表紙:マイクロフルイディクスの世界市場(2025年~2035年)
市場調査レポート
商品コード
1574328

マイクロフルイディクスの世界市場(2025年~2035年)

The Global Microfluidics Market 2025-2035

出版日: | 発行: Future Markets, Inc. | ページ情報: 英文 295 Pages, 95 Tables, 74 Figures | 納期: 即納可能 即納可能とは

価格
価格表記: GBPを日本円(税抜)に換算
本日の銀行送金レート: 1GBP=193.81円
マイクロフルイディクスの世界市場(2025年~2035年)
出版日: 2024年10月31日
発行: Future Markets, Inc.
ページ情報: 英文 295 Pages, 95 Tables, 74 Figures
納期: 即納可能 即納可能とは
  • 全表示
  • 概要
  • 図表
  • 目次
概要

世界のマイクロフルイディクス市場は、医療、医薬品、工業部門にわたる革新的な利用により、2035年にかけて例外的な成長可能性を示しています。微細なスケールで流体を操作するこの精巧な技術は、診断、医薬品開発、プロセス制御に対する従来のアプローチに革命をもたらし続けています。現在、医療用途が市場シェアの大半を占めており、ポイントオブケア診断と製薬研究が成長を牽引している一方、環境モニタリング、食品安全、プロセス制御などの工業用途は大きな拡大の可能性を示しています。

材料科学、製造プロセス、デジタル統合における技術革新は、製造コストの削減とデバイス機能の強化を継続し、より広範な市場採用を可能にしています。AI、自動化、先進のセンシング機能の統合は、新たな用途の可能性と市場機会を生み出します。主な市場促進要因は、迅速診断ソリューションへの需要の増加、製薬研究への投資の拡大、個別化医療への応用の拡大などです。製造プロセスが改善されコストが低下するにつれて、熱管理などの分野における従来の用途と新用途の両方で市場採用が加速します。

当レポートでは、世界のマイクロフルイディクス市場について調査分析し、2025年~2035年の市場力学、技術革新、成長機会に関する詳細な考察を提供しています。

目次

第1章 エグゼクティブサマリー

  • 市場規模
  • 新たな動向と技術
  • 市場促進要因
    • ポイントオブケア診断の進歩
    • 個別化医療への需要の増加
    • 創薬とライフサイエンス研究の成長
    • 工業と環境モニタリングにおける新たな用途
  • 市場抑制要因
    • 製造における高い初期費用と複雑性
    • 標準化と規制上の課題
    • 新興市場における限られた認知度と採用
    • 品質を維持しながらの生産拡大
    • 競合技術と代替ソリューション
  • 市場機会
    • マイクロ流体デバイスにおけるAIとIoTの統合
    • ラボからファブへ
    • 生体機能チップ(Organ-on-a-Chip)と3D細胞培養における新たな用途
    • 宇宙研究用途
    • 合成生物学
    • 先進材料の開発
    • 食品の安全性と品質
  • 競合情勢の概要

第2章 イントロダクション

  • マイクロ流体技術の種類
    • 連続フローマイクロフルイディクス
    • 液滴ベースのマイクロフルイディクス
    • デジタルマイクロフルイディクス
    • 紙ベースのマイクロフルイディクス

第3章 世界の市場規模と予測(2025年~2035年)

  • 市場全体の規模と成長率
    • 市場規模の実績(2020年~2024年)
    • 市場規模の予測(2025年~2035年)
  • 市場セグメンテーション:最終用途市場別
    • 消費者市場
    • 産業市場
    • 医療市場
  • 地域市場の分析
    • 北米
    • 欧州
    • アジア太平洋
    • その他の地域

第4章 市場と応用

  • 診断
    • 概要
    • 新動向
    • 感染症
    • 腫瘍
    • 心臓
    • その他
  • 製薬、生命科学研究
    • 薬剤スクリーニング
    • ゲノミクス
    • プロテオミクス
    • 細胞分析
  • インクジェット印刷
    • 消費者向け印刷
    • 産業印刷
    • 3Dプリンティング
  • 環境・食品安全試験
    • 水質分析
    • 食品汚染物質検出
    • 土壌分析
  • その他(例:化粧品、農業)
    • 化粧品・パーソナルケア製造
    • 自動車の流体解析
    • エネルギー生産モニタリング
    • 材料製造
    • 化学処理
    • 農業
  • モジュールの種類
    • マイクロ流体チップ
    • ポンプ、バルブ
    • センサー、検出器
    • マイクロ流体カートリッジ
    • その他
  • 材料
    • ポリマー
    • ガラスウエハー
    • シリコンウエハー
    • 紙、その他の材料

第5章 市場動向

  • 消費者市場の動向
    • インクジェット印刷技術の進化
    • 新たな消費者向け診断・ウェルネスデバイス
  • 産業市場の動向
    • 環境・食品安全試験の進歩
    • 石油試験と農業における利用
    • 電子機器冷却ソリューション
  • 医療市場の動向
    • ポイントオブケア診断の進化
    • 創薬と医薬品開発におけるマイクロフルイディクス
    • 次世代シーケンシングの進歩
    • 生体模倣システムと生体機能チップ(Organ-on-a-Chip)
    • 細胞分析と治療への応用

