表紙:圧電MEMSの世界市場(2025年~2035年)
市場調査レポート
商品コード
1650828

圧電MEMSの世界市場(2025年~2035年)

Global PiezoMEMS Market 2025-2035


出版日
ページ情報
英文 258 Pages, 63 Tables, 29 Figures
納期
即納可能 即納可能とは
価格
価格表記: GBPを日本円(税抜)に換算
本日の銀行送金レート: 1GBP=198.17円
圧電MEMSの世界市場(2025年~2035年)
出版日: 2025年05月11日
発行: Future Markets, Inc.
ページ情報: 英文 258 Pages, 63 Tables, 29 Figures
納期: 即納可能 即納可能とは
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

圧電マイクロエレクトロメカニカルセンサーとアクチュエーターは、さまざまな用途で使用されています。従来の静電容量MEMSと比較して、圧電MEMSは優れた性能と製造効率を提供します。圧電薄膜、特にPZTは、マイクやマイクロミラー、ガスセンサー、イメージスタビライザー、超音波トランスデューサー、優れた印刷結果をもたらすピエゾプリンター、ARガラス、通信強化用のRFフィルターなど、高成長MEMS製品の新たな基礎を形成しています。

圧電MEMS部門は、幅広いMEMS産業の中で一大セグメントとなっており、特にコンシューマーエレクトロニクス、通信、新しいIoT用途で強力なプレゼンスを示しています。

圧電MEMS市場は、次のような要因によって、より広範なMEMS市場よりも急速に成長すると予測されます。

  • 5Gネットワークの開発と将来の6G開発
  • 自動車の安全性と自動運転システムにおける採用の増加
  • 医用画像と診断用途の成長
  • 新しいコンシューマーエレクトロニクス用途の登場

特にIoT、自動車、医療部門における新たな用途の登場は、量子コンピューティングや先進のセンシングシステムなどの新分野における画期的な用途の可能性を秘めており、2035年にかけて持続的な成長を促進すると予測されます。

当レポートでは、世界の圧電MEMS市場について分析し、2025年~2035年の技術開発、市場動向、成長機会に関する詳細な知見を提供しています。特に新技術と市場力学に焦点を当て、材料と製造から最終用途までのバリューチェーン全体を調査しています。

目次

第1章 イントロダクション

  • 世界のMEMS市場
  • 圧電技術の概要
  • 圧電MEMS技術の進化
  • 圧電MEMS市場(2020年~2024年)
  • 技術情勢
  • 規制枠組み

第2章 圧電材料と技術

  • 圧電材料の基礎
  • 材料カテゴリ
  • 加工技術

第3章 市場の分析と予測(2025年~2035年)

  • 市場規模と成長
    • 世界の収益の予測
    • 数量の予測
    • 地域の分析
  • 市場のセグメンテーション
    • デバイスタイプ別
    • 材料タイプ別
    • 最終用途産業別
  • ウエハーレベルの分析
    • ウエハースタート:材料別
    • ウエハーサイズの動向
    • 製造能力
    • 地域の生産の分布

第4章 用途セグメント

  • センサー
    • マイク
    • 加速度計
    • フォースセンサー
    • 市場予測
  • アクチュエーター
    • インクジェットプリントヘッド
    • マイクロスピーカー
    • 光学MEMS
    • 市場予測
  • トランスデューサー
    • 超音波指紋センサー
    • 医用画像
    • 市場予測
  • RFフィルター
    • BAW技術
    • FBAR/SMRソリューション
    • 市場予測

第5章 サプライチェーン

第6章 技術動向とイノベーション

  • 材料のイノベーション
  • 製造の進歩
  • デバイスのイノベーション

第7章 課題と機会

  • 技術的課題
  • 市場の障壁
  • 成長機会
  • 将来の用途

第8章 企業プロファイル(企業106社のプロファイル)

