デフォルト表紙
市場調査レポート
商品コード
1654715

栄養塩回収システムの世界市場:2025年~2032年

Global Nutrient Recovery Systems Market - 2025-2032


出版日
ページ情報
英文 205 Pages
納期
即日から翌営業日
カスタマイズ可能
適宜更新あり
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=146.99円
栄養塩回収システムの世界市場:2025年~2032年
出版日: 2025年02月13日
発行: DataM Intelligence
ページ情報: 英文 205 Pages
納期: 即日から翌営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

栄養塩回収システムの世界市場は、2024年に51億1,000万米ドルに達し、2032年までには122億米ドルに達すると予測され、予測期間中の2025年から2032年のCAGRは11.5%で成長する見込みです。

世界の栄養塩回収システム市場は、環境問題への関心の高まりと持続可能な農業の必要性によって、大幅な成長を遂げています。この成長は、廃水処理における栄養塩回収技術の導入の高まりと、効率的な栄養塩管理ソリューションに対する農業セクターの需要に起因しています。

強化された生物学的処理や化学的沈殿法などの栄養塩回収システムにおける革新は、廃水からの栄養塩抽出効率を向上させています。こうした進歩は、持続可能な農業を支える高品質の肥料の生産に貢献しています。産業界では、廃棄物の流れから栄養塩を生産サイクルに再利用する、循環型経済の採用が進んでいます。このアプローチは環境汚染を減らすだけでなく、資源効率とコスト削減を促進します。

アジア太平洋は、工業化とインフラ整備の加速に牽引され、栄養塩回収システム市場で急速な成長を遂げています。中国やインドなどの国々が栄養塩回収システムの急成長市場として浮上しています。同国では急速な工業化と都市化により廃水が大量に発生し、高度な栄養塩回収ソリューションが必要とされています。環境の持続可能性に焦点を当てた政府の取り組みと廃水処理に関する厳しい規制が、中国における栄養塩回収技術の採用を後押ししています。

ダイナミクス

環境規制と持続可能な農業

世界の厳しい環境規制は、水質汚染を緩和し持続可能な農業を促進するために、産業界や自治体に栄養塩回収システムの導入を迫っています。水域への過剰な栄養塩、特に窒素とリンの排出は富栄養化を引き起こし、藻類の大量発生と水質の悪化を引き起こします。

これに対処するため、規制機関は栄養塩類の排出を管理するためのガイドラインを定めています。例えば、米国環境保護庁(EPA)は、水域の栄養塩汚染を削減するための栄養塩管理戦略を実施しています。同様に、欧州連合(EU)の水枠組み指令は、加盟国に対し、栄養塩レベルを管理することによって良好な水状態を達成することを義務づけています。

農業では、栄養塩回収システムにより、廃棄物の流れから栄養素を肥料にリサイクルすることが可能になり、持続可能な農業が促進されます。このアプローチにより、製造にエネルギー集約的で温室効果ガス排出の原因となる合成肥料への依存を減らすことができます。家畜の糞尿や廃水などから栄養素を回収することで、農家は環境への影響を最小限に抑えながら土壌の肥沃度を高めることができます。

水質に対する懸念の高まり

養分汚染による水質悪化への懸念の高まりが、栄養塩回収システムの採用を後押ししています。農地からの栄養塩流出や廃水処理場からの排水は、水域の栄養塩濃度の上昇を招き、生態系の不均衡につながります。EPAの栄養塩調査は、低酸素症や生物多様性の喪失など、栄養塩汚染が水生生態系に与える影響を明らかにしています。

このような問題に対処するため、放流前に廃水から過剰な栄養塩類を除去し、水質を保護するための栄養塩回収システムが実施されています。自治体は、栄養塩回収プロセスを組み込んだ高度な廃水処理技術に投資しています。これらのシステムは、規制基準に適合しているだけでなく、肥料として利用できるストルバイトのような貴重な副産物を生産することにより、経済的な利益をもたらしています。

高い資本コストと運転コスト

環境面や経済面での利点があるにもかかわらず、栄養塩回収システムの採用は、資本コストや運用コストが高いことがしばしば妨げとなっています。高度な栄養塩回収施設を設置するための初期投資は、設備、設置、既存の廃水処理インフラへの統合に関連する費用を含み、かなりの額になる可能性があります。エネルギー消費、メンテナンス、労働力を含む運営コストは、さらに経済的負担を増大させます。

例えば、ストルバイト晶析のような技術は、運転パラメーターを正確に制御する必要があり、エネルギー使用量と関連コストの増加につながります。米国環境保護庁(EPA)の調査によると、栄養塩回収技術は長期的な利益をもたらすものの、初期費用と運用の複雑さが、特に資金力の乏しい小規模な自治体や産業にとって、普及の大きな障壁となりうることが浮き彫りになっています。

目次

第1章 調査手法と調査範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 影響要因
    • 促進要因
      • 環境規制と持続可能な農業
      • 水質に対する懸念の高まり
    • 抑制要因
      • 高い資本コストと運用コスト
    • 機会
    • 影響分析

第5章 産業分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制分析
  • 持続可能な分析
  • DMIの見解

