デフォルト表紙
市場調査レポート
商品コード
1696204

日本のヘルスケアアナリティクス市場 - 2025年~2033年

Japan Healthcare Analytics Market - 2025-2033


出版日
ページ情報
英文 180 Pages
納期
即日から翌営業日
カスタマイズ可能
適宜更新あり
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=144.06円
日本のヘルスケアアナリティクス市場 - 2025年~2033年
出版日: 2025年03月25日
発行: DataM Intelligence
ページ情報: 英文 180 Pages
納期: 即日から翌営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

日本のヘルスケアアナリティクス市場は、2024年に24億米ドルに達し、2033年には151億米ドルに達すると予測され、予測期間2025年~2033年のCAGRは19.8%で成長する見込みです。

ヘルスケアアナリティクスとは、データ分析と統計モデルを用いて意思決定を改善し、医療成果を最適化することを指します。患者記録、治療結果、業務指標、財務データなど様々な種類のデータを収集、処理、分析し、患者ケアの改善、コスト削減、全体的な医療体験の向上に役立つ洞察を導き出します。

この分析には、記述的分析(descriptive prescriptive)、予測的分析(predictive analytics)、その他の2つのタイプがあります。記述的アナリティクスは、患者の人口統計、治療効果、病院の業績など、過去の動向やパターンを理解することに重点を置いています。予測的アナリティクスは、特定の疾患を発症するリスクのある患者の特定や病院の再入院予測など、将来の結果を予測するために過去のデータと統計的手法を使用します。

ヘルスケアアナリティクスは、人工知能(AI)、機械学習、クラウドコンピューティングなどの先進技術を活用して大量のデータを処理することで、臨床業務、業務効率、医療管理の改善に重要な役割を果たします。

市場力学:

促進要因と抑制要因

技術的進歩

技術の進歩は、日本のヘルスケアアナリティクス市場の成長の重要な起爆剤となっています。人工知能(AI)、機械学習、クラウドコンピューティングなどの最先端技術の統合は、ヘルスケアデータの分析に革命をもたらしています。この変革により、患者ケア、業務プロセス、財務管理について、より効率的で正確な洞察が可能になります。

AIと機械学習は特に予測分析能力を強化し、ヘルスケアプロバイダーがリスクの高い患者を特定し、病気の発生を予測し、治療計画を最適化することを可能にしています。これらのテクノロジーは、早期介入やオーダーメイドの治療戦略を可能にすることで、プロアクティブなヘルスケア管理を促進します。

日本ではクラウドベースのソリューションも人気を集めており、医療機関に多額のインフラコストをかけずに分析機能を拡張できる柔軟性を提供しています。この拡張性により、さまざまなソースからのデータのシームレスな統合が可能になり、意思決定が改善され、ヘルスケアの成果が向上します。

さらに、自然言語処理(NLP)のような進歩により、医療メモや報告書などの非構造化データの分析が改善され、患者の健康状態をより包括的に把握できるようになっています。このようなテクノロジーが進化を続けるにつれて、日本のヘルスケア・セクターは、業務効率、コスト削減、患者ケアの全体的な質のさらなる向上を期待することができます。

例えば、富士通は2023年3月、個別化医療と医薬品開発の推進を目的とした新しいクラウドベースのヘルスケア・プラットフォームを日本で発表しました。このプラットフォームは、クラウドコンピューティング、AI、HL7 FHIR(Fast Healthcare Interoperability Resources)などの相互運用性標準を活用し、医療機関間のデータポータビリティと統合を強化します。

また、ソフトバンクグループは2024年6月、人工知能(AI)を活用して個人の医療データを分析し、治療法を提案することを目的とした、テンポスAIとの合弁会社SB TEMPUSを立ち上げました。このイニシアチブは、孫正義CEOが東京での説明会で発表したもので、ソフトバンクが比較的不活発な時期を経てAI投資に再び注力する重要な一歩となりました。

データプライバシーへの懸念

データプライバシーへの懸念は、日本のヘルスケア分析市場における大きな抑制要因となっています。ヘルスケアデータは非常に機密性が高いため、こうしたデータの収集、処理、共有は、日本の個人情報保護法(APPI)などの厳格な規制基準に準拠する必要があります。患者の秘密を守り、データのセキュリティを確保する必要性から、ヘルスケアデータの共有や活用が制限されることが多く、高度なアナリティクスの可能性を十分に発揮する妨げとなっています。

