デフォルト表紙
市場調査レポート
商品コード
1678802

水素燃料ステーションの世界市場(2025年~2032年)

Global Hydrogen Fueling Station Market - 2025-2032


出版日
ページ情報
英文 220 Pages
納期
即日から翌営業日
カスタマイズ可能
適宜更新あり
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=143.57円
水素燃料ステーションの世界市場(2025年~2032年)
出版日: 2025年03月11日
発行: DataM Intelligence
ページ情報: 英文 220 Pages
納期: 即日から翌営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

世界の水素燃料ステーションの市場規模は、2024年に5億758万米ドルに達し、2032年には28億72万米ドルに達すると予測され、予測期間2025年~2032年にCAGR23.80%で成長する見込みです。

世界の水素燃料ステーション市場は、水素燃料電池自動車(FCV)の普及拡大やクリーンエネルギーを推進する政府の取り組みに牽引され、急速な拡大を遂げています。水素は、輸送と産業用途の脱炭素化のための重要なソリューションとして支持を集めています。水素協議会(Hydrogen Councils)によると、現在、世界で1,100カ所以上の水素充填ステーションが稼働しており、2021年から10月までに導入量は60%増加するといいます。

政府と民間企業は、燃料電池電気自動車(FCEV)をサポートするため、水素ステーションに多額の投資を行っています。米国エネルギー省(DOE)は、水素開発のための連邦政府資金80億米ドルを発表し、その大部分はH2Hubsプログラムに割り当てられました。同様に、日本の経済産業省(METI)は、2040年までに水素使用量を年間1,200万トンまで増加させる計画です。

アジア太平洋は、急速な工業化、政府の支援、水素自動車の採用増加により、水素燃料ステーション市場をリードしています。IEAの報告によると、中国は2035年までに1,500カ所の水素ステーションを設置することを目指しています。日本は12月、2030年までに水素需要を年間300万トンに引き上げるという野心的な目標を発表し、燃料供給ステーションとグリーン水素製造に大規模な投資を行うとしています。

力学

水素インフラに対する政府の政策とインセンティブ

世界各国政府は、カーボンニュートラル目標を達成するため、水素インフラを優先しています。欧州における再生可能水素への累積投資額は、2050年までに1,880億~4,920億米ドルに達する可能性があり、特に燃料供給ステーションに重点が置かれています。米国のインフラ投資・雇用促進法には、クリーン水素プログラムへの95億米ドルが盛り込まれ、水素ステーション拡大を支援しています。

2024年5月、日本の国会は水素社会促進法を可決しました。この法律では、国産水素と輸入低炭素水素の価格差を15年間サポートし、水素生産拠点の開発を支援します。同様に韓国は、水素燃料電池バスの事業者に対する水素燃料補助金を1キログラム当たり3.5米ドルに増額しました。

燃料電池自動車(FCV)の普及拡大

ゼロ・エミッション車へのシフトが水素燃料ステーションの成長を牽引しています。によると、FCVの世界販売台数は2023年にトヨタ、ヒュンダイ、ホンダが牽引して大幅に増加しました。カリフォルニア州エネルギー委員会(CEC)は、2025年までに200カ所の水素補給ステーションを設置する計画で、膨大な数のFCVの走行をサポートしています。

欧州では、ドイツの『国家水素戦略』が、2030年までに5GWのグリーン水素製造目標を設定し、2035年~2040年にさらに5GWを建設するとしています。一方、中国は、水素物流と燃料補給ステーションへの投資を背景に、2025年までにFCV5万台を目標としています。FCVの生産と普及の拡大は、水素インフラの需要に直結します。

高い初期投資とメンテナンスコスト

水素市場の拡大は、主に高額な設備投資によるいくつかの課題によって妨げられています。米国エネルギー省によると、新たに計画されている111カ所の水素ステーション全体で、平均的な水素ステーションの容量は1,240kg/日(中央値は1,500kg/日)で、ステーションの容量や立地にもよりますが、約190万米ドル(中央値は190万米ドル)の資本金が必要です。これらのコストは、供給する水素の種類(気体、液体、オンサイト製造)、ステーションの貯蔵容量などの要因に影響されます。例えば、液体水素を供給するステーションは、より複雑なインフラを必要とするため、コストが高くなります。

