デフォルト表紙
市場調査レポート
商品コード
1702384

量子材料の世界市場(2025年~2032年)

Global Quantum Materials Market - 2025-2032


出版日
ページ情報
英文 180 Pages
納期
即日から翌営業日
カスタマイズ可能
適宜更新あり
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=143.57円
量子材料の世界市場(2025年~2032年)
出版日: 2025年04月10日
発行: DataM Intelligence
ページ情報: 英文 180 Pages
納期: 即日から翌営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

世界の量子材料の市場規模は、2024年に104億2,000万米ドルに達し、2032年までに969億米ドルに達すると予測され、予測期間の2025年~2032年にCAGRで32.15%の成長が見込まれます。

世界の量子材料産業は、持続可能性と環境責任の重視により発展しています。超伝導体、トポロジカル絶縁体、量子ドットなどの量子材料は、エネルギー効率の高い技術を可能にする上で重要な役割を果たしていますが、その製造と利用は環境問題を引き起こしています。

主要企業や研究機関は持続可能な量子材料開発に積極的に投資しており、このことが市場を牽引すると予測されます。IBM、Microsoft、Googleなどの企業は、量子コンピューティング装置の環境に対する影響を低減しようとしています。各国政府も、持続可能な材料やエネルギー効率の高い量子デバイスを推進する欧州連合のQuantum Flagship Initiativeのように、環境にやさしい量子研究を後援しています。

市場力学

量子コンピューティングと先進技術への投資の増加

量子コンピューティング、ナノテクノロジー、先進半導体用途への投資の増加が市場を牽引しています。世界中の政府、技術企業、研究機関は、コンピューティング能力、エネルギー効率、材料特性を向上させるために、トポロジカル絶縁体、超伝導体、2次元材料(グラフェン、遷移金属ダイカルコゲナイドなど)を含む量子材料の創製への資金提供を増やしています。

例えば、米国のNational Quantum Initiative Actや欧州のQuantum Flagship Programは、量子技術の研究開発に数十億米ドルを割り当てており、量子材料の需要に影響を与えています。銀行、医療、航空宇宙、サイバーセキュリティなどの産業が量子コンピューティングの応用を模索する中、高性能量子材料のニーズは大幅に拡大する可能性が高いです。

高い生産コスト

世界の量子材料市場におけるもっとも大きなハードルの1つは、これらの先進材料に必要な高い生産コストと複雑な製造方法です。トポロジカル絶縁体、超伝導体、量子ドットなどの量子材料は、その特徴を維持するために、高度に制御された製造環境、特殊な装置、精密な条件を必要とします。

例えば、量子コンピューティングに使用される超伝導材料は、適切な性能を発揮するために極低温(絶対零度に近い温度)を必要とし、運用コストやメンテナンスコストが増大します。同様に、グラフェンなどの2次元材料は、化学気相成長法(CVD)や分子線エピタキシー法(MBE)といった複雑で高価な合成方法を必要とするため、大規模な製造は経済的に困難です。

市場の地理的シェア

北米の政府と民間部門による旺盛な投資

北米の量子材料市場は、政府と民間部門による量子技術への旺盛な投資によって大きく成長しています。米国とカナダは量子研究の最前線にあり、連邦政府機関や大手技術企業から多大な支援を受けています。例えば、2018年に成立した米国のNational Quantum Initiative Actは、量子材料、コンピューター、通信技術の開発のに向け数十億米ドルを確保しています。

エネルギー省(DOE)、国立科学財団(NSF)、DARPAはいずれも、量子コンピューティングや次世代電子の進歩に欠かせない超伝導体、トポロジカル絶縁体、2次元材料などの量子材料の研究を積極的に支援しています。IBM、Google、Microsoftは量子コンピューター研究に多額の投資を行っており、高品質な量子材料への需要を高めています。例えば、IBMの量子ネットワークは、複数の大学と協力し、精巧な超伝導材料を用いた量子プロセッサーの開発に取り組んでいます。