第6章 サプライチェーン分析

  • 原材料・コンポーネントサプライヤー
  • マイクロ流体チップメーカー
  • モジュール・デバイスインテグレーター
  • エンドユーザー

第7章 技術動向とイノベーション

  • バイオセンサーの開発
    • 細胞治療用フォトニックセンサー
    • ポイントオブケア診断用シリコンベースバイオセンサー
  • 材料のイノベーション
    • ポリマー技術の進歩
    • PDMS代替品とハイブリッド材料
    • ガラスとシリコンウエハーのイノベーション
  • 製造の動向
    • ポリマー製造の進歩
    • シリコンとガラスの製造技術
    • バックエンドプロセスと統合
    • 表面処理とコーティング
  • 新技術
    • AIと機械学習の統合
    • マイクロフルイディクスにおける3Dプリンティング
    • 紙ベースのマイクロフルイディクス

第8章 規制情勢

  • マイクロ流体デバイスの規制枠組みの概要
  • FDA規制(米国)
    • マイクロ流体デバイスの分類
    • 市販前承認(PMA)プロセス
    • 510(k)承認プロセス
  • CEマーキング(欧州)
    • 医療機器規則(MDR)
    • 体外診断用医療機器規則(IVDR)
    • 適合性評価手順
  • NMPA規制(中国)
    • 医療機器の登録手続き
    • 臨床試験の要件
    • 製造・品質管理基準

第9章 将来の見通しと市場機会

  • 新たな用途とユースケース
    • 宇宙研究におけるマイクロフルイディクス
    • マイクロバイオームの分析とエンジニアリング
  • ニューロテクノロジー
    • ニューロテクノロジーと脳チップ
    • 合成生物学とバイオファブリケーション
    • 先進材料の試験と開発
  • マイクロフルイディクスに対する生成AIの潜在的影響
    • AIによる設計の最適化
    • 流体力学の予測モデリング
    • 自動データアナリティクス・解釈
  • 精密医療と個別化医療におけるマイクロフルイディクス
    • 液体生検と循環バイオマーカー
    • 個別化薬剤スクリーニング
    • 継続的健康モニタリング向けマイクロ流体デバイス
  • 発展途上国における機会
    • リソースが限られた環境におけるポイントオブケア診断
    • 農業向けの手頃な価格のマイクロ流体ソリューション
    • 急速に工業化が進む地域における環境モニタリング

第10章 企業プロファイル(企業200社のプロファイル)

