表紙:小型モジュール炉(SMR)の世界市場(2025年~2045年)
市場調査レポート
商品コード
1556878

小型モジュール炉(SMR)の世界市場(2025年~2045年)

The Global Nuclear Small Modular Reactors (SMRs) Market 2025-2045


出版日
ページ情報
英文 328 Pages, 84 Tables, 37 Figures
納期
即納可能 即納可能とは
価格
価格表記: GBPを日本円(税抜)に換算
本日の銀行送金レート: 1GBP=200.17円
小型モジュール炉(SMR)の世界市場(2025年~2045年)
出版日: 2025年05月08日
発行: Future Markets, Inc.
ページ情報: 英文 328 Pages, 84 Tables, 37 Figures
納期: 即納可能 即納可能とは
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

世界の小型モジュール炉(SMR)市場は、原子力産業においてもっとも有望なセグメントの1つであり、通常300MWe未満の電気出力を持つ革新的な原子炉設計を特徴としています。この新興市場の促進要因は、従来の大型原子力発電所と比べた、高い柔軟性、財務リスクの低減、安全性の強化を実現する低炭素エネルギーソリューションの追求です。世界各国が気候変動への取り組みを強化する一方で、エネルギー安全保障への懸念が高まる中、SMRは、信頼性の高いベースロード発電と展開の多様性を兼ね備えた有力なソリューションとして位置づけられています。市場の成長予測は展開状況によって大きく異なり、保守的な推定では2030年までに世界の市場規模は約100億~150億米ドルとなる一方、より楽観的な予測では、技術が成熟するにつれて2035年までに400億~500億米ドルに達する可能性が示されています。現在、開発活動をリードしているのは北米市場で、米国政府がAdvanced Reactor Demonstration Programなどのプログラムを通じて多額の資金を提供しています。アジア太平洋は、もっとも急速に成長している地域市場であり、主に中国の運転中のHTR-PMとロシアの浮体式原子力発電所によって牽引されています。

競合情勢は、既存の原子力産業企業と革新的なスタートアップによって特徴付けられます。GE Hitachi、Westinghouse、Rosatomといった伝統的な原子力ベンダーは、既存の技術的専門知識を活用してSMRの設計開発している一方、NuScale Power、TerraPower、X-energyといった新規参入企業は、斬新なアプローチで多額の投資を集めています。英国のRolls-Royce SMRプログラムは、多くの国が国内のSMR能力を開発することに戦略的な国家的重要性を置いていることを例証しており、カナダ、フランス、韓国でも同様の構想が進行中です。

市場内の技術セグメンテーションは、複数の原子炉タイプにまたがり、開発スケジュールもさまざまです。軽水炉の設計は、規制当局が熟知しており、技術的な準備が整っていることから、近い将来の展開が主流であり、NuScaleのVOYGRとGE HitachiのBWRX-300は規制プロセスにおいてもっとも進んでいます。高温ガス冷却炉は、産業用途にプロセス加熱機能を提供する一方、液体金属や溶融塩技術を利用したより先進の設計は、性能特性を向上させ、より長期的な市場機会を狙っています。

主な市場促進要因には、脱炭素化政策、エネルギー安全保障への懸念、石炭プラントの交換の機会、産業部門の用途などがあります。SMRをより広範なエネルギーシステムに統合することは、特にクリーンな水素生産のイネーブラーとして、また再生可能エネルギーの普及率が高いシステムにおけるグリッド安定化サービスのプロバイダーとして、重要な価値提案となります。軍事用途や遠隔地域用途は、独自の要件と潜在的に高い価格受容性を持つ特殊な市場セグメントを形成します。

市場は、類例のない規制上のハードル、資本集約的プロジェクトに向けた複雑な資金調達、サプライチェーン開発の必要性、社会的受容の検討など、複数の重大な課題に直面しています。標準化されたコンポーネントの製造能力を確立する必要性は、SMRの展開を目指す国々の産業発展にとって、課題であると同時に機会でもあります。