当レポートでは、世界の量子材料市場について調査し、市場力学、地域とセグメントの分析、競合情勢、企業プロファイルなどを提供しています。

目次

第1章 調査手法と範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 影響要因
    • 促進要因
      • 量子コンピューティングと先進技術への投資の増加
    • 抑制要因
      • 高い生産コスト
    • 機会
    • 影響の分析

第5章 産業の分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制分析
  • 持続可能性分析
  • DMIの見解

第6章 材料別

  • トポロジカル絶縁体
  • グラフェン、2D材料
  • ワイル半金属
  • 量子ドット
  • 高温超伝導体
  • 光量子材料
  • その他

第7章 用途別

  • 量子コンピューティング
  • 量子センシング・計測
  • オプトエレクトロニクス
  • 医療・ライフサイエンス
  • その他

第8章 エンドユーザー別

  • IT・通信
  • 医療・ライフサイエンス
  • 航空宇宙・防衛
  • 自動車・輸送
  • 電子・半導体
  • エネルギー・電力
  • その他

第9章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • イタリア
    • スペイン
    • その他の欧州
  • 南米
    • ブラジル
    • アルゼンチン
    • その他の南米
  • アジア太平洋
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他のアジア太平洋
  • 中東・アフリカ

第10章 競合情勢

  • 競合シナリオ
  • 市場ポジショニング/シェア分析
  • 合併と買収の分析

第11章 企業プロファイル

  • IBM Corporation
  • Intel Corporation
  • IonQ Inc.
  • Silicon Quantum Computing
  • Huawei Technologies Co. Ltd
  • Alphabet Inc.
  • Rigetti & Co, LLC
  • Microsoft Corporation
  • D-Wave Quantum Inc
  • Zapata Computing Inc.

第12章 付録

目次
Product Code: ICT9449

Global Quantum Materials Market reached US$ 10.42 billion in 2024 and is expected to reach US$ 96.9 billion by 2032, growing with a CAGR of 32.15% during the forecast period 2025-2032.

The global quantum materials industry is developing, with a greater emphasis on sustainability and environmental responsibility. Quantum materials, such as superconductors, topological insulators and quantum dots, play an important role in allowing energy-efficient technology, but their manufacturing and application create environmental issues.

Leading firms and research organizations are progressively investing in sustainable quantum material development, which is projected to drive the market. Companies including IBM, Microsoft and Google are attempting to reduce the environmental impact of quantum computing gear. Governments are also sponsoring green quantum research, like the European Union's Quantum Flagship Initiative, which promotes sustainable materials and energy-efficient quantum devices.

Market Dynamics

Rising Investments in Quantum Computing and Advanced Technologies

The market is being driven by increased investment in quantum computing, nanotechnology and advanced semiconductor applications. Governments, technology companies and research institutions around the world are increasing funding for the creation of quantum materials that include topological insulators, superconductors and 2D materials (e.g., graphene, transition metal dichalcogenides) to improve computing power, energy efficiency and material properties.

For example, the National Quantum Initiative Act in US and Europe's Quantum Flagship Program have allocated billions of dollars to quantum technology research and development, thereby impacting demand for quantum materials. As industries such as banking, healthcare, aerospace and cybersecurity explore quantum computing applications, the need for high-performance quantum materials is likely to expand considerably.

High Production Costs

One of the most significant hurdles in the global quantum materials market is the high production costs and complex manufacturing procedures required for these advanced materials. Quantum materials, such as topological insulators, superconductors and quantum dots, require highly regulated production settings, specialized equipment and precise conditions to maintain their distinct features.

For example, superconducting materials used in quantum computing require extremely low temperatures (near absolute zero) to perform properly, increasing operational and maintenance costs. Similarly, graphene and other 2D materials need complex and expensive synthesis procedures, such as chemical vapor deposition (CVD) and molecular beam epitaxy (MBE), making large-scale manufacture economically hard.

