場調査レポート
商品コード
1654631

ヒューマノイドロボットの世界市場(2025年~2035年)

The Global Humanoid Robots Market 2025-2035


出版日
ページ情報
英文 361 Pages, 129 Tables, 54 Figures
納期
即納可能 即納可能とは
価格
価格表記: GBPを日本円(税抜)に換算
本日の銀行送金レート: 1GBP=194.57円
ヒューマノイドロボットの世界市場(2025年~2035年)
出版日: 2025年04月28日
発行: Future Markets, Inc.
ページ情報: 英文 361 Pages, 129 Tables, 54 Figures
納期: 即納可能 即納可能とは
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

新興のヒューマノイドロボティクス市場は、複雑な経済的意味を持つ重要な技術的フロンティアです。現在の市場予測では、AIと自律システムの進歩により、2035年までに380億米ドルの潜在的な市場規模が推定されています。主な技術開発は主に米国と中国に集中しています。労働市場では経済的混乱が予測され、初期の用途は製造、ロジスティクス、特殊サービス環境に集中しています。ヒューマノイドロボットの技術的成熟度はまだ初期段階にあり、実用化は現在のところ管理された産業環境に限られています。ヒューマノイドロボット技術の長期的な実現可能性と経済的影響を決定するためには、継続的な研究開発が不可欠です。人間のような複雑で適応的なインタラクションが可能な、汎用性が高く費用対効果の高い自律システムの実現には、大きな課題が残されています。

当レポートでは、世界のヒューマノイドロボット市場について詳細に分析し、複数の産業における技術の進歩、市場力学、将来の可能性に関する知見を提供しています。

目次

第1章 イントロダクション

  • ヒューマノイドロボット:定義と特徴
  • 過去の概要と進化
  • ヒューマノイドロボットの現状(2025年)
  • ヒューマノイドロボットの重要性
  • 市場と用途(TRL)
  • 商業開発の段階とモデル
  • 投資と資金調達
  • コスト
  • 市場促進要因
  • 課題
  • 世界の規制
  • 日本市場
  • 米国市場
  • 中国市場

第2章 技術とコンポーネントの分析

  • ヒューマノイドロボット設計の進歩
  • 重要なコンポーネント
  • インテリジェント制御システム、最適化
  • 先進のロボティクス、自動化
  • 製造
  • ブレインコンピューターインターフェース
  • ロボティクス、インテリジェントヘルス
  • マイクロ~ナノロボット
  • 医療、リハビリテーションロボット
  • メカトロニクスとロボティクス
  • 画像処理、ロボティクス、インテリジェントビジョン
  • AI、機械学習
  • センサー、認識技術
  • 電力、エネルギー管理
  • アクチュエーター
  • モーター
  • 減速機
  • ネジ
  • ベアリング
  • アームエフェクター
  • ヒューマノイドロボット向けSoC
  • クラウドロボティクスとIoRT(Internet of Robotic Things)
  • ヒューマンロボットインタラクション(HRI)、ソーシャルロボティクス
  • 生体模倣、バイオインスパイアードデザイン
  • ヒューマノイドロボット向け材料
  • 皮膚組織の結合

第3章 最終用途市場

  • 市場サプライチェーン
  • 商業化のレベル
  • 医療・支援
  • 教育・研究
  • カスタマーサービス・ホスピタリティ
  • エンターテインメント・レジャー
  • 製造・工業
  • 軍事・防衛
  • 個人使用・家庭環境

第4章 世界の市場規模(数量と収益)(2025年~2035年)

  • 世界の出荷台数(合計)
  • 台数:ロボットタイプ別
  • 台数:地域別
  • 収益(合計)
  • 収益:最終用途市場別
  • 自動車
  • ロジスティクス・倉庫
  • バッテリー容量(GWh)予測
  • ハードウェアコンポーネント

第5章 企業プロファイル(企業59社のプロファイル)