水素ステーションの運営コストも大きいです。FCVの燃料コストは、1マイルあたりガソリン・ハイブリッド車の3倍、従来のガソリン車の2倍です。さらに、水素ステーションの運営には、液化、貯蔵、圧縮のための高度な技術が必要であり、経費はさらに増加します。水素ステーションのメンテナンス費用は、従来の燃料ステーションに比べて高く、普及を遅らせています。こうした課題にもかかわらず、規模の経済と技術の進歩を通じてコストを削減する努力が続けられており、将来的には水素をより現実的な代替エネルギー源にすることを目指しています。

目次

第1章 調査手法と調査範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 影響要因
    • 促進要因
      • 水素インフラに関する政府の政策とインセンティブ
      • 燃料電池自動車(FCV)の普及拡大
    • 抑制要因
      • 高い初期投資とメンテナンスコスト
    • 機会
    • 影響分析

第5章 産業分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制分析
  • サスティナビリティ分析
  • DMIの見解

第6章 ソリューション別

  • EPC
    • サイトのエンジニアリングと設計
    • 許認可手続き
    • 建設
    • 試運転
    • その他
  • コンポーネント
    • 水素供給口
    • コンプレッサー
    • 油圧ユニットと制御
    • ディスペンシングチラーシステム
    • その他

第7章 ステーション規模別

  • 小規模ステーション(H2 1T/D未満)
  • 中規模ステーション(H2 1~4T/D)
  • 大規模ステーション(H2 4T/D超)

第8章 ステーションタイプ別

  • 固定式水素ステーション
  • 移動式水素ステーション

第9章 供給タイプ別

  • オンサイト
  • オフサイト

第10章 サスティナビリティ分析

  • 環境分析
  • 経済分析
  • ガバナンス分析

第11章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • イタリア
    • スペイン
    • その他欧州
  • 南米
    • ブラジル
    • アルゼンチン
    • その他南米
  • アジア太平洋
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他アジア太平洋
  • 中東・アフリカ

第12章 競合情勢

  • 競合シナリオ
  • 市況・シェア分析
  • M&A分析

第13章 企業プロファイル

  • Air Liquide
    • 会社概要
    • 製品ポートフォリオと概要
    • 財務概要
    • 主な発展
  • Air Products and Chemicals, Inc.
  • China Petrochemical Corporation
  • FirstElement Fuel Inc.
  • FuelCell Energy, Inc.
  • Cummins Inc.
  • Linde Group
  • Nel Hydrogen
  • Nuvera Fuel Cells
  • Praxair

第14章 付録

目次
Product Code: EP9215

Global Hydrogen Fueling Station Market reached US$ 507.58 million in 2024 and is expected to reach US$ 2,800.72 million by 2032, growing with a CAGR of 23.80% during the forecast period 2025-2032.

The global hydrogen fueling station market is experiencing rapid expansion, driven by the increasing adoption of hydrogen fuel cell vehicles (FCVs) and government initiatives promoting clean energy. Hydrogen is gaining traction as a key solution for decarbonizing transportation and industrial applications. According to the Hydrogen Councils, more than 1,100 hydrogen refueling stations are now operational globally, with deployment growing by 60% from 2021 to October.

Governments and private sector players are heavily investing in hydrogen fueling stations to support fuel cell electric vehicles (FCEVs). The U.S. Department of Energy (DOE) announced a $8 billion in federal funding for hydrogen development, with the bulk allocated to the H2Hubs program. Similarly, Japan's Ministry of Economy, Trade and Industry (METI) plans to increase hydrogen usage upto 12 million tons annually by 2040.

Asia-Pacific leads the hydrogen fueling station market due to rapid industrialization, government support, and increasing adoption of hydrogen-powered vehicles. IEA reported that China aims to establish 1,500 hydrogen stations by 2035. Japan unveiled an ambitious goal in December to boost the country's demand for hydrogen to 3 million tonnes a year by 2030, with major investments in fueling stations and green hydrogen production.

Dynamics

Government Policies & Incentives for Hydrogen Infrastructure

Global governments are prioritizing hydrogen infrastructure to meet carbon neutrality targets. Cumulative investments in renewable hydrogen in Europe could be up to $188-492 billion by 2050, with an emphasis on fueling stations. The U.S. Infrastructure Investment and Jobs Act includes $9.5 billion for clean hydrogen programs, supporting the expansion of hydrogen refueling stations.