IAEAのSMRプラットフォームやさまざまな二国間協定のような取り組みは、知識の共有と規制の調和を促進します。輸出市場の発展は、ベンダー諸国、特に米国、ロシア、中国、英国にとって依然として戦略的優先事項であり、設計が商業的準備に達するにつれて、国際的な展開に向けた競争が激化することが予測されます。今後10年間は、実証プロジェクトから商業フリート展開への移行が中心的な市場課題であり、世界初のプロジェクトの成功が、その後の市場軌道、投資の流れ、世界のエネルギー情勢全体における技術選択のパターンに大きな影響を与える可能性が高いです。

当レポートでは、急速に発展する世界の小型モジュール炉(SMR)市場について調査分析し、市場の促進要因、技術革新、展開シナリオ、規制枠組み、競合情勢を綿密に考察し、実用的な知見を提供しています。

目次

第1章 エグゼクティブサマリー

  • 市場の概要
  • 市場予測
  • 技術動向
  • 規制情勢

第2章 イントロダクション

  • SMRの定義と特徴
  • 確立された原子力技術
  • SMR技術の歴史と進化
  • SMRの利点と欠点
  • 従来の原子炉との比較
  • 現在のSMR原子炉の設計とプロジェクト
  • SMRのタイプ
  • SMRの用途
  • 市場の課題
  • SMRの安全性

第3章 世界のエネルギー情勢とSMRの役割

  • 現在の世界のエネルギーミックス
  • 予測されるエネルギー需要(2025年~2045年)
  • 気候変動の緩和とパリ協定
  • SDGsの文脈における原子力エネルギー
  • クリーンエネルギー移行のソリューションとしてのSMR

第4章 技術の概要

  • SMRの設計原則
  • 主なコンポーネントとシステム
  • 安全機能とパッシブセーフティシステム
  • サイクルと廃棄物管理
  • 先進製造技法
  • モジュール化と工場製造
  • 輸送と現場での組み立て
  • グリッド統合と負荷追従機能
  • 新技術と将来の発展

第5章 規制枠組みとライセンシング

  • IAEAのガイドライン
  • NRCのSMRへのアプローチ
  • ENSREGの視点
  • 規制上の課題と調和化活動
  • SMRのライセンシングプロセス
  • 環境上の影響の評価
  • 社会的受容とステークホルダーの関与

第6章 市場の分析

  • 世界の市場規模と成長予測(2025年~2045年)
  • 市場のセグメンテーション
    • 原子炉タイプ別
    • 用途別
    • 地域別
  • SWOT分析
  • バリューチェーン分析
  • コスト分析と経済的実現可能性
  • 資金調達モデルと投資戦略
  • 地域市場の分析
    • 北米
    • 欧州
    • その他の欧州
    • アジア太平洋
    • 中東・アフリカ
    • ラテンアメリカ

第7章 競合情勢

  • 競合戦略
  • 近年の市場ニュース
  • 新製品の開発と革新
  • SMR民間投資

第8章 SMR展開シナリオ

  • 類例のない(FOAK)計画
  • 類例のある(NOAK)計画
  • 展開のタイムラインとマイルストーン
  • 発電能力増強予測(2025年~2045年)
  • 市場浸透の分析
  • 老朽化した原子力フリートの交換
  • 再生可能エネルギーシステムとの統合

第9章 経済的影響の分析

  • 雇用創出と技能開発
  • 地域と国家の経済的利益
  • エネルギー価格に対する影響
  • その他のクリーンエネルギー技術との比較

第10章 環境と社会に対する影響

  • 炭素排出削減の可能性
  • 土地利用と立地に関する考慮
  • 水使用と熱汚染
  • 放射性廃棄物管理
  • 公衆衛生と安全
  • 社会的受容とコミュニティの関与

第11章 政策と政府の取り組み

  • 国家の原子力政策
  • SMRに特化した支援プログラム
  • 研究開発資金
  • 国際協力と技術移転
  • 輸出制御と核不拡散措置

第12章 課題と機会

  • 技術的課題
  • 経済上の課題
  • 規制上の課題
  • 社会的、政治的課題
  • 機会

第13章 将来の見通しとシナリオ

  • 技術ロードマップ(2025年~2045年)
  • 市場進化シナリオ
  • 長期的な市場の予測(2045年~)
  • 潜在的な破壊的技術
  • SMR統合に伴う世界のエネルギーミックスシナリオ