さらに、データ漏えいのリスクが懸念され、医療機関に多大な財政的・風評的損害をもたらす可能性があります。このリスクは、サイバー攻撃を受けやすいクラウドベースのソリューションやサードパーティプラットフォームの利用が増加しているため、特に高まっています。

こうしたセキュリティの問題は、ヘルスケアプロバイダーが新しいテクノロジーを採用したり、ヘルスケアデータ分析システムを完全に統合したりする意欲をそぐ可能性があります。さらに、これらの法的・倫理的枠組みを理解することの複雑さは、企業がコンプライアンス基準を満たすことを保証しなければならないため、技術導入や分析ツールの導入ペースを遅らせる可能性があります。

目次

第1章 市場イントロダクションと範囲

  • 報告書の目的
  • 調査範囲と定義
  • 調査範囲

第2章 エグゼクティブの洞察と重要なポイント

  • 市場のハイライトと戦略的ポイント
  • 主な動向と将来の予測
  • タイプ別スニペット
  • コンポーネント別スニペット
  • 配信モード別のスニペット
  • 用途別スニペット

第3章 市場力学

  • 影響要因
    • 促進要因
      • 技術的進歩
      • 予測分析の需要の高まり
    • 抑制要因
      • データプライバシーに関する懸念
      • 厳しい規制
    • 機会
      • AIとビッグデータの統合
    • 影響分析

第4章 戦略的洞察と業界展望

  • 市場のリーダーと先駆者
    • 新たな先駆者と著名なプレーヤー
    • 最大の売上を誇るブランドを確立したリーダー
    • 確立された製品を持つ市場リーダー
  • CXOの視点
  • 最新の開発とブレークスルー
  • ケーススタディ/進行中の調査
  • 規制と償還の情勢
  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • SWOT分析
  • アンメットニーズとギャップ
  • 市場参入と拡大のための推奨戦略
  • シナリオ分析ベストケース、ベースケース、ワーストケースの予測
  • 価格分析と価格市場力学
  • 主要なオピニオンリーダー

第5章 日本のヘルスケアアナリティクス市場、タイプ別

  • 記述的分析
  • 予測分析
  • 処方的分析
  • 診断分析

第6章 日本のヘルスケアアナリティクス市場、コンポーネント別

  • ソフトウェア
  • サービス
  • ハードウェア

第7章 日本のヘルスケアアナリティクス市場、配送方法別

  • オンプレミス
  • クラウドベース

第8章 日本のヘルスケアアナリティクス市場、用途別

  • オペレーション管理
  • オペレーション管理
  • 財務分析
  • 人口健康管理
  • 臨床分析
  • その他

第9章 競合情勢と市場ポジショニング

  • 競合状況の概要と主要な市場プレーヤー
  • 市場シェア分析とポジショニングマトリックス
  • 戦略的パートナーシップ、合併、買収
  • 製品ポートフォリオとイノベーションにおける主な発展
  • 企業ベンチマーク

第10章 企業プロファイル

  • MCKESSON CORPORATION
    • 会社概要
    • 製品ポートフォリオ
      • 製品説明
      • 製品の主要業績評価指標(KPI)
      • 過去および予測の製品販売
      • 製品販売量
    • 財務概要
      • 会社の収益
      • 地域別収益分配
      • 収益予測
    • 主な発展
      • 合併と買収
      • 主な製品開発活動
      • 規制当局の承認等
    • SWOT分析
  • Inovalon.
  • CitiusTech Inc
  • Arcadia Solutions, LLC.
  • IBM
  • SAS Institute Inc.
  • Verisk Analytics, Inc.
  • Oracle

第11章前提条件と調査手法

  • データ収集方法
  • データの三角測量
  • 予測技術
  • データの検証と検証

第12章 付録

目次
Product Code: HCIT9359

The Japan healthcare analytics market reached US$ 2.40 billion in 2024 and is expected to reach US$ 15.10 billion by 2033, growing at a CAGR of 19.8 % during the forecast period 2025-2033.

Healthcare analytics refers to using data analysis and statistical models to improve decision-making and optimize healthcare outcomes. It involves collecting, processing, and analyzing various data types such as patient records, treatment outcomes, operational metrics, and financial data to derive insights that help improve patient care, reduce costs, and enhance the overall healthcare experience.

It is of two types descriptive prescriptive, predictive analytics and others. Descriptive analytics is focused on understanding historical trends and patterns, such as patient demographics, treatment effectiveness, and hospital performance. Predictive analytics uses historical data and statistical techniques to predict future outcomes, such as identifying patients at risk of developing specific conditions or forecasting hospital readmissions.