Market Segment Analysis

The global quantum materials market is segmented based on material, application, end-user and region.

Topological Insulators in the global market is expected to drive the market.

In 2024, the topological insulators segment accounted for the largest percentage of global quantum materials market. The growing demand for energy-efficient devices and next-generation computer systems is driving global usage of topological insulators (TIs). Topological insulators have distinct electrical properties that allow them to conduct electricity on their surfaces while staying insulating in bulk. This property makes them an excellent choice for low-power, high-performance electrical equipment.

One of the most intriguing uses for TIs is quantum computing. Companies such as Google, IBM and Microsoft are aggressively researching TIs for their potential application in fault-tolerant quantum computers, where they can aid in the formation of Majorana fermions, which are critical for error-free quantum computing. Furthermore, topological insulators are being integrated into spintronic devices, enabling more efficient data processing with low energy loss, increasing their acceptance in modern computing systems.

Market Geographical Share

Strong Government and Private Sector Investments in North America

The North American quantum materials market is witnessing significant growth, driven by strong government and private sector investments in quantum technologies. US and Canada are at the forefront of quantum research, receiving significant support from both federal agencies and major technology businesses. For example, US National Quantum Initiative Act, passed in 2018, set aside billions of dollars for the development of quantum materials, computers and communications technology.

The Department of Energy (DOE), the National Science Foundation (NSF) and DARPA are all actively sponsoring research into quantum materials such as superconductors, topological insulators and 2D materials, which are crucial for advances in quantum computing and next-generation electronics. IBM, Google and Microsoft are heavily investing in quantum computer research, increasing demand for high-quality quantum materials. IBM's Quantum Network, for example, works with several academic universities to create quantum processors with sophisticated superconducting materials.

Sustainability Analysis

One of the primary sustainability advantages of quantum materials is their ability to reduce energy consumption. For example, superconducting materials enable zero-resistance energy transmission, potentially improving the efficiency of power grids, data centers and quantum computing systems. This can result in decreased carbon emissions, which aligns with worldwide decarbonization targets.

Quantum materials enable the creation of next-generation solar cells, energy-efficient transistors and advanced battery technologies. Innovations in quantum dot solar cells have the potential to increase solar energy conversion efficiency and reduce reliance on fossil fuels. Similarly, quantum materials are being investigated for low-power computing, which can assist reduce global energy demand in the technology industry.

Major Global Players

The major global players in the market include IBM Corporation, Intel Corporation, IonQ Inc., Silicon Quantum Computing, Huawei Technologies Co. Ltd, Alphabet Inc., Rigetti & Co, LLC, Microsoft Corporation, D-Wave Quantum Inc and Zapata Computing Inc.

Why Choose DataM?

Data-Driven Insights: Dive into detailed analyses with granular insights such as pricing, market shares and value chain evaluations, enriched by interviews with industry leaders and disruptors.

Post-Purchase Support and Expert Analyst Consultations: As a valued client, gain direct access to our expert analysts for personalized advice and strategic guidance, tailored to your specific needs and challenges.

White Papers and Case Studies: Benefit quarterly from our in-depth studies related to your purchased titles, tailored to refine your operational and marketing strategies for maximum impact.

Annual Updates on Purchased Reports: As an existing customer, enjoy the privilege of annual updates to your reports, ensuring you stay abreast of the latest market insights and technological advancements. Terms and conditions apply.

Specialized Focus on Emerging Markets: DataM differentiates itself by delivering in-depth, specialized insights specifically for emerging markets, rather than Material generalized geographic overviews. This approach equips our clients with a nuanced understanding and actionable intelligence that are essential for navigating and succeeding in high-growth regions.

Value of DataM Reports: Our reports offer specialized insights tailored to the latest trends and specific business inquiries. This personalized approach provides a deeper, strategic perspective, ensuring you receive the precise information necessary to make informed decisions. These insights complement and go beyond what is typically available in generic databases.