第14章 ケーススタディ

  • NuScale PowerのVOYGR (TM) SMR Power Plant
  • Rolls-RoyceのUK SMR Program
  • 中国のHTR-PM実証プロジェクト
  • ロシアの浮体式原子力発電所(Akademik Lomonosov)
  • カナダのSMR Action Plan

第15章 投資分析

  • 投資収益率(ROI)の予測
  • リスク評価、軽減戦略
  • その他のエネルギー投資との比較分析
  • 官民パートナーシップモデル

第16章 企業プロファイル(企業33社のプロファイル)

第17章 付録

第18章 参考文献

図表

List of Tables

  • Table 1. Motivation for Adopting SMRs
  • Table 2. Generations of nuclear technologies
  • Table 3. SMR Construction Economics
  • Table 4. Cost of Capital for SMRs vs. Traditional NPP Projects
  • Table 5. Comparative Costs of SMRs with Other Types
  • Table 6. SMR Benefits
  • Table 7. SMR Market Growth Trajectory, 2025-2045
  • Table 8. Technological trends in Nuclear Small Modular Reactors (SMR)
  • Table 9. Regulatory landscape for Nuclear Small Modular Reactors (SMR)
  • Table 10. Designs by generation
  • Table 11. Established nuclear technologies
  • Table 12. Advantages and Disadvantages of SMRs
  • Table 13. Comparison with Traditional Nuclear Reactors
  • Table 14. SMR Projects
  • Table 15. Project Types by Reactor Class
  • Table 16. SMR Technology Benchmarking
  • Table 17. Comparison of SMR Types: LWRs, HTGRs, FNRs, and MSRs
  • Table 18. Types of PWR
  • Table 19. Key Features of Pressurized Water Reactors (PWRs)
  • Table 20. Comparison of Leading Gen III/III+ Designs
  • Table 21. Gen-IV Reactor Designs
  • Table 22. Key Features of Pressurized Heavy Water Reactors
  • Table 23. Key Features of Boiling Water Reactors (BWRs)
  • Table 24. HTGRs- Rankine vs. Brayton vs. Combined Cycle Generation
  • Table 25. Key Features of High-Temperature Gas-Cooled Reactors (HTGRs)
  • Table 26. Comparing LMFRs to Other Gen IV Types
  • Table 27. Markets and Applications for SMRs
  • Table 28. SMR Applications and Their Market Share, 2025-2045
  • Table 29. Development Status
  • Table 30. Market Challenges for SMRs
  • Table 31. Global Energy Mix Projections, 2025-2045
  • Table 32. Projected Energy Demand (2025-2045)
  • Table 33. Key Components and Systems
  • Table 34. Key Safety Features of SMRs
  • Table 35. Advanced Manufacturing Techniques
  • Table 36. Emerging Technologies and Future Developments in SMRs
  • Table 37.SMR Licensing Process Timeline
  • Table 38. SMR Market Size by Reactor Type, 2025-2045
  • Table 39. SMR Market Size by Application, 2025-2045
  • Table 40. SMR Market Size by Region, 2025-2045
  • Table 41. Cost Breakdown of SMR Construction and Operation
  • Table 42. Financing Models for SMR Projects
  • Table 43. Projected SMR Capacity Additions by Region, 2025-2045
  • Table 44. Competitive Strategies in SMR
  • Table 45. Nuclear Small Modular Reactor (SMR) Market News 2022-2024
  • Table 46. New Product Developments and Innovations
  • Table 47. SMR private investment
  • Table 48. Major SMR Projects and Their Status, 2025
  • Table 49. SMR Deployment Scenarios: FOAK vs. NOAK
  • Table 50. SMR Deployment Timeline, 2025-2045
  • Table 51. Job Creation in SMR Industry by Sector
  • Table 52. Comparison with Other Clean Energy Technologies
  • Table 53. Comparison of Carbon Emissions: SMRs vs. Other Energy Sources
  • Table 54. Carbon Emissions Reduction Potential of SMRs, 2025-2045
  • Table 55. Land Use Comparison: SMRs vs. Traditional Nuclear Plants
  • Table 56. Water Usage Comparison: SMRs vs. Traditional Nuclear Plants
  • Table 57. Government Funding for SMR Research and Development by Country
  • Table 58. Government Initiatives Supporting SMR Development by Country
  • Table 59. National Nuclear Energy Policies
  • Table 60. SMR-Specific Support Programs
  • Table 61. R&D Funding Allocation for SMR Technologies
  • Table 62. International Cooperation Networks in SMR Development
  • Table 63. Export Control and Non-Proliferation Measures
  • Table 64. Technical Challenges in SMR Development and Deployment
  • Table 65. Economic Challenges in SMR Commercialization
  • Table 66. Economies of Scale in SMR Production
  • Table 67. Market Competition: SMRs vs. Other Clean Energy Technologies
  • Table 68. Regulatory Challenges for SMR Adoption
  • Table 69. Regulatory Harmonization Efforts for SMRs Globally
  • Table 70. Liability and Insurance Models for SMR Operations
  • Table 71. Social and Political Challenges for SMR Implementation
  • Table 72. Non-Proliferation Measures for SMR Technology
  • Table 73. Waste Management Strategies for SMRs
  • Table 74. Decarbonization Potential of SMRs in Energy Systems
  • Table 75. SMR Applications in Industrial Process Heat
  • Table 76. Off-Grid and Remote Power Solutions Using SMRs
  • Table 77. SMR Market Evolution Scenarios, 2025-2045
  • Table 78. Long-Term Market Projections for SMRs (Beyond 2045)
  • Table 79. Potential Disruptive Technologies in Nuclear Energy
  • Table 80. Global Energy Mix Scenarios with SMR Integration, 2045
  • Table 81. ROI Projections for SMR Investments, 2025-2045
  • Table 82. Risk Assessment and Mitigation Strategies
  • Table 83. Comparative Analysis with Other Energy Investments
  • Table 84. Public-Private Partnership Models for SMR Projects