第11章 付録

第12章 参考文献

図表

List of Tables

  • Table 1. Global Microfluidics Market Size and Growth Rate, 2025-2035
  • Table 2. Emerging Trends and Technologies
  • Table 3. Key Market Drivers and Challenges in Microfludics
  • Table 4. Point-of-Care Diagnostics Market Growth, 2025-2035
  • Table 5. Rapid Test Antigen Testing Kit
  • Table 6. Decentralized Healthcare Trends
  • Table 7. Genomics and Proteomics Applications
  • Table 8. Organ-on-a-Chip Models
  • Table 9. Emerging Opportunities in Microfluidics Market
  • Table 10. Market Restraints
  • Table 11. Competing Technologies and Alternative Solutions
  • Table 12. Types of Microfluidic Technologies and Their Applications
  • Table 13. Comparison of Microfluidics with Alternative Technologies
  • Table 14. Global Microfluidics Market Size by End-Market, 2020-2024 ($B)
  • Table 15. Global Microfluidics Market Size by End-Market, 2025-2035 ($B)
  • Table 16. Market Share by End-Market Segment, 2025-2035 (%)
  • Table 17. Consumer Market Size by Application, 2025-2035 ($B)
  • Table 18. Industrial Market Size by Application, 2025-2035 ($B)
  • Table 19. Medical Market Size by Application, 2025-2035 ($B)
  • Table 20. Regional Market Size, 2025-2035 ($B)
  • Table 21. Microfluidics Markets and Applications
  • Table 22. Current Implementation Areas
  • Table 23. Diagnostics Market by Disease Area, 2025-2035 ($B)
  • Table 24. Pharmaceutical and Life Science Research Market Trends
  • Table 25. Comparison of Microfluidics Platforms with conventional methods
  • Table 26. Microfluidics application in genomics
  • Table 27. Microfluidic proteomics application
  • Table 28. Types of cell analysis
  • Table 29. Inkjet Printing Market by Type, 2025-2035 ($B)
  • Table 30. Comparison of inkjet printing techniques
  • Table 31. Environmental and Food Safety Testing Market, 2025-2035 ($B)
  • Table 32. Comparison of microfluidics with traditional environmental and food safety testing methods
  • Table 33. Comparion of microfluidics with traditional methods in water quality analysis
  • Table 34. Comparison of microfluidics for food contaminant detection
  • Table 35. Comparison of microfluidics for soil analysis to other conventional methods
  • Table 36. Microfluidics for energy production monitoring compared to other conventional methods
  • Table 37. Microfluidics for monitoring chemical manufacturing processes compared to other methods
  • Table 38. Market Size by Module Type, 2025-2035 ($B)
  • Table 39. Common materials in microfluidic chips
  • Table 40. Pump Technologies in Microfluidics
  • Table 41. Valve Technologies in Microfluidics
  • Table 42. Sensors and detectors in microfluidic systems,
  • Table 43. Market Share by Material Type, 2025 vs 2035
  • Table 44. Properties of Thermoplastics in Microfluidics
  • Table 45. Types of Thermosets in Microfluidics
  • Table 46. Properties of glass wafers
  • Table 47. Paper materials utilized in microfluidics
  • Table 48. Continuous Inkjet (CIJ) vs. Drop-on-Demand (DOD)
  • Table 49. Advancements in Printhead Technology
  • Table 50. Sustainability metrics for Eco-friendly inks
  • Table 51. Types of Wearable Microfluidic Devices
  • Table 52. Rapid On-site Detection Systems
  • Table 53. Multiplexed Analysis Platforms
  • Table 54. IoT Integration for Real-time Monitoring
  • Table 55. Precision Agriculture Applications
  • Table 56. Microfluidic Cooling Applications in Electronics
  • Table 57. Challenges and Opportunities in Chip-level Cooling
  • Table 58. Multiplexed POC Platform Types
  • Table 59. Emerging Biomarkers and Test Types
  • Table 60. Comparison of Microfluidic Platforms for Drug Discovery
  • Table 61. Next-Generation Sequencing Advancements
  • Table 62. Single-cell Sequencing Platforms
  • Table 63. Long-read Sequencing Technologies
  • Table 64. Personalized Medicine Applications in Microphysiological Systems
  • Table 65. Cell Analysis and Therapy Applications in Microfluidics
  • Table 66. Raw Materials and Components Suppliers
  • Table 67. Microfluidic Chip Manufacturers
  • Table 68. Module and Device Integrators
  • Table 69. Microfluidics End User Categories and Applications
  • Table 70. Comparison of Photonic Sensors for Cell Therapy Applications
  • Table 71. Applications in Cell Sorting and Analysis
  • Table 72. CMOS-Integrated Biosensors
  • Table 73. Label-free Detection Methods
  • Table 74. Multiplexed Sensing Platforms
  • Table 75. Advanced Polymer Materials for Microfluidics, Properties and Applications
  • Table 76. High-Performance Thermoplastics
  • Table 77. Biodegradable Polymers
  • Table 78. Surface Modification Techniques
  • Table 79. Polymer Manufacturing Techniques Comparison
  • Table 80. Hot Embossing Techniques
  • Table 81. Silicon and Glass Manufacturing Techniques, Pros and Cons
  • Table 82. Backend Processes and Integration Trends
  • Table 83. Bonding Technologies
  • Table 84. AI and ML Applications in Microfluidics,
  • Table 85. Multi-material 3D Printing for Microfluidics
  • Table 86.Bioprinting in Microfluidics
  • Table 87. Paper-Based Microfluidics Fabrication Methods
  • Table 88. Applications in Low-Resource Settings
  • Table 89. Global Regulatory Framework for Microfluidic Devices
  • Table 90. FDA Classification of Microfluidic Devices
  • Table 91. Microfluidics Applications in Space Research
  • Table 92. Microbiome Applications
  • Table 93. Synthetic Biology and Biofabrication Applications
  • Table 94. Microfluidic Applications in Materials Testing and Development
  • Table 95. Glossary of terms
  • Table 96. List of Abbreviations