第9章 付録

第10章 参考文献

図表

List of Tables

  • Table 1. Global MEMS market 2020-2024 (Billion USD), by end user market
  • Table 2. Key piezoelectric parameters and their significance
  • Table 3. PiezoMEMS Market 2020-2024 (Billion USD)
  • Table 4. Core Technologies in PiezoMEMS
  • Table 5. PiezoMEMS Integration Approaches
  • Table 6. Comparison of Competing Technologies
  • Table 7. PiezoMEMS Technology Readiness Levels
  • Table 8. Key regulations affecting piezoMEMS industry
  • Table 9. PiezoMEMS key performance metrics
  • Table 10. PiezoMEMS Manufacturing Processes
  • Table 11. Thin film deposition in piezoMEMS fabrication
  • Table 12. Material processing
  • Table 13. Quality control in piezoMEMS manufacturing
  • Table 14. Process integration for piezoMEMS
  • Table 15. Yield management in piezoMEMS manufacturing
  • Table 16. Materials Categories for PiezoMEMS
  • Table 17. AlN Properties and Applications
  • Table 18. Cost-Benefit Analysis: ScAlN vs. AlN
  • Table 19. Sc-AlN vs standard AlN comparison
  • Table 20. PZT Variations and Properties
  • Table 21. PZT Processing Methods
  • Table 22. PZT performance metrics
  • Table 23. PZT Application Areas
  • Table 24. Emerging materials comparison
  • Table 25. Deposition Technology Comparison
  • Table 26. Process parameters for different methods
  • Table 27. Integration Challenges and Solutions
  • Table 28. Quality Control Parameters
  • Table 29. Global PiezoMEMS market revenue forecast 2020-2035 (Billions USD)
  • Table 30. Estimated Unit Production (Millions), 2020-2035
  • Table 31. Production volumes by device type, 2020-2035
  • Table 32. Capacity Utilization Rates
  • Table 33. PiezoMEMS Market in North America
  • Table 34. PiezoMEMS Market in Europe
  • Table 35. PiezoMEMS Market in Asia-Pacific
  • Table 36. PiezoMEMS Market in China
  • Table 37. Regional market shares and growth rates
  • Table 38. Global PiezoMEMS Revenues by Device Type 2020-2035
  • Table 39. Global PiezoMEMS revenues by material type 2020-2035
  • Table 40. Global PiezoMEMS revenues by end-user industry 2020-2035
  • Table 41. Wafer production trends
  • Table 42. Wafer Starts by Material
  • Table 43. PiezoMEMS wafer share by fab
  • Table 44. PiezoMEMS Applications in Sensors
  • Table 45. Global PiezoMEMS market forecast in Sensors (2024-2035)
  • Table 46. PiezoMEMS in Actuators
  • Table 47. Global PiezoMEMS market forecast Actuators (2024-2035)
  • Table 48. PiezoMEMS in Transducers
  • Table 49. Global PiezoMEMS market forecast in Transducers (2024-2035)
  • Table 50. PiezoMEMS in RF Filters
  • Table 51. Global PiezoMEMS market forecast in Transducers (2024-2035)
  • Table 52. Enhanced Performance Materials for PiezoMEMS
  • Table 53. PiezoMEMS Lead-free Alternatives
  • Table 54. Manufacturing Advances
  • Table 55. Integration technologies for piezoMEMS
  • Table 56. Miniaturization Trends
  • Table 57. Performance enhancements in piezoMEMS devices
  • Table 58. Emerging applications for piezoMEMS technologies
  • Table 59. PiezoMEMS technical challenges
  • Table 60. Market barriers for piezoMEMS technologies
  • Table 61. Growth opportunities for piezoMEMS
  • Table 62. Future applications analysis
  • Table 63. Abbreviations