Healthcare analytics plays a crucial role in improving clinical practices, operational efficiency, and healthcare management by leveraging advanced technologies like artificial intelligence (AI), machine learning, and cloud computing to handle large volumes of data.

Market Dynamics: Drivers & Restraints

Technological Advancements

Technological advancements are a significant catalyst for growth in the Japanese healthcare analytics market. The integration of cutting-edge technologies such as artificial intelligence (AI), machine learning, and cloud computing is revolutionizing the analysis of healthcare data. This transformation enables more efficient and accurate insights into patient care, operational processes, and financial management.

AI and machine learning have particularly enhanced predictive analytics capabilities, allowing healthcare providers to identify high-risk patients, forecast disease outbreaks, and optimize treatment plans. These technologies facilitate proactive healthcare management by enabling early intervention and tailored treatment strategies.

Cloud-based solutions are also gaining traction in Japan, providing healthcare organizations with the flexibility to scale their analytics capabilities without incurring heavy infrastructure costs. This scalability allows for seamless integration of data from various sources, improving decision-making and enhancing healthcare outcomes.

Moreover, advancements like natural language processing (NLP) are improving the analysis of unstructured data, such as medical notes and reports, offering a more comprehensive view of patient health. As these technologies continue to evolve, the Japanese healthcare sector can anticipate further enhancements in operational efficiency, cost reduction, and overall quality of patient care.

For instance, in March 2023, Fujitsu launched a new cloud-based healthcare platform in Japan aimed at advancing personalized healthcare and drug development. The platform utilizes cloud computing, AI, and interoperability standards such as HL7 FHIR (Fast Healthcare Interoperability Resources) to enhance data portability and integration across healthcare institutions.

Also, in June 2024, SoftBank Group launched a joint venture with Tempus AI, named SB TEMPUS, aimed at leveraging artificial intelligence (AI) to analyze personal medical data and develop treatment recommendations. This initiative was announced by CEO Masayoshi Son during a briefing in Tokyo and marks a significant step in SoftBank's renewed focus on AI investments after a period of relative inactivity.

Data Privacy Concerns

Data privacy concerns are a significant restraint in the Japanese healthcare analytics market. As healthcare data is highly sensitive, the collection, processing, and sharing of such data must comply with strict regulatory standards, such as Japan's Act on the Protection of Personal Information (APPI). The need to protect patient confidentiality and ensure data security often limits the sharing and utilization of healthcare data, hindering the full potential of advanced analytics

Moreover, there are concerns about the risk of data breaches, which could result in significant financial and reputational damage to healthcare organizations. This risk is particularly heightened with the increasing use of cloud-based solutions and third-party platforms, which are susceptible to cyberattacks.

These security issues may discourage healthcare providers from adopting new technologies or fully integrating healthcare data analytics systems. Additionally, the complexity of navigating these legal and ethical frameworks can slow down the pace of technological adoption and the implementation of analytics tools, as companies must ensure they meet compliance standards.

Segment Analysis

The Japan healthcare analytics market is segmented based on type, component, delivery mode and application.

Type:

The predictive analytics segment of this type is expected to dominate the Japan healthcare analytics market share

The predictive analytics segment in the Japanese healthcare analytics market is rapidly growing, driven by the increasing demand for data-driven insights to improve patient care, optimize resources, and forecast health trends. Predictive analytics uses historical data, statistical algorithms, and machine learning models to predict future outcomes, which is particularly valuable in a healthcare environment where early intervention can significantly impact patient outcomes.

Healthcare providers use predictive models to identify patients at risk of developing certain diseases or conditions, such as diabetes, heart disease, or cancer. By doing so, healthcare systems can focus on preventative care, potentially reducing long-term costs and improving quality of life. Predictive analytics helps healthcare organizations identify patients likely to be readmitted to hospitals after discharge. By predicting readmission risk, hospitals can take proactive steps to ensure better post-discharge care, which is crucial in reducing healthcare costs and improving patient outcomes.

Predictive analytics is also used to forecast healthcare demand, allowing hospitals to optimize staffing levels, manage patient flow, and ensure that resources are available where and when they are needed. This leads to improved operational efficiency and cost savings. These predictive capabilities are increasingly supported by technologies like AI and cloud computing, allowing healthcare providers to scale their operations and improve the accuracy of their predictions.