List of Figures

  • Figure 1. Microfluidic chip
  • Figure 2. Global Microfluidics Market Size and Growth Rate, 2025-2035
  • Figure 3. Body on Chip
  • Figure 4. Applications of microfluidics in food safety monitoring
  • Figure 5. Microfluidics Market Map
  • Figure 6. A digital microfluidic system with 3D microstructures for single-cell culture
  • Figure 7. Characterization of paper microfluidics
  • Figure 8. Global Microfluidics Market Size by End-Market, 2020-2024 ($B)
  • Figure 9. Global Microfluidics Market Size by End-Market, 2025-2035 ($B)
  • Figure 10. Consumer Market Size by Application, 2025-2035 ($B)
  • Figure 11. Wearable sweat sensor
  • Figure 12. Industrial Market Size by Application, 2025-2035 ($B)
  • Figure 13. Medical Market Size by Application, 2025-2035 ($B)
  • Figure 14. Regional Market Size, 2025-2035 ($B)
  • Figure 15. Diagnostics Market by Disease Area, 2025-2035 ($B)
  • Figure 16. Market Size by Module Type, 2025-2035 ($B)
  • Figure 17. Overview of the Microfluidics Supply Chain
  • Figure 18. Illumina Patterned Flow Cell Technology
  • Figure 19. CELLINK BIO X Bioprinter
  • Figure 20. 10x Genomics Chromium Controller
  • Figure 21. Abbott i-STAT System
  • Figure 22. Agilent 2100 Bioanalyzer
  • Figure 23. Agilis Reader
  • Figure 24. TruArray technology
  • Figure 25. be.wellTM Analyzer
  • Figure 26. Lakhesys - The Benchtop Cell Factory
  • Figure 27. STYX platform
  • Figure 28. BAEBIES FINDER
  • Figure 29. Bartels Mikrotechnik Micropumps
  • Figure 30. Chronos platform
  • Figure 31. IdyllaTM platform
  • Figure 32. Biomensio Smart multianalyte handheld detection
  • Figure 33. ExperionTM Automated Electrophoresis Station
  • Figure 34. spinit-R platform
  • Figure 35. Infinity MTx platform
  • Figure 36. IntelliSep
  • Figure 37. DNA Nudge analytic device
  • Figure 38. AVITITM System
  • Figure 39. Emulate Organ-Chip Instruments
  • Figure 40. EPIGEM lab on a chip
  • Figure 41. Bioprocessor with eight electrodes attached to four arrays each housing a cluster of brain cells
  • Figure 42. Fluxergy Analyzer
  • Figure 43. MiSeq System
  • Figure 44. TriVerityTM Acute Infection and Sepsis Test
  • Figure 45. Klearia's the PANDa (Portable ANalyzer for trace metals Detection)
  • Figure 46. TriPleXTM
  • Figure 47. Fisic Medimate self-test platform
  • Figure 48. DEPArrayTM platform
  • Figure 49. MACSQuant-R Tyto-R system
  • Figure 50. OrganoPlate-R
  • Figure 51. OhmX Analyzer
  • Figure 52. NanoDx Tbit System
  • Figure 53. Claros 1 analyzer
  • Figure 54. GenotizerTM
  • Figure 55. OBM rapid A1c meter
  • Figure 56. Osler HemaTap-R system
  • Figure 57. MinION portable nanopore sequencing device
  • Figure 58. GridION
  • Figure 59. Graphene Field Effect Transistor
  • Figure 60. PixCell HemScreen
  • Figure 61. QuantumX MX879B
  • Figure 62. Quidel Triage -R System
  • Figure 63. Qurin Biosensor
  • Figure 64. Oleum Oracle-R
  • Figure 65. Apollo
  • Figure 66. The LabChip GXII Touch Protein Characterization System
  • Figure 67. GenMark's ePlex system
  • Figure 68. rqmicro COUNT
  • Figure 69. VerePLEXTM Biosystem
  • Figure 70. Atellica-R VTLi Patient-side Immunoassay Analyzer
  • Figure 71. NioTM dPCR
  • Figure 72. Takara Bio's ICELL8 technology
  • Figure 73. Talis One Test System
  • Figure 74. VisionSort - ThinkCyte
目次

The global microfluidics market demonstrates exceptional growth potential through 2035, driven by transformative applications across healthcare, pharmaceuticals, and industrial sectors. This sophisticated technology, which manipulates fluids at microscopic scales, continues to revolutionize traditional approaches to diagnostics, drug development, and process control. Medical applications currently dominate market share, with point-of-care diagnostics and pharmaceutical research leading growth, while industrial applications in environmental monitoring, food safety, and process control show substantial expansion potential.

Technological innovations in materials science, manufacturing processes, and digital integration continue to reduce production costs and enhance device functionality, enabling broader market adoption. The integration of artificial intelligence, automation, and advanced sensing capabilities creates new application possibilities and market opportunities. Key market drivers include increasing demand for rapid diagnostic solutions, growing investment in pharmaceutical research, and expanding applications in personalized medicine. As manufacturing processes improve and costs decrease, market adoption accelerates across both traditional and emerging applications in areas such as thermal management.

"The Global Microfluidics Market 2025-2035" providing detailed insights into market dynamics, technological innovations, and growth opportunities from 2025 to 2035. Report contents include: The microfluidics market is experiencing transformative growth driven by breakthroughs in point-of-care diagnostics, drug discovery applications, and personalized medicine.