List of Figures

  • Figure 1. Global MEMS market 2020-2024 (Billions USD), by end user market
  • Figure 2. Schematic illustration of piezoelectric effect
  • Figure 3. Evolution of PiezoMEMS Technology
  • Figure 4. PiezoMEMS Market 2020-2024 (Billion USD)
  • Figure 5. PiezoMEMS material roadmap
  • Figure 6. Global PiezoMEMS market revenue forecast 2020-2035 (Billions USD)
  • Figure 7. Estimated Unit Production (Millions), 2020-2035
  • Figure 8. Global PiezoMEMS revenues by device type 2020-2035
  • Figure 9. Global PiezoMEMS revenues by material type 2020-2035
  • Figure 10. Global PiezoMEMS revenues by end-user industry 2020-2035
  • Figure 11. Wafer capacity by region
  • Figure 12. Global PiezoMEMS market forecast in Sensors (2024-2035) BILLIONS USD
  • Figure 13. Global PiezoMEMS market forecast Actuators (2024-2035), BILLIONS USD
  • Figure 14. Global PiezoMEMS market forecast in Transducers (2024-2035) BILLIONS USD
  • Figure 15. Global PiezoMEMS market forecast in Transducers (2024-2035) BILLIONS USD
  • Figure 16. PiezoMEMS Market supply chain
  • Figure 17. Bosch - BMI270 6-axis IMU
  • Figure 18. Broadcom - FBAR RF Filter Products
  • Figure 19. Butterfly Network - Butterfly iQ+ Ultrasound System
  • Figure 20. Fujifilm Dimatix - Samba Printhead Technology
  • Figure 21. Infineon - XENSIV(TM) MEMS Microphones
  • Figure 22. Murata - SAW Filter Products
  • Figure 23. poLight - TLens-R Autofocus Actuator
  • Figure 24. Qualcomm - 3D Sonic Sensor (Ultrasonic Fingerprint)
  • Figure 25. Qorvo - BAW Filter Portfolio
  • Figure 26. STMicroelectronics - MEMS microphones (MP23DB01HP)
  • Figure 27. TDK InvenSense - ICP-10125 High-Performance Pressure Sensor
  • Figure 28. USound - MEMS Speaker Technology
  • Figure 29. xMEMS - Montara Microspeaker
目次

Piezoelectric microelectromechanical sensors and actuators are used in a wide variety of applications. Compared to traditional capacitive MEMS, piezoelectric MEMS deliver superior performance and manufacturing efficiency. Piezoelectric thin films, particularly PZT, form the new basis for high-growth MEMS products such as microphones and micromirrors, gas sensors, image stabilizers, ultrasonic transducers, piezo printers that deliver excellent printing results, AR glasses and RF filters for enhanced telecommunications.

The piezoMEMS sector represents a significant segment within the broader MEMS industry, with particularly strong presence in consumer electronics, telecommunications, and emerging IoT applications.

The piezoMEMS market is expected to grow significantly faster than the broader MEMS driven by:

  • Expansion of 5G networks and eventual 6G development
  • Increasing adoption in automotive safety and autonomous systems
  • Growth in medical imaging and diagnostic applications
  • Emergence of new consumer electronics applications

The emergence of new applications, particularly in IoT, automotive, and medical sectors, is expected to drive sustained growth through 2035, with potential for breakthrough applications in emerging fields such as quantum computing and advanced sensing systems.

"The Global PiezoMEMS Market 2025-2035" report analyzes the global piezoelectric MEMS (PiezoMEMS) sector, providing detailed insights into technology developments, market trends, and growth opportunities from 2025 to 2035. The study examines the entire value chain from materials and manufacturing to end-user applications, with particular focus on emerging technologies and market dynamics.

Report contents include:

  • Extensive analysis of the PiezoMEMS industry, including detailed market forecasts, technology assessments, and competitive analysis.
  • Key applications such as RF filters, sensors, actuators, and transducers across various sectors including consumer electronics, automotive, medical, and industrial applications.
  • Key Market Segments covered include:
    • Sensors (microphones, accelerometers, force sensors)
    • Actuators (inkjet printheads, microspeakers, optical MEMS)
    • Transducers (ultrasonic fingerprint sensors, medical imaging)
    • RF Filters (BAW technology, FBAR/SMR solutions)
  • Detailed market analysis including:
    • Global revenue projections (2025-2035)
    • Volume forecasts by device type
    • Regional market analysis
    • Production capacity assessment
    • Wafer-level analysis
    • Supply chain evaluation
  • Technology roadmaps and development trends
  • Manufacturing strategies and challenges
  • Regional market dynamics
  • Detailed analysis of key application areas:
    • Consumer electronics (smartphones, wearables)
    • Automotive sensors and actuators
    • Medical devices and imaging systems
    • Industrial applications
    • IoT and emerging applications
  • Manufacturing and Production:
    • Wafer fabrication processes
    • Integration technologies
    • Quality control methods
    • Capacity utilization
    • Regional production distribution
    • Cost analysis
  • Technology Trends and Innovation:
    • Material innovations and enhancements
    • Manufacturing advances
    • Device miniaturization
    • Performance improvements
    • Novel applications
    • Integration strategies
  • Market opportunities and growth drivers:
    • Technical barriers and solutions
    • Market adoption factors
    • Competition analysis
    • Environmental considerations
    • Regulatory compliance
    • Future opportunities
    • Comprehensive profiles of over 100 companies including:
    • Major MEMS manufacturers
    • Material suppliers
    • Equipment providers
    • Technology developers
    • End-product manufacturers