For instance, in November 2024, Dentsu's launch of Tobiras, which integrates Meta's Advanced Analytics (Meta AA) technology with first-party data, represents a significant step forward in leveraging data-driven insights to optimize marketing efforts.

This tool is particularly valuable for businesses navigating the complexities of the algorithmic era. It provides secure access to previously inaccessible insights, allowing for better-targeted campaigns and, ultimately, a 10% improvement in ROI for early adopters. These factors have solidified the segment's position in the Japanese healthcare analytics market.

Competitive Landscape

The major players in the Japan healthcare analytics market include MCKESSON CORPORATION, Inovalon., CitiusTech Inc., Arcadia Solutions, LLC., IBM, SAS Institute Inc., Verisk Analytics, Inc., and Oracle Inc., among others.

Key Developments

  • In February 2025, TriNetX, partnered with Fujitsu to establish TriNetX Japan K.K. This joint venture aims to revolutionize the use of anonymized electronic health record (EHR) data from Japanese patients, enhancing clinical trial efficiency, advancing healthcare research, and accelerating drug development timelines.
  • In November 2023, RapidAI made significant strides in the healthcare sector by obtaining Class III Shonin clearance in Japan for its stroke identification platform. This regulatory approval allows RapidAI to market its advanced imaging solutions in Japan, which is the second-largest stroke market globally.
  • In January 2023, Fujitsu and Sapporo Medical University initiated a joint project aimed at realizing data portability in the healthcare sector. This project focuses on enabling patients to access and manage their healthcare data, including electronic health records (EHRs) and personal health records (PHRs), through a cloud-based platform.

Why Purchase the Report?

  • Pipeline & Innovations: Reviews ongoing clinical trials and product pipelines and forecasts upcoming advancements in medical devices and pharmaceuticals.
  • Product Performance & Market Positioning: Analyze product performance, market positioning, and growth potential to optimize strategies.
  • Real-World Evidence: Integrates patient feedback and data into product development for improved outcomes.
  • Physician Preferences & Health System Impact: Examines healthcare provider behaviors and the impact of health system mergers on adoption strategies.
  • Market Updates & Industry Changes: This covers recent regulatory changes, new policies, and emerging technologies.
  • Competitive Strategies: Analyze competitor strategies, market share, and emerging players.
  • Pricing & Market Access: Reviews pricing models, reimbursement trends, and market access strategies.
  • Market Entry & Expansion: Identifies optimal strategies for entering new markets and partnerships.
  • Regional Growth & Investment: Highlights high-growth regions and investment opportunities.
  • Supply Chain Optimization: Assesses supply chain risks and distribution strategies for efficient product delivery.
  • Sustainability & Regulatory Impact: Focuses on eco-friendly practices and evolving regulations in healthcare.
  • Post-market Surveillance: Uses post-market data to enhance product safety and access.
  • Pharmacoeconomics & Value-Based Pricing: Analyzes the shift to value-based pricing and data-driven decision-making in R&D.

The Japan healthcare analytics market report delivers a detailed analysis with 60+ key tables, more than 50 visually impactful figures, and 176 pages of expert insights, providing a complete view of the market landscape.

Target Audience 2024

  • Manufacturers: Pharmaceutical, Medical Device, Biotech Companies, Contract Manufacturers, Distributors, Hospitals.
  • Regulatory & Policy: Compliance Officers, Government, Health Economists, Market Access Specialists.
  • Component & Innovation: AI/Robotics Providers, R&D Professionals, Clinical Trial Managers, Pharmacovigilance Experts.
  • Investors: Healthcare Investors, Venture Fund Investors, Pharma Marketing & Sales.
  • Consulting & Advisory: Healthcare Consultants, Industry Associations, Analysts.
  • Supply Chain: Distribution and Supply Chain Managers.
  • Consumers & Advocacy: Patients, Advocacy Groups, Insurance Companies.
  • Academic & Research: Academic Institutions.