Report contents include:

  • End-Market Segmentation
    • Medical Market:
      • In-vitro diagnostics
      • Drug discovery and development
      • Genomics and proteomics
      • Point-of-care testing
      • Personalized medicine applications
      • Organ-on-chip platforms
    • Industrial Market:
      • Environmental monitoring
      • Food and beverage testing
      • Oil and gas analysis
      • Electronic cooling solutions
      • Process control applications
      • Quality assurance systems
    • Consumer Market:
      • Inkjet printing technologies
      • Consumer diagnostics
      • Wearable devices
      • Personal care applications
  • Developments across materials, manufacturing processes, and integration technologies:
    • Advanced polymer technologies
    • PDMS alternatives
    • Glass and silicon innovations
    • Paper-based platforms
    • Hybrid materials development
    • 3D printing applications
    • Injection molding innovations
    • Hot embossing techniques
    • Wafer-level packaging
    • Integration technologies
  • Emerging Technologies:
    • AI and machine learning integration
    • Biosensor developments
    • Digital microfluidics
    • Paper-based systems
    • Organ-on-chip platforms
  • Applications and Market Opportunities
    • Diagnostics:
      • Infectious disease testing
      • Oncology applications
      • Cardiovascular diagnostics
      • Neurological testing
      • Genetic screening
    • Pharmaceutical Research:
      • Drug screening platforms
      • Genomics applications
      • Proteomics research
      • Cell analysis systems
      • High-throughput screening
    • Environmental and Industrial:
      • Water quality analysis
      • Food safety testing
      • Industrial process control
      • Environmental monitoring
      • Agricultural applications
  • Market Drivers and Challenges
  • Regulatory Landscape
  • Detailed profiles of 200 companies including 3M, 10X Genomics, Abbott, AbCellera, Accelix, Achira Labs, AGC, Agilent Technologies, AgPlus Diagnostics, Akonni Biosystems, ALiA Biotech, Aline inc, Allozymes, Alveo, Amberstone Biosciences Inc., Ande Corporation, Arrayit Corporation, Astraveus, Atomica, Atrandi Biosciences, AxBio, Baebies, Bartels Mikrotechnik, Becton Dickinson, BforCure, BGI, Bi.Flow Systems GmbH, Binx Health, Biocartis, Biomensio, bioMerieux, Bionano Genomics, Bioneer, Bio-Rad, BioSurfit, Biotechne, Boehringer Ingelheim, Bosch, Bruker Cellular Analysis, CapitalBiotech Corporation, Capsum, Cellbox Labs, Cellares, CellFE, Cellix Ltd., Charles River Laboratories, ClexBio, CN Bio, Cytovale, Danaher Corporation, Deepcell, Dermagnostix, DiaSorin Molecular, DNA electronics (DNAe), DNA Nudge, Dolomite Microfluidics, Eden Microfluidics, Element Biosciences, Elveflow, Emulate Bio, ENPLAS, Epicore Biosystems, Epigem, Evonetix, FEMTOprint, FinalSpark, Finnadvance, FLEXOMICS LLC, Fluigent, Fluxergy, Genalyte, GenSpeed Biotech GmbH, Hesperos Inc., Hicomp Microtech, Hochuen Medical, IDEX Health & Science, iLine Microsystems, Illumina, Imec, iMiGiNE, IMT AG, Inflammatix, Inorevia, Integra Biosciences, Invetech, InziGn Pte Ltd., Klearia, Kloe, Kypha, LightDeck, LioniX, LuminUltra Technologies, Lunaphore Technologies, Medimate, Mekonos, MeMed BV, Memo Therapeutics AG, Menarini Silicon Biosystems, Mesa labs, MGI Tech, MiCo BioMed USA, Microcaps AG, Microfluidic ChipShop, Micron Biomedical, Micronit, MicrofluidiX, Micropoint Technologies, microTEC, miDiagnostics, Miltenyi Biotec, Mimetas, Minos Biosciences, Mission Bio, Molbio Diagnostics, MZP tech, Nag Bioscience, NanoCellect, NanoDx, NanoEntek, Nanomix, NanoPass, NanoScribe, Netri, Nicoya, Nortis, Nuclera, Nutcracker Therapeutics, Okomera, Ondavia, Opgen Group, OPKO, Optolane Technologies, Orange Biomed, Osler Diagnostics, Oxford Nanopore Technologies, Pacific Biosciences, Paragraf, Parallel Fluidics, Pattern Bioscience, Perkinelmer, Philips Engineering Solutions, Phillips Medisize, PixCell Medical, Potomac Photonics (Goodfellow), Precision Nanosystems, Qiagen, Qorvo Biotechnologies, Quanterix, QuantuMDx, Quantum-Si, QuidelOrtho, Qurin Diagnostics, Rab-Microfluidics and more....
  • Future Outlook Analysis of emerging opportunities
  • Supply Chain Analysis:
    • Raw materials suppliers
    • Component manufacturers
    • Device integrators
    • End-user markets
    • Distribution channels
  • Market Opportunities