Companies covered include:

  • AAC Technologies
  • Aeponyx
  • AKM
  • Akoustis
  • AlphaMOS
  • Alps Alpine
  • AMFitzgerald-MEMS Infinity
  • Amphenol
  • Analog Devices
  • Anello Photonics
  • Asia Pacific Microsystems
  • ASMC (Advanced Semiconductor Manufacturing Corporation Limited)
  • Aspinity
  • Atomica
  • Beijing Zhixin Tech
  • Blickfeld
  • Bosch
  • Broadcom
  • Butterfly Network
  • Canon Inc.
  • CEA Leti
  • Cirrus Logic
  • Denso
  • EpicMEMS
  • eXo
  • Flusso
  • Formfactor
  • Fraunhofer IPMS
  • Fujifilm Dimatix
  • Gettop
  • GMEMS Technologies
  • Goermicro
  • Goertek
  • Guide Sensmart Technology Co. Ltd.
  • GWIC (Guangdong WIT Integrated Circuits Co. Ltd.)
  • Hanking Electronics
  • Heimann Sensor
  • Hewlett Packard
  • Hikvision (Hikmicro)
  • Honeywell
  • HuaHong Grace Semiconductor Manufacturing Corporation
  • Huntersun
  • Hypernano
  • IceMOS Technology Ltd.
  • Illumina
  • Infineon Technologies
  • InfiRay
  • Instrumems
  • Melexis
  • MEMJET
  • MEMSCAP SA
  • MEMSDrive
  • MEMSensing
  • MEMSIC
  • MEMSonics
  • Merit Sensor
  • Merry Electronics
  • Microchip Technology Inc.
  • Microfab Technologies Inc.
  • Micronit Microtechnologies B.V.
  • Minebea Mitsumi
  • Mirrorcle
  • Murata
  • Nanox

and more......

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. The Global MEMS market
    • 1.1.1. Historical
    • 1.1.2. Current market (2024-2025)
  • 1.2. Overview of Piezoelectric Technology
    • 1.2.1. Fundamentals of Piezoelectricity
    • 1.2.2. Direct and Inverse Piezoelectric Effects
    • 1.2.3. Key Parameters and Measurements
    • 1.2.4. Design Considerations
  • 1.3. Evolution of PiezoMEMS Technology
  • 1.4. PiezoMEMS Market 2020-2024
    • 1.4.1. Market Size and Growth Trends
    • 1.4.2. Application Development
    • 1.4.3. Technology Advancement
  • 1.5. Technology Landscape
    • 1.5.1. Core Technologies
    • 1.5.2. PiezoMEMS technology as a key enabler for implementing generative AI capabilities in edge devices
    • 1.5.3. Integration Approaches
    • 1.5.4. Competing Technologies
    • 1.5.5. Technology Readiness Levels
  • 1.6. Regulatory Framework
    • 1.6.1. Environmental Regulations
    • 1.6.2. Safety Requirements
    • 1.6.3. Certification Processes
    • 1.6.4. Future Regulatory Trends