第6章 学術界が開発したヒューマノイドロボット

第7章 調査手法

第8章 参考文献

図表

List of Tables

  • Table 1. Core Components of Humanoid Robots
  • Table 2. Classification of Humanoid Robots
  • Table 3. Historical Overview and Evolution of Humanoid Robots
  • Table 4. Importance of humanoid robots by end use
  • Table 5. Markets and applications for humanoid robots and TRL
  • Table 6. Humanoid Robots under commercial development
  • Table 7. Comparison of major humanoid robot prototypes
  • Table 8. Humanoid Robot investments 2023-2025
  • Table 9. Overall Sector Funding
  • Table 10. Cost Breakdown by Humanoid Type
  • Table 11. Cost Analysis by Component for Humanoid Robots
  • Table 12. Average Unit Cost (Thousands USD)
  • Table 13. Year-over-Year Cost Reduction (%)
  • Table 14. Cost Breakdown by Component (% of Total Cost, 2025 vs 2035)
  • Table 15. Cost Evolution Projections
  • Table 16. Market drivers for humanoid robots
  • Table 17. Market challenges for humanoid robots
  • Table 18. Technical challenges for humanoid robots
  • Table 19. Global regulatory landscape for humanoid robots
  • Table 20. Performance Parameters of Humanoid Robots
  • Table 21. Common Actuators in Humanoid Robotics
  • Table 22. Software and Functions in Humanoid Robots
  • Table 23. Sensors and Perception Technologies for humanoid robotics
  • Table 24. Comparison of LiDAR, Cameras, and 1D/3D Ultrasonic Sensors
  • Table 25. Categorization of LiDAR in Humanoids
  • Table 26. LiDAR Costs
  • Table 27. LiDAR Costs in Humanoid Robots
  • Table 28. Tactile and force sensors for humanoid robots,
  • Table 29. Benchmarking Tactile Sensors by Technology
  • Table 30. Challenges of Tactile Sensors and Electronic Skins
  • Table 31. Auditory sensors for humanoid robots
  • Table 32. Inertial Measurement Units (IMUs) for humanoid robots
  • Table 33. Key characteristics of proximity and range sensors commonly used in humanoid robots
  • Table 34. Environmental Sensors for humanoid robots
  • Table 35. Biometric sensors commonly used in humanoid robots:
  • Table 36. Power and Energy Management in Humanoid Robotics.- Integrated Systems Overview
  • Table 37. Energy Management Strategies for Humanoid Robots
  • Table 38. Advanced Power Management Technologies
  • Table 39. Battery technologies for humanoid robotics
  • Table 40. Battery Capacity per Humanoid Robot for Industrial Applications
  • Table 41. Humanoid Batteries - Parameters Comparison
  • Table 42. Challenges of Batteries in Humanoid Robots
  • Table 43. Energy Harvesting and Regenerative Systems in Humanoid Robots
  • Table 44.Power Distribution and Transmission Techniques in Humanoid Robots
  • Table 45. Thermal Management Techniques for Humanoid Robots
  • Table 46. Energy-Efficient Computing and Communication Techniques for Humanoid Robots
  • Table 47. Wireless Power Transfer and Charging for Humanoid Robots
  • Table 48. Actuator Components
  • Table 49. Actuator Types
  • Table 50. Pros and Cons Comparison
  • Table 51. Joint Application Matrix
  • Table 52. Comparison of Electric, Hydraulic, and Pneumatic Actuators
  • Table 53. Actuator challenges
  • Table 54. Direct Drive vs. Geared Comparison
  • Table 55. Motors for Commercial Humanoid Robots
  • Table 56. Benefits and Drawbacks of Coreless Motors
  • Table 57. Benchmarking of Reducers
  • Table 58. Bearings for Humanoids
  • Table 59. Actuation Methods of Humanoid's Hands
  • Table 60. Technical barriers of humanoid's hands
  • Table 61. Key aspects of Cloud Robotics and Internet of Robotic Things (IoRT) for humanoid robotics
  • Table 62. Examples of Biomimetic Design for Humanoid Robots
  • Table 63. Examples of Bioinspired Design for Humanoid Robots
  • Table 64. Types of metals commonly used in humanoid robots
  • Table 65. Types of plastics and polymers commonly used in humanoid robots
  • Table 66. PEEK - Costs and Technical Properties
  • Table 67. Types of composites commonly used in humanoid
  • Table 68. Types of elastomers commonly used in humanoid robots
  • Table 69. Types of smart materials in humanoid robotics
  • Table 70. Types of textiles commonly used in humanoid robots
  • Table 71. Types of ceramics commonly used in humanoid robots
  • Table 72. Biomaterials commonly used in humanoid robotics
  • Table 73. Types of nanomaterials used in humanoid robotics
  • Table 74. Types of coatings used in humanoid robotics
  • Table 75. Industry Segment Adoption Timeline
  • Table 76. Level of commercialization of humanoid robots by application