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Market Size
  • 1.2. Emerging Trends and Technologies
  • 1.3. Market Drivers
    • 1.3.1. Advancements in Point-of-Care Diagnostics
      • 1.3.1.1. Rapid Testing for Infectious Diseases
      • 1.3.1.2. Chronic Disease Management
      • 1.3.1.3. Decentralized Healthcare Trends
    • 1.3.2. Increasing Demand for Personalized Medicine
      • 1.3.2.1. Genomics and Proteomics Applications
      • 1.3.2.2. Targeted Drug Delivery Systems
      • 1.3.2.3. Companion Diagnostics
    • 1.3.3. Growth in Drug Discovery and Life Sciences Research
      • 1.3.3.1. High-Throughput Screening
      • 1.3.3.2. Organ-on-a-Chip Models
      • 1.3.3.3. Single-Cell Analysis
    • 1.3.4. Emerging Applications in Industrial and Environmental Monitoring
      • 1.3.4.1. Water Quality Testing
      • 1.3.4.2. Food Safety Analysis
      • 1.3.4.3. Industrial Process Control
  • 1.4. Market Restraints
    • 1.4.1. High Initial Costs and Complexities in Manufacturing
    • 1.4.2. Standardization and Regulatory Challenges
    • 1.4.3. Limited Awareness and Adoption in Emerging Markets
    • 1.4.4. Scaling Up Production While Maintaining Quality
    • 1.4.5. Competing Technologies and Alternative Solutions
  • 1.5. Market Opportunities
    • 1.5.1. Integration of AI and IoT in Microfluidic Devices
    • 1.5.2. Lab-to-fab
    • 1.5.3. Novel Applications in Organ-on-a-Chip and 3D Cell Culture
    • 1.5.4. Space Research Applications
    • 1.5.5. Synthetic Biology
    • 1.5.6. Advanced Materials Development
    • 1.5.7. Food Safety and Quality
  • 1.6. Competitive Landscape Overview

2. INTRODUCTION

  • 2.1. Types of Microfluidic Technologies
    • 2.1.1. Continuous-flow Microfluidics
    • 2.1.2. Droplet-based Microfluidics
    • 2.1.3. Digital Microfluidics
    • 2.1.4. Paper-based Microfluidics

3. GLOBAL MARKET SIZE AND FORECAST (2025-2035)

  • 3.1. Overall Market Size and Growth Rate
    • 3.1.1. Historical Market Size (2020-2024)
    • 3.1.2. Forecast Market Size (2025-2035)
  • 3.2. Market Segmentation by End-Use Markets
    • 3.2.1. Consumer Market
      • 3.2.1.1. Inkjet Printing
      • 3.2.1.2. Consumer Diagnostics
      • 3.2.1.3. Wearable Devices
    • 3.2.2. Industrial Market
      • 3.2.2.1. Environmental Monitoring
      • 3.2.2.2. Food and Beverage Testing
      • 3.2.2.3. Oil and Gas Analysis
      • 3.2.2.4. Electronic Cooling Solutions
    • 3.2.3. Medical Market
      • 3.2.3.1. In-Vitro Diagnostics
      • 3.2.3.2. Drug Discovery and Development
      • 3.2.3.3. Genomics and Proteomics
      • 3.2.3.4. Point-of-Care Testing
  • 3.3. Regional Market Analysis
    • 3.3.1. North America
    • 3.3.2. Europe
    • 3.3.3. Asia-Pacific
    • 3.3.4. Rest of the World

4. MARKETS AND APPLICATIONS

  • 4.1. Diagnostics
    • 4.1.1. Overview
    • 4.1.2. Emerging Trends
      • 4.1.2.1. Artificial Intelligence Integration
      • 4.1.2.2. Smartphone-Based Systems
      • 4.1.2.3. Paper-Based Microfluidics
      • 4.1.2.4. Digital Microfluidics
      • 4.1.2.5. 3D-Printed Microfluidics
    • 4.1.3. Infectious Diseases
      • 4.1.3.1. Viral Infection Detection
      • 4.1.3.2. Bacterial Infection Management
      • 4.1.3.3. Emerging Pathogen Response
    • 4.1.4. Oncology
      • 4.1.4.1. Circulating Tumor Cell Analysis
      • 4.1.4.2. Molecular Profiling and Monitoring
      • 4.1.4.3. Treatment Response Monitoring
    • 4.1.5. Cardiology
      • 4.1.5.1. Acute Cardiac Event Management
      • 4.1.5.2. Chronic Disease Monitoring
    • 4.1.6. Others
      • 4.1.6.1. Neurological Disorders
        • 4.1.6.1.1. Blood-Brain Barrier Modeling
        • 4.1.6.1.2. Neurodegenerative Disease Diagnostics
      • 4.1.6.2. Endocrine Disorders
        • 4.1.6.2.1. Diabetes Management
        • 4.1.6.2.2. Thyroid Function Testing
      • 4.1.6.3. Autoimmune Disease Diagnostics
        • 4.1.6.3.1. Comprehensive Antibody Profiling
        • 4.1.6.3.2. Inflammatory Response Analysis
      • 4.1.6.4. Genetic Testing Applications
        • 4.1.6.4.1. Prenatal Testing
        • 4.1.6.4.2. Hereditary Disease Screening
      • 4.1.6.5. Rare Disease Diagnostics
  • 4.2. Pharmaceutical and Life Science Research
    • 4.2.1. Drug Screening
    • 4.2.2. Genomics
    • 4.2.3. Proteomics
    • 4.2.4. Cell Analysis
  • 4.3. Inkjet Printing
    • 4.3.1. Consumer Printing
    • 4.3.2. Industrial Printing
    • 4.3.3. 3D Printing
  • 4.4. Environmental and Food Safety Testing
    • 4.4.1. Water Quality Analysis
    • 4.4.2. Food Contaminant Detection
    • 4.4.3. Soil Analysis
  • 4.5. Others (e.g., Cosmetics, Agriculture)
    • 4.5.1. Cosmetics and Personal Care Manufacturing
    • 4.5.2. Automotive Fluids Analysis
    • 4.5.3. Energy Production Monitoring
    • 4.5.4. Materials Manufacturing
    • 4.5.5. Chemical Processing
    • 4.5.6. Agriculture
  • 4.6. Module Types
    • 4.6.1. Microfluidic Chips
    • 4.6.2. Pumps and Valves
    • 4.6.3. Sensors and Detectors
    • 4.6.4. Microfluidic Cartridges
    • 4.6.5. Others
  • 4.7. Materials
    • 4.7.1. Polymer
      • 4.7.1.1. Thermoplastics (PMMA, COC, PS)
      • 4.7.1.2. Thermosets
      • 4.7.1.3. PDMS (Polydimethylsiloxane)
    • 4.7.2. Glass Wafers
    • 4.7.3. Silicon Wafers
    • 4.7.4. Paper and Other Materials
      • 4.7.4.1. Multiplexed Analysis Platforms
      • 4.7.4.2. Integration with IoT for Real-time Monitoring