List of Figures

  • Figure 1. Schematic of Small Modular Reactor (SMR) operation
  • Figure 2. Linglong One
  • Figure 3. Pressurized Water Reactors
  • Figure 4. CAREM reactor
  • Figure 5. Westinghouse Nuclear AP300(TM) Small Modular Reactor
  • Figure 6. Advanced CANDU Reactor (ACR-300) schematic
  • Figure 7. GE Hitachi's BWRX-300
  • Figure 8. The nuclear island of HTR-PM Demo
  • Figure 9. U-Battery schematic
  • Figure 10. TerraPower's Natrium
  • Figure 11. Russian BREST-OD-300
  • Figure 12. Terrestrial Energy's IMSR
  • Figure 13. Moltex Energy's SSR
  • Figure 14. Westinghouse's eVinci
  • Figure 15. GE Hitachi PRISM
  • Figure 16. Leadcold SEALER
  • Figure 17. SCWR schematic
  • Figure 18. SWOT Analysis of the SMR Market
  • Figure 19. Nuclear SMR Value Chain
  • Figure 20. Global SMR Capacity Forecast, 2025-2045
  • Figure 21. SMR Market Penetration in Different Energy Sectors
  • Figure 22. SMR Fuel Cycle Diagram
  • Figure 23. Power plant with small modular reactors
  • Figure 24. Nuclear-Renewable Hybrid Energy System Configurations
  • Figure 25. Technical Readiness Levels of Different SMR Technologies
  • Figure 26. Technology Roadmap (2025-2045)
  • Figure 27. NuScale Power VOYGR(TM) SMR Power Plant Design
  • Figure 28. China's HTR-PM Demonstration Project Layout
  • Figure 29. Russia's Floating Nuclear Power Plant Schematic
  • Figure 30. ARC-100 sodium-cooled fast reactor
  • Figure 31. ACP100 SMR
  • Figure 32. Deep Fission pressurised water reactor schematic
  • Figure 33. NUWARD SMR design
  • Figure 34. A rendering image of NuScale Power's SMR plant
  • Figure 35. Oklo Aurora Powerhouse reactor
  • Figure 36. Multiple LDR-50 unit plant
  • Figure 37. AP300(TM) Small Modular Reactor
目次

The global Small Modular Reactor (SMR) market represents one of the most promising segments within the nuclear energy industry, characterized by innovative reactor designs with electrical outputs typically below 300 MWe. This emerging market is driven by the search for low-carbon energy solutions that offer greater flexibility, reduced financial risk, and enhanced safety features compared to conventional large-scale nuclear plants. As countries worldwide strengthen climate commitments while facing increasing energy security concerns, SMRs are positioned as a potential solution that combines reliable baseload generation with deployment versatility. Market growth projections vary significantly based on deployment scenarios, with conservative estimates valuing the global market at approximately $10-15 billion by 2030, while more optimistic projections suggest potential growth to $40-50 billion by 2035 as the technology matures. The North American market currently leads development efforts, with the United States government providing substantial funding through programs like the Advanced Reactor Demonstration Program. Asia-Pacific represents the fastest-growing regional market, driven primarily by China's operational HTR-PM and Russia's floating nuclear plants, with significant investment also occurring in South Korea, Japan, and India.