  • Table 77. Market Drivers in healthcare and assistance
  • Table 78. Applications of humanoid robots in healthcare and assistance
  • Table 79. Technology Readiness Level (TRL) Table; humanoid robots in healthcare and assistance
  • Table 80. Market Drivers in education and research
  • Table 81. Applications of humanoid robots in education and research
  • Table 82. Technology Readiness Level (TRL) for humanoid robots in education and research
  • Table 83. Market Drivers in Customer Service and Hospitality
  • Table 84. Technology Readiness Level (TRL) for humanoid robots in Customer Service and Hospitality
  • Table 85. Market Drivers in Entertainment and Leisure
  • Table 86. Applications of humanoid robots in Entertainment and Leisure
  • Table 87. Technology Readiness Level (TRL) for humanoid robots in Entertainment and Leisure
  • Table 88. Market Drivers manufacturing and industry
  • Table 89. Applications for humanoid robots in manufacturing and industry
  • Table 90. Humanoid Robots in the Automotive Sector
  • Table 91. Implementation of humanoids in automotive manufacturing
  • Table 92. Humanoid robots in the logistics industry
  • Table 93. Timeline of Tasks Handled by Humanoid Robots in Logistics
  • Table 94. Market Drivers in Military and Defense
  • Table 95. Applications for humanoid robots in Military and Defense
  • Table 96. Technology Readiness Level (TRL) for humanoid robots in Military and Defense
  • Table 97. Market Drivers in Personal Use and Domestic Settings
  • Table 98. Applications in humanoid robots in Personal Use and Domestic Settings
  • Table 99. Technology Readiness Level (TRL) humanoid robots in Personal Use and Domestic Settings
  • Table 100. Global humanoid robot shipments (1,000 units) 2024-2035, conservative estimate
  • Table 101. Global humanoid robot shipments (Millions units) 2024-2035, optimistic estimate
  • Table 102. Global humanoid robot shipments by type (Million units) 2024-2035, conservative estimate
  • Table 103. Global humanoid robot shipments by type (Million units) 2024-2035, optimistic estimate
  • Table 104. Global humanoid robot shipments by region (Million units) 2024-2035, conservative estimate
  • Table 105. Global humanoid robot shipments by region (Million units) 2024-2035, optimistic estimate
  • Table 106. Global humanoid robot shipments (Millions USD) 2024-2035, conservative estimate
  • Table 107. Global humanoid robot shipments (Millions USD) 2024-2035, optimistic estimate
  • Table 108. Global humanoid robot shipments by end use market (Millions USD) 2024-2035, conservative estimate
  • Table 109. Global humanoid robot shipments by end use market (Millions USD) 2024-2035, optimistic estimate
  • Table 110. Global Market Revenues for Humanoid Robots in the Automotive Industry: 2025-2035
  • Table 111. Global market forecast of humanoid robots in the Automotive industry: 2025-2035
  • Table 112.Deployment Distribution by 2035 (Conservative Estimate)
  • Table 113. Deployment Distribution by 2035 (Optimistic Estimate)
  • Table 114. Market Size Forecast of Humanoid Robots in the Logistics and Warehousing Industry: 2025-2035, Conservative Estimate
  • Table 115. Market Size Forecast of Humanoid Robots in the Logistics and Warehousing Industry: 2025-2035, Optimistic Estimate
  • Table 116. Global Volume Forecast of Humanoid Robots in the Logistics and Warehousing Industry: 2025-2035, Conservative Estimate
  • Table 117. Global Volume Forecast of Humanoid Robots in the Logistics and Warehousing Industry: 2025-2035, Conservative Estimate, Optimistic Estimate
  • Table 118. Market Value Distribution by Application Area (2035, Conservative)
  • Table 119. Market Value Distribution by Application Area (2035, Optimistic)
  • Table 120. Battery Capacity (GWh) Forecast for Humanoid Robots Used for Industries 2025-2035
  • Table 121. Battery Capacity by Industry Segment (GWh, 2035)
  • Table 122.Average Battery Capacity per Humanoid Robot (kWh)
  • Table 123. Humanoid Robot Hardware Component Volume Forecast, 2025-2035
  • Table 124. Humanoid Robot Hardware Component Market Size Forecast: 2025-2035, Conservative Estimate (Millions USD)
  • Table 125. Humanoid Robot Hardware Component Market Size Forecast: 2025-2035, Optimistic Estimate (Millions USD)
  • Table 126. Component Market Share (Conservative Estimate)
  • Table 127. Component Market Share (Optimistic Estimate)
  • Table 128. Average Component Cost per Robot (Thousands USD)
  • Table 129. Humanoid Robots Developed by Academia