On May 2024, the Japanese parliament passed the Hydrogen Society Promotion Act, where 15-year-long price difference support for locally produced and imported low-carbon hydrogen will be provided as well as support for the development of hydrogen production hubs. Similarly, South Korea has increased its hydrogen fuel subsidies for operators of H2 fuel cell-powered buses to $3.50 per kilogram.

Rising Adoption of Fuel Cell Vehicles (FCVs)

The shift towards zero-emission vehicles is driving hydrogen fueling station growth. According to the global FCV sales surpassed significantly in 2023, led by Toyota, Hyundai, and Honda. The California Energy Commission (CEC) plans to establish 200 hydrogen refueling stations by 2025, supporting a huge number of FCVs on the road.

In Europe, Germany's The National Hydrogen Strategy has set a green hydrogen production target of 5 GW by 2030, with an additional 5 GW to be built in 2035-2040. Meanwhile, China is targeting 50,000 FCVs by 2025, backed by investments in hydrogen logistics and refueling stations. The increasing production and adoption of FCVs directly fuel demand for hydrogen infrastructure.

High Initial Investment and Maintenance Costs

The expansion of the hydrogen market is hindered by several challenges, primarily due to high capital expenditures. According to the US Department of Energy, Across all 111 planned new hydrogen fueling stations, an average hydrogen station has capacity of 1,240 kg/day (median capacity of 1,500 kg/day) and requires approximately $1.9 million in capital (median capital cost of $1.9 million), depending on the station's capacity and location. These costs are influenced by factors such as the type of hydrogen delivery-whether it is gaseous, liquid, or produced onsite-and the station's storage capacity. For instance, stations using liquid hydrogen delivery have higher costs due to the need for more complex infrastructure.

The operational costs of hydrogen stations are also significant. FCV fuel cost is three times higher per mile than a gasoline hybrid and two times higher than that of a conventional gasoline vehicle. Additionally, the operation of hydrogen stations requires advanced technologies for liquefaction, storage, and compression, further increasing expenses. Maintenance costs for hydrogen stations are higher compared to traditional fuel stations, which slows down their widespread deployment. Despite these challenges, there is ongoing effort to reduce costs through economies of scale and technological advancements, aiming to make hydrogen a more viable alternative energy source in the future.

Segment Analysis

The global hydrogen fueling station market is segmented based on component solution, station size, station type, supply type, and region.

Hydrogen Adoption in Heavy-Duty Transport

The heavy-duty and commercial vehicle sector is emerging as one of the most demanding segments for hydrogen fueling stations. Hydrogen fuel cell technology is becoming a viable alternative for large trucks, buses, and industrial vehicles due to its ability to provide long-range, fast refueling, and zero emissions. Unlike battery-electric solutions, which require long charging times and massive battery packs, hydrogen fuel cells offer a lightweight and efficient option, making them ideal for logistics, construction, and public transportation.

Governments and corporations are recognizing the advantages of hydrogen-powered heavy vehicles and are investing in fueling infrastructure to support their deployment. The IEA predicts that by 2030 natural gas demand for hydrogen production is almost 30% higher than in 2022, as industries shift toward clean energy solutions. Similarly, the European Union's Hydrogen Roadmap aims for 10,000 hydrogen-powered trucks on European roads by 2030, requiring significant expansion of refueling networks.

Geographical Penetration

Advanced Industrial Infrastructure of North America Drives the demand of Hydrogen Fueling Station

North America dominates the hydrogen fueling station market, driven by government incentives and corporate investments. The U.S. Department of Energy (DOE) has allocated $10 billion for hydrogen projects under the Clean Hydrogen Initiative, focusing on refueling stations. California leads the U.S. market, with 100+ hydrogen stations operational and plans for 200 by 2025 under the California Fuel Cell Partnership.

Similarly, Canada's Hydrogen Strategy aims to install 500 hydrogen stations nationwide by 2040, supported by $1.5 billion in federal funding. Major companies like Chevron, Air Products, and Shell are investing in hydrogen refueling infrastructure. Amazon and Walmart have deployed hydrogen-powered trucks, increasing station demand. These developments position North America as a global leader in hydrogen fueling stations..

Competitive Landscape

The major global players in the market include Air Liquide, Air Products and Chemicals, Inc., China Petrochemical Corporation, FirstElement Fuel Inc., FuelCell Energy, Inc., Cummins Inc., Linde Group, Nel Hydrogen, Nuvera Fuel Cells, and Praxair.