The competitive landscape features both established nuclear industry players and innovative startups. Traditional nuclear vendors like GE Hitachi, Westinghouse, and Rosatom have developed SMR designs leveraging their existing technological expertise, while newcomers such as NuScale Power, TerraPower, and X-energy have attracted significant investment with novel approaches. The UK's Rolls-Royce SMR program exemplifies the strategic national importance many countries place on developing domestic SMR capabilities, with similar initiatives underway in Canada, France, and South Korea.

Technology segmentation within the market spans multiple reactor types with varying development timelines. Light water reactor designs dominate near-term deployments due to regulatory familiarity and technological readiness, with NuScale's VOYGR and GE Hitachi's BWRX-300 among the most advanced in regulatory processes. High-temperature gas-cooled reactors offer process heat capabilities for industrial applications, while more advanced designs utilizing liquid metal or molten salt technologies target longer-term market opportunities with enhanced performance characteristics.

Key market drivers include decarbonization policies, energy security concerns, coal plant replacement opportunities, and industrial sector applications. The integration of SMRs within broader energy systems, particularly as enablers for clean hydrogen production and providers of grid stability services in systems with high renewable penetration, represents a significant value proposition. Military and remote community applications create specialized market segments with unique requirements and potentially higher price tolerance.

The market faces several significant challenges, including first-of-a-kind regulatory hurdles, financing complexities for capital-intensive projects, supply chain development needs, and public acceptance considerations. The necessity of establishing manufacturing capacity for standardized components represents both a challenge and an opportunity for industrial development in countries pursuing SMR deployment.

International collaboration has emerged as a defining characteristic of the market, with initiatives like the IAEA's SMR Platform and various bilateral agreements facilitating knowledge sharing and harmonized approaches to regulation. Export market development remains a strategic priority for vendor countries, particularly the United States, Russia, China, and the United Kingdom, with competition for international deployments expected to intensify as designs reach commercial readiness. Over the next decade, the transition from demonstration projects to commercial fleet deployment represents the central market challenge, with successful first-of-a-kind projects likely to significantly influence subsequent market trajectories, investment flows, and technology selection patterns across the global energy landscape.

"The Global Nuclear Small Modular Reactors (SMRs) Market 2025-2045" provides in-depth analysis and strategic intelligence on the rapidly evolving Global Nuclear Small Modular Reactors (SMRs) market from 2025-2045. As countries worldwide intensify efforts to achieve net-zero emissions while ensuring energy security, SMRs have emerged as a transformative solution offering reduced capital costs, enhanced safety features, and versatile applications beyond traditional electricity generation. The report meticulously examines market drivers, technological innovations, deployment scenarios, regulatory frameworks, and competitive landscapes to deliver actionable insights for investors, energy companies, policymakers, and industry stakeholders. With detailed data on market segmentation by reactor type, application, and geographical region, this comprehensive analysis presents three growth scenarios with quantitative projections spanning two decades.

Report Contents include:

  • Market Overview and Forecast (2025-2045) - Detailed market size projections, growth trajectories, and regional breakdowns with CAGR analysis and value forecasts.
  • Technological Analysis - Comprehensive evaluation of diverse SMR technologies including Light Water Reactors (LWRs), High-Temperature Gas-Cooled Reactors (HTGRs), Fast Neutron Reactors (FNRs), Molten Salt Reactors (MSRs), and emerging microreactor designs
  • Competitive Landscape - Strategic positioning, innovation pipelines, competitive advantages, and market share analysis of 33 leading and emerging SMR developers with detailed company profiles
  • Regulatory Framework Analysis - International and regional licensing approaches, harmonization efforts, policy incentives, and export control considerations affecting market development
  • Economic Impact Assessment - Job creation potential, ROI projections, cost-benefit analyses, and comparative economics against traditional nuclear and renewable energy alternatives
  • Deployment Scenarios - Detailed timelines and milestones for First-of-a-Kind (FOAK) and Nth-of-a-Kind (NOAK) deployments with capacity addition forecasts through 2045
  • Applications Analysis - Market potential across diverse applications including electricity generation, industrial process heat, district heating, hydrogen production, desalination, remote power, and marine propulsion
  • Investment Analysis - Financing models, risk assessment methodologies, public-private partnership structures, and ROI comparisons with alternative energy investments
  • Environmental and Social Impact - Carbon emissions reduction potential, land use comparisons, water usage analysis, waste management strategies, and public acceptance considerations
  • Case Studies - In-depth analysis of pioneering SMR projects including NuScale Power VOYGR(TM), Rolls-Royce UK SMR, China's HTR-PM, Russia's Akademik Lomonosov, and the Canadian SMR Action Plan
  • Future Outlook - Long-term market projections beyond 2045, technology roadmaps, potential disruptive technologies, and global energy mix scenarios with SMR integration
  • Regional Market Analysis - Detailed assessments of market opportunities and regulatory environments across North America, Europe, Asia-Pacific, Middle East & Africa, and Latin America

The report provides comprehensive profiles of 33 leading and emerging companies including Aalo Atomics, ARC Clean Technology, Blue Capsule, Blykalla, BWX Technologies, China National Nuclear Corporation (CNNC), Deep Fission, EDF, GE Hitachi Nuclear Energy, General Atomics, Hexana, Holtec International, Kairos Power, Karnfull Next, Korea Atomic Energy Research Institute (KAERI), Last Energy, Moltex Energy, Naarea, Nano Nuclear Energy, Newcleo, NuScale Power, Oklo, Rolls-Royce SMR, Rosatom, Saltfoss Energy and more.....

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Market Overview
    • 1.1.1. The nuclear industry
    • 1.1.2. Nuclear as a source of low-carbon power
    • 1.1.3. Challenges for nuclear power
    • 1.1.4. Construction and costs of commercial nuclear power plants
    • 1.1.5. Renewed interest in nuclear energy
    • 1.1.6. Projections for nuclear installation rates
    • 1.1.7. Nuclear energy costs
    • 1.1.8. SMR benefits
    • 1.1.9. Decarbonization
  • 1.2. Market Forecast
  • 1.3. Technological Trends
  • 1.4. Regulatory Landscape