List of Figures

  • Figure 1. Core components of a humanoid robot
  • Figure 2. Status of humanoid robots
  • Figure 3. Humanoid robot for railroad maintenance to be implemented by West Japan Railway Co
  • Figure 4. Historical progression of humanoid robots
  • Figure 5. Event-based cameras
  • Figure 6. Humanoid Robots Market Supply Chain
  • Figure 7. Global humanoid robot shipments (1,000 units) 2024-2035, conservative estimate
  • Figure 8. Global humanoid robot shipments (1,000 units) 2024-2035, optimistic estimate
  • Figure 9. Global humanoid robot shipments by type (Million units) 2024-2035, conservative estimate
  • Figure 10. Global humanoid robot shipments by type (Million units) 2024-2035, optimistic estimate
  • Figure 11. Global humanoid robot shipments by region (Million units) 2024-2035, conservative estimate
  • Figure 12. Global humanoid robot shipments by region (Million units) 2024-2035, optimistic estimate
  • Figure 13. Global humanoid robot shipments (Millions USD) 2024-2035, conservative estimate
  • Figure 14. Global humanoid robot shipments (Millions USD) 2024-2035, optimistic estimate
  • Figure 15. Global humanoid robot shipments by end use market (Millions USD) 2024-2035, conservative estimate
  • Figure 16. Global humanoid robot shipments by end use market (Millions USD) 2024-2035, optimistic estimate
  • Figure 17. RAISE-A1
  • Figure 18. Digit humanoid robot
  • Figure 19. Apptronick Apollo
  • Figure 20. Alex
  • Figure 21. BR002
  • Figure 22. Atlas
  • Figure 23. XR-4
  • Figure 24. Dreame Technology's second-generation bionic robot dog and general-purpose humanoid robot
  • Figure 25. Mercury X1
  • Figure 26. Mirokai robots
  • Figure 27. Ameca
  • Figure 28. Prototype Ex-Robots humanoid robots
  • Figure 29. Figure.ai humanoid robot
  • Figure 30. Figure 02 humanoid robot
  • Figure 31. GR-1
  • Figure 32. Sophia
  • Figure 33. Honda ASIMO
  • Figure 34. Kaleido
  • Figure 35. Forerunner
  • Figure 36. Kuafu
  • Figure 37. CL-1
  • Figure 38. MagicHand S01
  • Figure 39. EVE/NEO
  • Figure 40. Tora-One
  • Figure 41. HUBO2
  • Figure 42. XBot-L
  • Figure 43. Sanctuary AI Phoenix
  • Figure 44. Pepper Humanoid Robot
  • Figure 45. Astribot S1
  • Figure 46. Tesla Optimus Gen 2
  • Figure 47. Toyota T-HR3
  • Figure 48. UBTECH Walker
  • Figure 49. G1 foldable robot
  • Figure 50. Unitree H1
  • Figure 51. WANDA
  • Figure 52. CyberOne
  • Figure 53. PX5
  • Figure 54. Q Family robots from the Institute of Automation, Chinese Academy of Sciences
目次

The emerging humanoid robotics market represents a significant technological frontier with complex economic implications. Current market projections estimate a potential market value of $38 billion by 2035, driven by advances in artificial intelligence and autonomous systems. Key technological developments are primarily concentrated in the United States and China. Economic disruption is expected in labour markets, with early applications focusing on manufacturing, logistics, and specialized service environments. The technological maturity of humanoid robots remains in early stages, with practical deployment currently limited to controlled industrial settings. Ongoing research and development will be critical in determining the long-term viability and economic impact of humanoid robotic technologies. Significant challenges persist in achieving versatile, cost-effective autonomous systems capable of complex, adaptive human-like interactions.