Sustainable Analysis

The hydrogen fueling station market plays a crucial role in aligning with two key United Nations Sustainable Development Goals: SDG 7 (Affordable and Clean Energy) and SDG 13 (Climate Action). By promoting the use of hydrogen fuel cell vehicles, which emit only water vapor, the market supports the transition to zero-emission transportation. This shift away from fossil fuels aligns with SDG 7 by providing a cleaner energy source for transportation.

The hydrogen fueling station market benefits significantly from strong policy backing, technological advancements, and corporate sustainability commitments. Governments worldwide are implementing policies to encourage the adoption of hydrogen fuel cell vehicles, such as tax incentives and subsidies for infrastructure development. Technological advancements in hydrogen production and storage are also improving the efficiency and cost-effectiveness of hydrogen fueling stations.

Impact of Artificial Intelligence (AI) and Internet of Things (IoT)

The integration of IoT and AI in hydrogen fueling stations is transforming the efficiency and safety of these facilities. IoT sensors play a crucial role by continuously monitoring hydrogen pressure and leakage, ensuring that any potential issues are identified and addressed promptly. This real-time monitoring enhances safety by preventing accidents and reduces downtime by allowing for proactive maintenance.

AI-driven optimization also extends to the broader hydrogen production process, where it can significantly reduce costs. According to the U.S. National Renewable Energy Laboratory (NREL), AI-driven optimization can lower hydrogen production costs by up to 20%. This reduction in costs accelerates the adoption of hydrogen as a clean energy source. By leveraging AI and IoT, hydrogen fueling stations can optimize their operations, improve safety, and enhance efficiency, ultimately supporting a more sustainable energy future.

Recent Developments

  • May 2024, Air Liquide completed the Motomiya Interchange Hydrogen Station in Fukushima Prefecture, designed to support large commercial vehicles and operate 24/7. The station will facilitate the deployment of 60 fuel cell trucks in the region. It is an off-site station, sourcing hydrogen from external suppliers, including renewable energy-based hydrogen. This project is a collaboration between Air Liquide, ITOCHU Corporation, and ITOCHU ENEX, with support from METI and Fukushima Prefecture.
  • May 2024, Nel ASA received a purchase order from Alperia Greenpower SRL to supply hydrogen fueling equipment in Italy. This will be Nel's first H2Station in Italy, marking an important step in its European expansion. The hydrogen fueling station will be built primarily to support transportation for the 2026 Winter Olympics, ensuring clean mobility between Olympic venues.
  • September 2023, Air Liquide and Trillium Energy Solutions signed a Memorandum of Understanding (MoU) to advance heavy-duty hydrogen fueling infrastructure in the United States. The partnership aims to accelerate the decarbonization of the transportation sector by combining expertise in hydrogen production, distribution, and fueling station deployment.

By Solution

  • EPC
    • Site Engineering & Design
    • Permitting
    • Construction
    • Commissioning
    • Others
  • Components
    • Hydrogen Inlets
    • Compressors
    • Hydraulic Power Units & Controls
    • Dispensing Chiller Systems
    • Others

By Station Size

  • Small Station (Less Than 1 T/D Of H2)
  • Medium Station (1-4 T/D Of H2)
  • Large Station (More Than 4 T/D Of H2)

By Station Type

  • Fixed Hydrogen Stations
  • Mobile Hydrogen Stations

By Supply Type

  • On-Site
  • Off-Site

By Region

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Spain
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Why Purchase the Report?

  • To visualize the global hydrogen fueling station market segmentation based on component component solution, station size, station type, supply type, and region.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points at the hydrogen fueling station market level for all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as excel consisting of key products of all the major players.

The global Hydrogen Fueling Station market report would provide approximately 70 tables, 59 figures, and 220 pages.