2. PIEZOELECTRIC MATERIALS AND TECHNOLOGIES

  • 2.1. Fundamentals of Piezoelectric Materials
    • 2.1.1. Working Principles
      • 2.1.1.1. Crystal Structure
      • 2.1.1.2. Polarization Mechanisms
      • 2.1.1.3. Electromechanical Coupling
      • 2.1.1.4. Material Physics
    • 2.1.2. Key Performance Metrics
      • 2.1.2.1. Piezoelectric Coefficients
      • 2.1.2.2. Coupling Factors
      • 2.1.2.3. Quality Factors
      • 2.1.2.4. Temperature Stability
      • 2.1.2.5. Reliability Metrics
    • 2.1.3. Manufacturing Processes
      • 2.1.3.1. Thin Film Deposition
      • 2.1.3.2. Material Processing
      • 2.1.3.3. Quality Control
      • 2.1.3.4. Process Integration
      • 2.1.3.5. Yield Management
  • 2.2. Material Categories
    • 2.2.1. Aluminum Nitride (AlN)
      • 2.2.1.1. Properties and Characteristics
      • 2.2.1.2. Applications
      • 2.2.1.3. Cost Structure
    • 2.2.2. Scandium-doped AlN
      • 2.2.2.1. Doping Effects
      • 2.2.2.2. Performance Improvements
      • 2.2.2.3. Manufacturing Challenges
      • 2.2.2.4. Cost-Benefit Analysis
      • 2.2.2.5. Market Adoption
    • 2.2.3. Lead Zirconate Titanate (PZT)
      • 2.2.3.1. Material Properties
      • 2.2.3.2. Processing Methods
      • 2.2.3.3. Performance Characteristics
      • 2.2.3.4. Environmental Concerns
      • 2.2.3.5. Application Areas
    • 2.2.4. Emerging Materials
      • 2.2.4.1. KNN
      • 2.2.4.2. LiNbO3
  • 2.3. Processing Technologies
    • 2.3.1. Thin-film Deposition
      • 2.3.1.1. Sputtering Techniques
      • 2.3.1.2. Chemical Vapor Deposition
      • 2.3.1.3. Sol-Gel Processing
      • 2.3.1.4. Other Methods
    • 2.3.2. Integration Techniques
      • 2.3.2.1. CMOS Integration
      • 2.3.2.2. Wafer Bonding
      • 2.3.2.3. Packaging Solutions
      • 2.3.2.4. Novel Approaches
    • 2.3.3. Quality Control Methods

3. MARKET ANALYSIS AND FORECASTS 2025-2035

  • 3.1. Market Size and Growth
    • 3.1.1. Global Revenue Projections
    • 3.1.2. Volume Forecasts
      • 3.1.2.1. Unit Production Trends
      • 3.1.2.2. Volume by Device Type
      • 3.1.2.3. Production Capacity Analysis
      • 3.1.2.4. Capacity Utilization Rates
    • 3.1.3. Regional Analysis
      • 3.1.3.1. North America
      • 3.1.3.2. Europe
      • 3.1.3.3. Asia Pacific
      • 3.1.3.4. China
  • 3.2. Market Segmentation
    • 3.2.1. By Device Type
    • 3.2.2. By Material Type
    • 3.2.3. By End-user Industry
  • 3.3. Wafer-level Analysis
    • 3.3.1. Wafer Starts by Material
    • 3.3.2. Wafer Size Trends
    • 3.3.3. Manufacturing Capacity
    • 3.3.4. Regional Production Distribution

4. APPLICATION SEGMENTS

  • 4.1. Sensors
    • 4.1.1. Microphones
    • 4.1.2. Accelerometers
    • 4.1.3. Force Sensors
    • 4.1.4. Market Forecast
  • 4.2. Actuators
    • 4.2.1. Inkjet Printheads
    • 4.2.2. Microspeakers
    • 4.2.3. Optical MEMS
    • 4.2.4. Market Forecast
  • 4.3. Transducers
    • 4.3.1. Ultrasonic Fingerprint Sensors
    • 4.3.2. Medical Imaging
    • 4.3.3. Market Forecast
  • 4.4. RF Filters
    • 4.4.1. BAW Technology
    • 4.4.2. FBAR/SMR Solutions
    • 4.4.3. Market Forecast

5. SUPPLY CHAIN

6. TECHNOLOGY TRENDS AND INNOVATION

  • 6.1. Material Innovations
    • 6.1.1. Enhanced Performance Materials
    • 6.1.2. Lead-free Alternatives
    • 6.1.3. Novel Compositions
  • 6.2. Manufacturing Advances
    • 6.2.1. Process Improvements
    • 6.2.2. Integration Technologies
    • 6.2.3. Quality Control Methods
  • 6.3. Device Innovations
    • 6.3.1. Miniaturization Trends
    • 6.3.2. Performance Enhancements
    • 6.3.3. New Applications

7. CHALLENGES AND OPPORTUNITIES

  • 7.1. Technical Challenges
  • 7.2. Market Barriers
  • 7.3. Growth Opportunities
  • 7.4. Future Applications

8. COMPANY PROFILES (106 company profiles)

9. APPENDICES

  • 9.1. Research Methodology
  • 9.2. Abbreviations

10. REFERENCES