"The Global Humanoid Robots Market 2025-2035" provides an in-depth analysis of the global humanoid robotics sector, offering u insights into technological advancements, market dynamics, and future potential across multiple industries.

Contents include:

  • Detailed analysis of global humanoid robot market
  • Comprehensive technology assessment
  • In-depth exploration of end-use markets
  • Conservative and optimistic market projections
  • Global regulatory landscape examination
  • Technical analysis covering:
    • Advanced robotics design
    • Intelligent control systems
    • Sensor and perception technologies
    • Materials innovation
    • Power and energy management
    • Human-robot interaction methodologies
  • Extensive market segmentation across critical domains including:
    • Healthcare and Assistance
    • Education and Research
    • Customer Service
    • Entertainment
    • Manufacturing
    • Military and Defense
    • Personal and Domestic Applications
  • Comprehensive regional analysis including:
    • United States market dynamics
    • China's technological ecosystem
    • Japanese robotics innovations
    • Emerging market opportunities
  • Company and Technology Landscape. Detailed profiles of 59 humanoid robotics companies including Addverb Technologies, Agibot, Agility Robotics, Apptronik, Baidu, Beijing HRIC, Boardwalk Robotics, Booster Robotics, Boston Dynamics, BXI Robotics, Clone Robotics, Cosine Robots, Dataa Robotics, Dreame Technology, Electron Robots, Elephant Robotics, Embodied, EngineAI, Engineered Arts, EX Robots, FDROBOT, Figure AI, Fourier Intelligence, GAC, Galbot, Generation Robots, Hanson Robotics, Honda, Humanoid, Humanoid Robots (Shanghai) Limited, Kawasaki Heavy Industries, Kepler, K-Scale Labs, Leju Robotics, LimX Dynamics, Macco Robotics, Mentee Robotics, Mimic, Neura Robotics, NVIDIA, 1X Technologies, Oversonic, PAL Robotics, PaXini Technology, Persona AI, Rainbow Robotics, Rhoban Robots, RobotEra and more...

Table of Contents

1. INTRODUCTION

  • 1.1. Humanoid Robots: Definition and Characteristics
  • 1.2. Historical Overview and Evolution
  • 1.3. Current State of Humanoid Robots in 2025
  • 1.4. The Importance of Humanoid Robots
  • 1.5. Markets and Applications (TRL)
  • 1.6. Models and Stage of Commercial Development
  • 1.7. Investments and Funding
  • 1.8. Costs
    • 1.8.1. Type
    • 1.8.2. Components
    • 1.8.3. Cost Evolution
  • 1.9. Market Drivers
    • 1.9.1. Advancements in Artificial Intelligence (AI) and Machine Learning (ML)
    • 1.9.2. Labour force shortages
    • 1.9.3. Labour force substitution
    • 1.9.4. Need for Personal Assistance and Companionship
    • 1.9.5. Exploration of Hazardous and Extreme Environments
  • 1.10. Challenges
    • 1.10.1. Commercial Challenges
    • 1.10.2. Technical Challenges
  • 1.11. Global regulations
  • 1.12. Market in Japan
  • 1.13. Market in United States
  • 1.14. Market in China