5. MARKET TRENDS

  • 5.1. Consumer Market Trends
    • 5.1.1. Evolution of Inkjet Printing Technologies
      • 5.1.1.1. Continuous Inkjet (CIJ) vs. Drop-on-Demand (DOD)
      • 5.1.1.2. Advancements in Printhead Technology
      • 5.1.1.3. Eco-friendly Inks and Sustainability Trends
    • 5.1.2. Emerging Consumer Diagnostics and Wellness Devices
      • 5.1.2.1. At-home Testing Kits
      • 5.1.2.2. Wearable Microfluidic Devices
      • 5.1.2.3. Personalized Nutrition and Hydration Monitoring
  • 5.2. Industrial Market Trends
    • 5.2.1. Advancements in Environmental and Food Safety Testing
      • 5.2.1.1. Rapid On-site Detection Systems
      • 5.2.1.2. Multiplexed Analysis Platforms
      • 5.2.1.3. Integration with IoT for Real-time Monitoring
    • 5.2.2. Applications in Oil Testing and Agriculture
      • 5.2.2.1. In-situ Oil Analysis
      • 5.2.2.2. Precision Agriculture and Crop Management
      • 5.2.2.3. Soil Health Monitoring
    • 5.2.3. Electronic Cooling Solutions
      • 5.2.3.1. Microfluidic Cooling for High-Performance Computing
      • 5.2.3.2. Innovations in Data Center Cooling
        • 5.2.3.2.1. Thermal management
      • 5.2.3.3. Challenges and Opportunities in Chip-level Cooling
  • 5.3. Medical Market Trends
    • 5.3.1. Point-of-Care Diagnostics Evolution
      • 5.3.1.1. Smartphone-integrated Diagnostics
      • 5.3.1.2. Multiplexed POC Platforms
      • 5.3.1.3. Emerging Biomarkers and Test Types
    • 5.3.2. Microfluidics in Drug Discovery and Development
      • 5.3.2.1. High-Throughput Screening Platforms
      • 5.3.2.2. Organ-on-a-Chip for Drug Testing
      • 5.3.2.3. Personalized Drug Efficacy Testing
    • 5.3.3. Next-Generation Sequencing Advancements
      • 5.3.3.1. Microfluidic-based Library Preparation
      • 5.3.3.2. Single-cell Sequencing Platforms
      • 5.3.3.3. Long-read Sequencing Technologies
    • 5.3.4. Microphysiological Systems and Organ-on-a-Chip
      • 5.3.4.1. Multi-organ Systems
      • 5.3.4.2. Disease Modelling
      • 5.3.4.3. Personalized Medicine Applications
    • 5.3.5. Cell Analysis and Therapy Applications
      • 5.3.5.1. Circulating Tumor Cell (CTC) Analysis
      • 5.3.5.2. CAR-T Cell Manufacturing
      • 5.3.5.3. Stem Cell Research and Therapy

6. SUPPLY CHAIN ANALYSIS

  • 6.1. Raw Materials and Components Suppliers
  • 6.2. Microfluidic Chip Manufacturers
  • 6.3. Module and Device Integrators
  • 6.4. End-Users