Table of Contents

1. Market Introduction and Scope

  • 1.1. Objectives of the Report
  • 1.2. Report Coverage & Definitions
  • 1.3. Report Scope

2. Executive Insights and Key Takeaways

  • 2.1. Market Highlights and Strategic Takeaways
  • 2.2. Key Trends and Future Projections
  • 2.3. Snippet by Type
  • 2.4. Snippet by Component
  • 2.5. Snippet by Delivery Mode
  • 2.6. Snippet by Application

3. Dynamics

  • 3.1. Impacting Factors
    • 3.1.1. Drivers
      • 3.1.1.1. Technological Advancements
      • 3.1.1.2. Growing Demand for Predictive Analytics
    • 3.1.2. Restraints
      • 3.1.2.1. Data Privacy Concerns
      • 3.1.2.2. Stringent Regulations
    • 3.1.3. Opportunity
      • 3.1.3.1. Integration of AI and Big Data
    • 3.1.4. Impact Analysis

4. Strategic Insights and Industry Outlook

  • 4.1. Market Leaders and Pioneers
    • 4.1.1. Emerging Pioneers and Prominent Players
    • 4.1.2. Established leaders with the largest-selling Brand
    • 4.1.3. Market leaders with established Product
  • 4.2. CXO Perspectives
  • 4.3. Latest Developments and Breakthroughs
  • 4.4. Case Studies/Ongoing Research
  • 4.5. Regulatory and Reimbursement Landscape
  • 4.6. Porter's Five Forces Analysis
  • 4.7. Supply Chain Analysis
  • 4.8. SWOT Analysis
  • 4.9. Unmet Needs and Gaps
  • 4.10. Recommended Strategies for Market Entry and Expansion
  • 4.11. Scenario Analysis: Best-Case, Base-Case, and Worst-Case Forecasts
  • 4.12. Pricing Analysis and Price Dynamics
  • 4.13. Key Opinion Leaders

5. Japan Healthcare Analytics Market, By Type

  • 5.1. Introduction
    • 5.1.1. Analysis and Y-o-Y Growth Analysis (%), By Type
    • 5.1.2. Market Attractiveness Index, By Type
  • 5.2. Descriptive Analytics*
    • 5.2.1. Introduction
    • 5.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 5.3. Predictive Analytics
  • 5.4. Prescriptive Analytics
  • 5.5. Diagnostic Analytics

6. Japan Healthcare Analytics Market, By Component

  • 6.1. Introduction
    • 6.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 6.1.2. Market Attractiveness Index, By Component
  • 6.2. Software*
    • 6.2.1. Introduction
    • 6.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 6.3. Services
  • 6.4. Hardware

7. Japan Healthcare Analytics Market, By Delivery Mode

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Delivery Mode
    • 7.1.2. Market Attractiveness Index, By Delivery Mode
  • 7.2. On-Premise*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Cloud-Based

8. Japan Healthcare Analytics Market, By Application

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 8.1.2. Market Attractiveness Index, By Application
  • 8.2. Operations Management*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Operations Management
  • 8.4. Financial Analytics
  • 8.5. Population Health Management
  • 8.6. Clinical Analytics
  • 8.7. Others

9. Competitive Landscape and Market Positioning

  • 9.1. Competitive Overview and Key Market Players
  • 9.2. Market Share Analysis and Positioning Matrix
  • 9.3. Strategic Partnerships, Mergers & Acquisitions
  • 9.4. Key Developments in Product Portfolios and Innovations
  • 9.5. Company Benchmarking

10. Company Profiles

  • 10.1. MCKESSON CORPORATION*
    • 10.1.1. Company Overview
    • 10.1.2. Product Portfolio
      • 10.1.2.1. Product Description
      • 10.1.2.2. Product Key Performance Indicators (KPIs)
      • 10.1.2.3. Historic and Forecasted Product Sales
      • 10.1.2.4. Product Sales Volume
    • 10.1.3. Financial Overview
      • 10.1.3.1. Company Revenue's
      • 10.1.3.2. Geographical Revenue Shares
      • 10.1.3.3. Revenue Forecasts
    • 10.1.4. Key Developments
      • 10.1.4.1. Mergers & Acquisitions
      • 10.1.4.2. Key Product Development Activities
      • 10.1.4.3. Regulatory Approvals, etc.
    • 10.1.5. SWOT Analysis
  • 10.2. Inovalon.
  • 10.3. CitiusTech Inc
  • 10.4. Arcadia Solutions, LLC.
  • 10.5. IBM
  • 10.6. SAS Institute Inc.
  • 10.7. Verisk Analytics, Inc.
  • 10.8. Oracle

LIST NOT EXHAUSTIVE

11. Assumption and Research Methodology

  • 11.1. Data Collection Methods
  • 11.2. Data Triangulation
  • 11.3. Forecasting Techniques
  • 11.4. Data Verification and Validation

12. Appendix

  • 12.1. About Us and Services
  • 12.2. Contact Us