2. TECHNOLOGY AND COMPONENT ANALYSIS

  • 2.1. Advancements in Humanoid Robot Design
  • 2.2. Critical Components
  • 2.3. Intelligent Control Systems and Optimization
  • 2.4. Advanced Robotics and Automation
  • 2.5. Manufacturing
    • 2.5.1. Design and Prototyping
    • 2.5.2. Component Manufacturing
    • 2.5.3. Assembly and Integration
    • 2.5.4. Software Integration and Testing
    • 2.5.5. Quality Assurance and Performance Validation
    • 2.5.6. Challenges
      • 2.5.6.1. Actuators
      • 2.5.6.2. Reducers
      • 2.5.6.3. Thermal management
      • 2.5.6.4. Batteries
      • 2.5.6.5. Cooling
      • 2.5.6.6. Sensors
  • 2.6. Brain Computer Interfaces
  • 2.7. Robotics and Intelligent Health
    • 2.7.1. Robotic Surgery and Minimally Invasive Procedures
    • 2.7.2. Rehabilitation and Assistive Robotics
    • 2.7.3. Caregiving and Assistive Robots
    • 2.7.4. Intelligent Health Monitoring and Diagnostics
    • 2.7.5. Telemedicine and Remote Health Management
    • 2.7.6. Robotics in Mental Health
  • 2.8. Micro-nano Robots
  • 2.9. Medical and Rehabilitation Robots
  • 2.10. Mechatronics and Robotics
  • 2.11. Image Processing, Robotics and Intelligent Vision
  • 2.12. Artificial Intelligence and Machine Learning
    • 2.12.1. Overview
    • 2.12.2. AI Hardware and Software
      • 2.12.2.1. Functions
      • 2.12.2.2. Simulation
      • 2.12.2.3. Motion Planning and Control
      • 2.12.2.4. Foundation Models
      • 2.12.2.5. Synthetic Data Generation
      • 2.12.2.6. Multi-contact planning and control
    • 2.12.3. End-to-end AI
    • 2.12.4. Multi-modal AI algorithms
  • 2.13. Sensors and Perception Technologies
    • 2.13.1. Vision Systems
      • 2.13.1.1. Commerical examples
    • 2.13.2. Hybrid LiDAR-camera approaches
    • 2.13.3. Cameras and LiDAR
      • 2.13.3.1. Cameras (RGB, depth, thermal, event-based)
      • 2.13.3.2. Stereo vision and 3D perception
      • 2.13.3.3. Optical character recognition (OCR)
      • 2.13.3.4. Facial recognition and tracking
      • 2.13.3.5. Gesture recognition
      • 2.13.3.6. mmWave Radar
    • 2.13.4. Tactile and Force Sensors
      • 2.13.4.1. Value proposition of advanced tactile systems
      • 2.13.4.2. Commercial examples
      • 2.13.4.3. Flexible tactile sensors
      • 2.13.4.4. Tactile sensing for humanoid extremities
      • 2.13.4.5. Tactile sensors (piezoresistive, capacitive, piezoelectric)
      • 2.13.4.6. Force/torque sensors (strain gauges, load cells)
      • 2.13.4.7. Haptic feedback sensors
      • 2.13.4.8. Skin-like sensor arrays
    • 2.13.5. Auditory Sensors
      • 2.13.5.1. Microphones (array, directional, binaural)
      • 2.13.5.2. Sound Localization and Source Separation
      • 2.13.5.3. Speech Recognition and Synthesis
      • 2.13.5.4. Acoustic Event Detection
    • 2.13.6. Inertial Measurement Units (IMUs)
      • 2.13.6.1. Accelerometers
      • 2.13.6.2. Gyroscopes
      • 2.13.6.3. Magnetometers
      • 2.13.6.4. Attitude and Heading Reference Systems (AHRS)
    • 2.13.7. Proximity and Range Sensors
      • 2.13.7.1. Ultrasonic sensors
      • 2.13.7.2. Laser range finders (LiDAR)
      • 2.13.7.3. Radar sensors
      • 2.13.7.4. Time-of-Flight (ToF) sensors
    • 2.13.8. Environmental Sensors
      • 2.13.8.1. Temperature sensors
      • 2.13.8.2. Humidity sensors
      • 2.13.8.3. Gas and chemical sensors
      • 2.13.8.4. Pressure sensors
    • 2.13.9. Biometric Sensors
      • 2.13.9.1. Heart rate sensors
      • 2.13.9.2. Respiration sensors
      • 2.13.9.3. Electromyography (EMG) sensors
      • 2.13.9.4. Electroencephalography (EEG) sensors
    • 2.13.10. Sensor Fusion
      • 2.13.10.1. Kalman Filters
      • 2.13.10.2. Particle Filters
      • 2.13.10.3. Simultaneous Localization and Mapping (SLAM)
      • 2.13.10.4. Object Detection and Recognition
      • 2.13.10.5. Semantic Segmentation
      • 2.13.10.6. Scene Understanding
  • 2.14. Power and Energy Management
    • 2.14.1. Battery Technologies
    • 2.14.2. Challenges
    • 2.14.3. Energy Harvesting and Regenerative Systems
      • 2.14.3.1. Energy Harvesting Techniques
      • 2.14.3.2. Regenerative Braking Systems
      • 2.14.3.3. Hybrid Power Systems
    • 2.14.4. Power Distribution and Transmission
      • 2.14.4.1. Efficient Power Distribution Architectures
      • 2.14.4.2. Advanced Power Electronics and Motor Drive Systems
      • 2.14.4.3. Distributed Power Systems and Intelligent Load Management
    • 2.14.5. Thermal Management
      • 2.14.5.1. Cooling Systems
      • 2.14.5.2. Thermal Modeling and Simulation Techniques
      • 2.14.5.3. Advanced Materials and Coatings
    • 2.14.6. Energy-Efficient Computing and Communication
      • 2.14.6.1. Low-Power Computing Architectures
      • 2.14.6.2. Energy-Efficient Communication Protocols and Wireless Technologies
      • 2.14.6.3. Intelligent Power Management Strategies
    • 2.14.7. Wireless Power Transfer and Charging
    • 2.14.8. Energy Optimization and Machine Learning
  • 2.15. Actuators
    • 2.15.1. Humanoid robot actuation systems
    • 2.15.2. Actuators in humanoid joint systems
    • 2.15.3. Energy transduction mechanism
  • 2.16. Motors
    • 2.16.1. Overview
    • 2.16.2. Frameless motors
    • 2.16.3. Brushed/Brushless Motors
    • 2.16.4. Coreless motors
  • 2.17. Reducers
    • 2.17.1. Harmonic reducers
    • 2.17.2. RV (Rotary Vector) reducers
    • 2.17.3. Planetary gear systems
  • 2.18. Screws
    • 2.18.1. Screw-based transmission systems
    • 2.18.2. Ball screw assemblies
    • 2.18.3. Planetary Roller Screws
  • 2.19. Bearings
    • 2.19.1. Overview
  • 2.20. Arm Effectors
    • 2.20.1. Overview
    • 2.20.2. Hot-swappable end effector systems
    • 2.20.3. Challenges
  • 2.21. SoCs for Humanoid Robotics
  • 2.22. Cloud Robotics and Internet of Robotic Things (IoRT)
  • 2.23. Human-Robot Interaction (HRI) and Social Robotics
  • 2.24. Biomimetic and Bioinspired Design
  • 2.25. Materials for Humanoid Robots
    • 2.25.1. New materials development
    • 2.25.2. Metals
      • 2.25.2.1. Magnesium Alloy
    • 2.25.3. Shape Memory Alloys
    • 2.25.4. Plastics and Polymers
    • 2.25.5. Composites
    • 2.25.6. Elastomers
    • 2.25.7. Smart Materials
    • 2.25.8. Textiles
    • 2.25.9. Ceramics
    • 2.25.10. Biomaterials
    • 2.25.11. Nanomaterials
    • 2.25.12. Coatings
      • 2.25.12.1. Self-healing coatings
      • 2.25.12.2. Conductive coatings
  • 2.26. Binding Skin Tissue