2. INTRODUCTION

  • 2.1. Definition and Characteristics of SMRs
  • 2.2. Established nuclear technologies
  • 2.3. History and Evolution of SMR Technology
    • 2.3.1. Nuclear fission
    • 2.3.2. Controlling nuclear chain reactions
    • 2.3.3. Fuels
    • 2.3.4. Safety parameters
      • 2.3.4.1. Void coefficient of reactivity
      • 2.3.4.2. Temperature coefficient
    • 2.3.5. Light Water Reactors (LWRs)
    • 2.3.6. Ultimate heat sinks (UHS)
  • 2.4. Advantages and Disadvantages of SMRs
  • 2.5. Comparison with Traditional Nuclear Reactors
  • 2.6. Current SMR reactor designs and projects
  • 2.7. Types of SMRs
    • 2.7.1. Designs
    • 2.7.2. Coolant temperature
    • 2.7.3. The Small Modular Reactor landscape
    • 2.7.4. Light Water Reactors (LWRs)
      • 2.7.4.1. Pressurized Water Reactors (PWRs)
        • 2.7.4.1.1. Overview
        • 2.7.4.1.2. Key features
        • 2.7.4.1.3. Examples
      • 2.7.4.2. Pressurized Heavy Water Reactors (PHWRs)
        • 2.7.4.2.1. Overview
        • 2.7.4.2.2. Key features
        • 2.7.4.2.3. Examples
      • 2.7.4.3. Boiling Water Reactors (BWRs)
        • 2.7.4.3.1. Overview
        • 2.7.4.3.2. Key features
        • 2.7.4.3.3. Examples
    • 2.7.5. High-Temperature Gas-Cooled Reactors (HTGRs)
      • 2.7.5.1. Overview
      • 2.7.5.2. Key features
      • 2.7.5.3. Examples
    • 2.7.6. Fast Neutron Reactors (FNRs)
      • 2.7.6.1. Overview
      • 2.7.6.2. Key features
      • 2.7.6.3. Examples
    • 2.7.7. Molten Salt Reactors (MSRs)
      • 2.7.7.1. Overview
      • 2.7.7.2. Key features
      • 2.7.7.3. Examples
    • 2.7.8. Microreactors
      • 2.7.8.1. Overview
      • 2.7.8.2. Key features
      • 2.7.8.3. Examples
    • 2.7.9. Heat Pipe Reactors
      • 2.7.9.1. Overview
      • 2.7.9.2. Key features
      • 2.7.9.3. Examples
    • 2.7.10. Liquid Metal Cooled Reactors
      • 2.7.10.1. Overview
      • 2.7.10.2. Key features
      • 2.7.10.3. Examples
    • 2.7.11. Supercritical Water-Cooled Reactors (SCWRs)
      • 2.7.11.1. Overview
      • 2.7.11.2. Key features
    • 2.7.12. Pebble Bed Reactors
      • 2.7.12.1. Overview
      • 2.7.12.2. Key features
  • 2.8. Applications of SMRs
    • 2.8.1. Electricity Generation
      • 2.8.1.1. Overview
      • 2.8.1.2. Cogeneration
    • 2.8.2. Process Heat for Industrial Applications
      • 2.8.2.1. Overview
      • 2.8.2.2. Strategic co-location of SMRs
      • 2.8.2.3. High-temperature reactors
      • 2.8.2.4. Coal-fired power plant conversion
    • 2.8.3. Nuclear District Heating
    • 2.8.4. Desalination
    • 2.8.5. Remote and Off-Grid Power
    • 2.8.6. Hydrogen and industrial gas production
    • 2.8.7. Space Applications
    • 2.8.8. Marine SMRs
  • 2.9. Market challenges
  • 2.10. Safety of SMRs

3. GLOBAL ENERGY LANDSCAPE AND THE ROLE OF SMRs

  • 3.1. Current Global Energy Mix
  • 3.2. Projected Energy Demand (2025-2045)
  • 3.3. Climate Change Mitigation and the Paris Agreement
  • 3.4. Nuclear Energy in the Context of Sustainable Development Goals
  • 3.5. SMRs as a Solution for Clean Energy Transition

4. TECHNOLOGY OVERVIEW

  • 4.1. Design Principles of SMRs
  • 4.2. Key Components and Systems
  • 4.3. Safety Features and Passive Safety Systems
  • 4.4. Cycle and Waste Management
  • 4.5. Advanced Manufacturing Techniques
  • 4.6. Modularization and Factory Fabrication
  • 4.7. Transportation and Site Assembly
  • 4.8. Grid Integration and Load Following Capabilities
  • 4.9. Emerging Technologies and Future Developments

5. REGULATORY FRAMEWORK AND LICENSING

  • 5.1. International Atomic Energy Agency (IAEA) Guidelines
  • 5.2. Nuclear Regulatory Commission (NRC) Approach to SMRs
  • 5.3. European Nuclear Safety Regulators Group (ENSREG) Perspective
  • 5.4. Regulatory Challenges and Harmonization Efforts
  • 5.5. Licensing Processes for SMRs
  • 5.6. Environmental Impact Assessment
  • 5.7. Public Acceptance and Stakeholder Engagement

6. MARKET ANAYSIS

  • 6.1. Global Market Size and Growth Projections (2025-2045)
  • 6.2. Market Segmentation
    • 6.2.1. By Reactor Type
    • 6.2.2. By Application
    • 6.2.3. By Region
  • 6.3. SWOT Analysis
  • 6.4. Value Chain Analysis
  • 6.5. Cost Analysis and Economic Viability
  • 6.6. Financing Models and Investment Strategies
  • 6.7. Regional Market Analysis
    • 6.7.1. North America
      • 6.7.1.1. United States
      • 6.7.1.2. Canada
    • 6.7.2. Europe
      • 6.7.2.1. United Kingdom
      • 6.7.2.2. France
      • 6.7.2.3. Russia
    • 6.7.3. Other European Countries
    • 6.7.4. Asia-Pacific
      • 6.7.4.1. China
      • 6.7.4.2. Japan
      • 6.7.4.3. South Korea
      • 6.7.4.4. India
      • 6.7.4.5. Other Asia-Pacific Countries
    • 6.7.5. Middle East and Africa
    • 6.7.6. Latin America