Target Audience 2024

Manufacturers/ Buyers

Industry Investors/Investment Bankers

Research Professionals

Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Material
  • 3.2. Snippet by Application
  • 3.3. Snippet by End-User
  • 3.4. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Rising Investments in Quantum Computing and Advanced Technologies
    • 4.1.2. Restraints
      • 4.1.2.1. High Production Costs
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Sustainability Analysis
  • 5.6. DMI Opinion

6. By Material

  • 6.1. Introduction
    • 6.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 6.1.2. Market Attractiveness Index, By Material
  • 6.2. Topological Insulators*
    • 6.2.1. Introduction
    • 6.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 6.3. Graphene and 2D Materials
  • 6.4. Weyl Semimetals
  • 6.5. Quantum Dots
  • 6.6. High-Temperature Superconductors
  • 6.7. Photonic Quantum Materials
  • 6.8. Others

7. By Application

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 7.1.2. Market Attractiveness Index, By Application
  • 7.2. Quantum Computing*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Quantum Sensing & Metrology
  • 7.4. Optoelectronics
  • 7.5. Medical & Life Sciences
  • 7.6. Others

8. By End-User

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 8.1.2. Market Attractiveness Index, By End-User
  • 8.2. IT & Telecommunications*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Healthcare & Life Sciences
  • 8.4. Aerospace & Defense
  • 8.5. Automotive & Transportation
  • 8.6. Electronics & Semiconductors
  • 8.7. Energy & Power
  • 8.8. Others

9. By Region

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 9.1.2. Market Attractiveness Index, By Region
  • 9.2. North America
    • 9.2.1. Introduction
    • 9.2.2. Key Region-Specific Dynamics
    • 9.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 9.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 9.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.2.6.1. US
      • 9.2.6.2. Canada
      • 9.2.6.3. Mexico
  • 9.3. Europe
    • 9.3.1. Introduction
    • 9.3.2. Key Region-Specific Dynamics
    • 9.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 9.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 9.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.3.6.1. Germany
      • 9.3.6.2. UK
      • 9.3.6.3. France
      • 9.3.6.4. Italy
      • 9.3.6.5. Spain
      • 9.3.6.6. Rest of Europe
  • 9.4. South America
    • 9.4.1. Introduction
    • 9.4.2. Key Region-Specific Dynamics
    • 9.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 9.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 9.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.4.6.1. Brazil
      • 9.4.6.2. Argentina
      • 9.4.6.3. Rest of South America
  • 9.5. Asia-Pacific
    • 9.5.1. Introduction
    • 9.5.2. Key Region-Specific Dynamics
    • 9.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 9.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 9.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.5.6.1. China
      • 9.5.6.2. India
      • 9.5.6.3. Japan
      • 9.5.6.4. Australia
      • 9.5.6.5. Rest of Asia-Pacific
  • 9.6. Middle East and Africa
    • 9.6.1. Introduction
    • 9.6.2. Key Region-Specific Dynamics
    • 9.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 9.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User

10. Competitive Landscape

  • 10.1. Competitive Scenario
  • 10.2. Market Positioning/Share Analysis
  • 10.3. Mergers and Acquisitions Analysis

11. Company Profiles

  • 11.1. IBM Corporation*
    • 11.1.1. Company Overview
    • 11.1.2. Product Portfolio and Description
    • 11.1.3. Financial Overview
    • 11.1.4. Key Developments
  • 11.2. Intel Corporation
  • 11.3. IonQ Inc.
  • 11.4. Silicon Quantum Computing
  • 11.5. Huawei Technologies Co. Ltd
  • 11.6. Alphabet Inc.
  • 11.7. Rigetti & Co, LLC
  • 11.8. Microsoft Corporation
  • 11.9. D-Wave Quantum Inc
  • 11.10. Zapata Computing Inc.

LIST NOT EXHAUSTIVE

12. Appendix

  • 12.1. About Us and Services
  • 12.2. Contact Us