3. END USE MARKETS

  • 3.1. Market supply chain
  • 3.2. Level of commercialization
  • 3.3. Healthcare and Assistance
  • 3.4. Education and Research
  • 3.5. Customer Service and Hospitality
  • 3.6. Entertainment and Leisure
  • 3.7. Manufacturing and Industry
    • 3.7.1. Overview
      • 3.7.1.1. Assembly and Production
      • 3.7.1.2. Quality Inspection
      • 3.7.1.3. Warehouse Assistance
    • 3.7.2. Automotive
      • 3.7.2.1. Commercial examples
    • 3.7.3. Logistics
      • 3.7.3.1. Warehouse environments
      • 3.7.3.2. Commercial examples
  • 3.8. Military and Defense
  • 3.9. Personal Use and Domestic Settings

4. GLOBAL MARKET SIZE (UNITS AND REVENUES) 2025-2035

  • 4.1. Global shipments in units (Total)
  • 4.2. By type of robot in units
  • 4.3. By region in units
  • 4.4. Revenues (Total)
  • 4.5. Revenues (By end use market)
  • 4.6. Automotive
    • 4.6.1. Revenues
    • 4.6.2. Units
    • 4.6.3. Deployment
  • 4.7. Logistics and warehousing
    • 4.7.1. Revenues
    • 4.7.2. Units
    • 4.7.3. Deployment
  • 4.8. Battery Capacity (GWh) Forecast
  • 4.9. Hardware Components

5. COMPANY PROFILES (59 company profiles)

6. HUMANOID ROBOTS DEVELOPED BY ACADEMIA

7. RESEARCH METHODOLOGY

8. REFERENCES