7. TECHNOLOGY TRENDS AND INNOVATIONS

  • 7.1. Development of Biosensors
    • 7.1.1. Photonic Sensors for Cell Therapy
      • 7.1.1.1. Applications in Cell Sorting and Analysis
      • 7.1.1.2. Challenges and Future Prospects
    • 7.1.2. Silicon-Based Biosensors for Point-of-Care Diagnostics
      • 7.1.2.1. CMOS-Integrated Biosensors
      • 7.1.2.2. Label-free Detection Methods
      • 7.1.2.3. Multiplexed Sensing Platforms
  • 7.2. Materials Innovations
    • 7.2.1. Advancements in Polymer Technologies
      • 7.2.1.1. High-Performance Thermoplastics
      • 7.2.1.2. Biodegradable Polymers
      • 7.2.1.3. Surface Modification Techniques
    • 7.2.2. PDMS Alternatives and Hybrid Materials
      • 7.2.2.1. Thermoplastic Elastomers
      • 7.2.2.2. Fluoropolymers
      • 7.2.2.3. Glass-Polymer Hybrids
    • 7.2.3. Glass and Silicon Wafer Innovations
      • 7.2.3.1. Ultra-thin Glass Substrates
      • 7.2.3.2. 3D-Structured Silicon
      • 7.2.3.3. Nanoporous Materials
  • 7.3. Manufacturing Trends
    • 7.3.1. Polymer Manufacturing Advancements
      • 7.3.1.1. Injection Molding Innovations
      • 7.3.1.2. Hot Embossing Techniques
      • 7.3.1.3. 3D Printing of Microfluidic Devices
    • 7.3.2. Silicon and Glass Manufacturing Techniques
      • 7.3.2.1. Deep Reactive Ion Etching (DRIE)
      • 7.3.2.2. Wafer-level Packaging
      • 7.3.2.3. Through-Silicon Vias (TSVs)
    • 7.3.3. Backend Processes and Integration
      • 7.3.3.1. Bonding Technologies
    • 7.3.4. Surface Treatments and Coatings
      • 7.3.4.1. Integration of Electronics and Microfluidics
  • 7.4. Emerging Technologies
    • 7.4.1. AI and Machine Learning Integration
      • 7.4.1.1. Automated Design of Microfluidic Circuits
      • 7.4.1.2. Predictive Maintenance of Microfluidic Systems
      • 7.4.1.3. Data Analysis and Interpretation
    • 7.4.2. 3D Printing in Microfluidics
      • 7.4.2.1. Stereolithography (SLA) for Microfluidics
      • 7.4.2.2. Multi-material 3D Printing
      • 7.4.2.3. Bioprinting of Tissue Constructs
    • 7.4.3. Paper-Based Microfluidics
      • 7.4.3.1. Fabrication Methods
      • 7.4.3.2. Applications in Low-Resource Settings
      • 7.4.3.3. Integration with Smartphones for Readout

8. REGULATORY LANDSCAPE

  • 8.1. Overview of Regulatory Framework for Microfluidic Devices
  • 8.2. FDA Regulations (USA)
    • 8.2.1. Classification of Microfluidic Devices
    • 8.2.2. Premarket Approval (PMA) Process
    • 8.2.3. 510(k) Clearance Process
  • 8.3. CE Marking (Europe)
    • 8.3.1. Medical Device Regulation (MDR)
    • 8.3.2. In Vitro Diagnostic Regulation (IVDR)
    • 8.3.3. Conformity Assessment Procedures
  • 8.4. NMPA Regulations (China)
    • 8.4.1. Registration Process for Medical Devices
    • 8.4.2. Clinical Trial Requirements
    • 8.4.3. Manufacturing and Quality Control Standards

9. FUTURE OUTLOOK AND MARKET OPPORTUNITIES

  • 9.1. Emerging Applications and Use Cases
    • 9.1.1. Microfluidics in Space Research
    • 9.1.2. Microbiome Analysis and Engineering
  • 9.2. Neurotechnology
    • 9.2.1. Neurotechnology and Brain-on-a-Chip
    • 9.2.2. Synthetic Biology and Biofabrication
    • 9.2.3. Advanced Materials Testing and Development
  • 9.3. Potential Impact of Generative AI on Microfluidics
    • 9.3.1. AI-Driven Design Optimization
    • 9.3.2. Predictive Modeling of Fluid Dynamics
    • 9.3.3. Automated Data Analysis and Interpretation
  • 9.4. Microfluidics in Precision Medicine and Personalized Healthcare
    • 9.4.1. Liquid Biopsy and Circulating Biomarkers
    • 9.4.2. Personalized Drug Screening
    • 9.4.3. Microfluidic Devices for Continuous Health Monitoring
  • 9.5. Opportunities in Developing Economies
    • 9.5.1. Point-of-Care Diagnostics for Resource-Limited Settings
    • 9.5.2. Affordable Microfluidic Solutions for Agriculture
    • 9.5.3. Environmental Monitoring in Rapidly Industrializing Regions

10. COMPANY PROFILES (200 company profiles)

11. APPENDICES

  • 11.1. Glossary of Terms
  • 11.2. List of Abbreviations
  • 11.3. Research Methodology

12. REFERENCES