7. COMPETITIVE LANDSCAPE

  • 7.1. Competitive Strategies
  • 7.2. Recent market news
  • 7.3. New Product Developments and Innovations
  • 7.4. SMR private investment

8. SMR DEPOLYMENT SCENARIOS

  • 8.1. First-of-a-Kind (FOAK) Projects
  • 8.2. Nth-of-a-Kind (NOAK) Projections
  • 8.3. Deployment Timelines and Milestones
  • 8.4. Capacity Additions Forecast (2025-2045)
  • 8.5. Market Penetration Analysis
  • 8.6. Replacement of Aging Nuclear Fleet
  • 8.7. Integration with Renewable Energy Systems

9. ECONOMIC IMPACT ANALYSIS

  • 9.1. Job Creation and Skill Development
  • 9.2. Local and National Economic Benefits
  • 9.3. Impact on Energy Prices
  • 9.4. Comparison with Other Clean Energy Technologies

10. ENVIRONMENTAL AND SOCIAL IMPACT

  • 10.1. Carbon Emissions Reduction Potential
  • 10.2. Land Use and Siting Considerations
  • 10.3. Water Usage and Thermal Pollution
  • 10.4. Radioactive Waste Management
  • 10.5. Public Health and Safety
  • 10.6. Social Acceptance and Community Engagement

11. POLICY AND GOVERNMENT INITIATIVES

  • 11.1. National Nuclear Energy Policies
  • 11.2. SMR-Specific Support Programs
  • 11.3. Research and Development Funding
  • 11.4. International Cooperation and Technology Transfer
  • 11.5. Export Control and Non-Proliferation Measures

12. CHALLENGES AND OPPORTUNITIES

  • 12.1. Technical Challenges
    • 12.1.1. Design Certification and Licensing
    • 12.1.2. Fuel Development and Supply
    • 12.1.3. Component Manufacturing and Quality Assurance
    • 12.1.4. Grid Integration and Load Following
  • 12.2. Economic Challenges
    • 12.2.1. Capital Costs and Financing
    • 12.2.2. Economies of Scale
    • 12.2.3. Market Competition from Other Energy Sources
  • 12.3. Regulatory Challenges
    • 12.3.1. Harmonization of International Standards
    • 12.3.2. Site Licensing and Environmental Approvals
    • 12.3.3. Liability and Insurance Issues
  • 12.4. Social and Political Challenges
    • 12.4.1. Public Perception and Acceptance
    • 12.4.2. Nuclear Proliferation Concerns
    • 12.4.3. Waste Management and Long-Term Storage
  • 12.5. Opportunities
    • 12.5.1. Decarbonization of Energy Systems
    • 12.5.2. Energy Security and Independence
    • 12.5.3. Industrial Applications and Process Heat
    • 12.5.4. Remote and Off-Grid Power Solutions
    • 12.5.5. Nuclear-Renewable Hybrid Energy Systems

13. FUTURE OUTLOOK AND SCENARIOS

  • 13.1. Technology Roadmap (2025-2045)
  • 13.2. Market Evolution Scenarios
  • 13.3. Long-Term Market Projections (Beyond 2045)
  • 13.4. Potential Disruptive Technologies
  • 13.5. Global Energy Mix Scenarios with SMR Integration

14. CASE STUDIES

  • 14.1. NuScale Power VOYGR(TM) SMR Power Plant
  • 14.2. Rolls-Royce UK SMR Program
  • 14.3. China's HTR-PM Demonstration Project
  • 14.4. Russia's Floating Nuclear Power Plant (Akademik Lomonosov)
  • 14.5. Canadian SMR Action Plan

15. INVESTMENT ANALYSIS

  • 15.1. Return on Investment (ROI) Projections
  • 15.2. Risk Assessment and Mitigation Strategies
  • 15.3. Comparative Analysis with Other Energy Investments
  • 15.4. Public-Private Partnership Models

16. COMPANY PROFILES(33 company profiles)

17. APPENDICES

  • 17.1. Research Methodology

18. REFERENCES