Target Audience 2024

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Solution
  • 3.2. Snippet by Station Size
  • 3.3. Snippet by Station Type
  • 3.4. Snippet by Supply Type
  • 3.5. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Government Policies & Incentives for Hydrogen Infrastructure
      • 4.1.1.2. Rising Adoption of Fuel Cell Vehicles (FCVs)
    • 4.1.2. Restraints
      • 4.1.2.1. High Initial Investment and Maintenance Costs
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Sustainable Analysis
  • 5.6. DMI Opinion

6. By Solution

  • 6.1. Introduction
    • 6.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Solution
    • 6.1.2. Market Attractiveness Index, By Solution
  • 6.2. EPC*
    • 6.2.1. Introduction
    • 6.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
    • 6.2.3. Site Engineering & Design
    • 6.2.4. Permitting
    • 6.2.5. Construction
    • 6.2.6. Commissioning
    • 6.2.7. Others
  • 6.3. Components
    • 6.3.1. Hydrogen Inlets
    • 6.3.2. Compressors
    • 6.3.3. Hydraulic Power Units & Controls
    • 6.3.4. Dispensing Chiller Systems
    • 6.3.5. Others

7. By Station Size

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Station Size
    • 7.1.2. Market Attractiveness Index, By Station Size
  • 7.2. Small Station (Less Than 1 T/D Of H2)*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Medium Station (1-4 T/D Of H2)
  • 7.4. Large Station (More Than 4 T/D Of H2)

8. By Station Type

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Station Type
    • 8.1.2. Market Attractiveness Index, By Station Type
  • 8.2. Fixed Hydrogen Stations*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Mobile Hydrogen Stations

9. By Supply Type

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Supply Type
    • 9.1.2. Market Attractiveness Index, By Supply Type
  • 9.2. On-Site*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Off-Site

10. Sustainability Analysis

  • 10.1. Environmental Analysis
  • 10.2. Economic Analysis
  • 10.3. Governance Analysis

11. By Region

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 11.1.2. Market Attractiveness Index, By Region
  • 11.2. North America
    • 11.2.1. Introduction
    • 11.2.2. Key Region-Specific Dynamics
    • 11.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Solution
    • 11.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Station Size
    • 11.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Station Type
    • 11.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Supply Type
    • 11.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.2.7.1. US
      • 11.2.7.2. Canada
      • 11.2.7.3. Mexico
  • 11.3. Europe
    • 11.3.1. Introduction
    • 11.3.2. Key Region-Specific Dynamics
    • 11.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Solution
    • 11.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Station Size
    • 11.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Station Type
    • 11.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Supply Type
    • 11.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.3.7.1. Germany
      • 11.3.7.2. UK
      • 11.3.7.3. France
      • 11.3.7.4. Italy
      • 11.3.7.5. Spain
      • 11.3.7.6. Rest of Europe
  • 11.4. South America
    • 11.4.1. Introduction
    • 11.4.2. Key Region-Specific Dynamics
    • 11.4.3. Key Region-Specific Dynamics
    • 11.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Solution
    • 11.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Station Size
    • 11.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Station Type
    • 11.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Supply Type
    • 11.4.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.4.8.1. Brazil
      • 11.4.8.2. Argentina
      • 11.4.8.3. Rest of South America
  • 11.5. Asia-Pacific
    • 11.5.1. Introduction
    • 11.5.2. Key Region-Specific Dynamics
    • 11.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Solution
    • 11.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Station Size
    • 11.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Station Type
    • 11.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Supply Type
    • 11.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.5.7.1. China
      • 11.5.7.2. India
      • 11.5.7.3. Japan
      • 11.5.7.4. Australia
      • 11.5.7.5. Rest of Asia-Pacific
  • 11.6. Middle East and Africa
    • 11.6.1. Introduction
    • 11.6.2. Key Region-Specific Dynamics
    • 11.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Solution
    • 11.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Station Size
    • 11.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Station Type
    • 11.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Supply Type

12. Competitive Landscape

  • 12.1. Competitive Scenario
  • 12.2. Market Positioning/Share Analysis
  • 12.3. Mergers and Acquisitions Analysis

13. Company Profiles

  • 13.1. Air Liquide*
    • 13.1.1. Company Overview
    • 13.1.2. Product Portfolio and Description
    • 13.1.3. Financial Overview
    • 13.1.4. Key Developments
  • 13.2. Air Products and Chemicals, Inc.
  • 13.3. China Petrochemical Corporation
  • 13.4. FirstElement Fuel Inc.
  • 13.5. FuelCell Energy, Inc.
  • 13.6. Cummins Inc.
  • 13.7. Linde Group
  • 13.8. Nel Hydrogen
  • 13.9. Nuvera Fuel Cells
  • 13.10. Praxair

LIST NOT EXHAUSTIVE

14. Appendix

  • 14.1. About Us and Services
  • 14.2. Contact Us