第6章 タイプ別

  • 窒素回収システム
  • リン回収システム
  • カリウム回収システム
  • リチウム回収システム
  • その他

第7章 システムタイプ別

  • 集中型システム
  • 分散型システム

第8章 技術別

  • ストルバイト沈殿
  • バイオガス生産
  • 堆肥作り
  • 膜分離
  • その他

第9章 エンドユーザー別

  • 産業
    • 農業
    • 肥料産業
    • 食品・飲料
    • 化学製造
    • その他
  • 自治体の栄養塩回収システム
    • 廃水治療場
    • 都市計画と開発

第10章 サスティナビリティ分析

  • 環境分析
  • 経済分析
  • ガバナンス分析

第11章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • イタリア
    • スペイン
    • その他欧州地域
  • 南米
    • ブラジル
    • アルゼンチン
    • その他南米
  • アジア太平洋
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他アジア太平洋
  • 中東・アフリカ

第12章 競合情勢

  • 競合シナリオ
  • 市況・シェア分析
  • M&A分析

第13章 企業プロファイル

  • Lenntech
    • 会社概要
    • 製品ポートフォリオと概要
    • 財務概要
    • 主な発展
  • Ostara Nutrient Recovery Technologies,
  • Trident Process Inc
  • CNP-Centrisys,
  • Xylem
  • DVO Inc
  • CLEARAS Water Recovery
  • NuReSys
  • Royal Haskoning DHV
  • Alfa Laval.

第14章 付録

目次
Product Code: EP9138

Global Nutrient Recovery Systems Market reached US$ 5.11 billion in 2024 and is expected to reach US$ 12.20 billion by 2032, growing with a CAGR of 11.5% during the forecast period 2025-2032.

The global nutrient recovery systems market is experiencing substantial growth, driven by increasing environmental concerns and the need for sustainable agricultural practices. This growth is attributed to the rising implementation of nutrient recovery technologies in wastewater treatment and the agricultural sector's demand for efficient nutrient management solutions..

Innovations in nutrient recovery systems, such as enhanced biological treatments and chemical precipitation methods, are improving the efficiency of nutrient extraction from wastewater. The advancements contribute to the production of high-quality fertilizers, supporting sustainable agriculture. Industries are increasingly adopting circular economy practices by recycling nutrients from waste streams back into production cycles. This approach not only reduces environmental pollution but also promotes resource efficiency and cost savings.

Asia-Pacific is experiencing rapid growth in the nutrient recovery systems market, driven by accelerated industrialization and infrastructure development. Countries such as China and India are emerging as the fastest-growing market for nutrient recovery systems. The country's rapid industrialization and urbanization have led to significant wastewater generation, necessitating advanced nutrient recovery solutions. Government initiatives focusing on environmental sustainability and stringent regulations on wastewater treatment are propelling the adoption of nutrient recovery technologies in China.

Dynamics

Environmental Regulations and Sustainable Agriculture

Stringent environmental regulations worldwide are compelling industries and municipalities to adopt nutrient recovery systems to mitigate water pollution and promote sustainable agriculture. Excessive nutrient discharge, particularly nitrogen and phosphorus, into water bodies leads to eutrophication, causing algal blooms and deteriorating water quality.

To address this, regulatory bodies have established guidelines to control nutrient emissions. For instance, the U.S. Environmental Protection Agency (EPA) has implemented nutrient management strategies to reduce nutrient pollution in water bodies. Similarly, the European Union's Water Framework Directive mandates member states to achieve good water status by managing nutrient levels.

In agriculture, nutrient recovery systems enable the recycling of nutrients from waste streams into fertilizers, promoting sustainable farming practices. This approach reduces the reliance on synthetic fertilizers, which are energy-intensive to produce and contribute to greenhouse gas emissions. By recovering nutrients from sources like animal manure and wastewater, farmers can enhance soil fertility while minimizing environmental impacts.

Rising Concerns Over Water Quality

Growing concerns about water quality degradation due to nutrient pollution are driving the adoption of nutrient recovery systems. Nutrient runoff from agricultural fields and discharge from wastewater treatment plants contribute to elevated nutrient levels in water bodies, leading to ecological imbalances. The EPA's nutrient research highlights the impact of nutrient pollution on aquatic ecosystems, including hypoxia and loss of biodiversity.

To combat these issues, nutrient recovery systems are being implemented to remove excess nutrients from wastewater before discharge, thereby protecting water quality. Municipalities are investing in advanced wastewater treatment technologies that incorporate nutrient recovery processes. These systems not only comply with regulatory standards but also provide economic benefits by producing valuable by-products like struvite, which can be used as fertilizer.

High Capital and Operational Costs

Despite the environmental and economic benefits, the adoption of nutrient recovery systems is often hindered by high capital and operational costs. The initial investment for setting up advanced nutrient recovery facilities can be substantial, encompassing expenses related to equipment, installation and integration into existing wastewater treatment infrastructures. Operational costs, including energy consumption, maintenance and labor, further add to the financial burden.

For example, technologies like struvite crystallization require precise control of operational parameters, which can lead to increased energy usage and associated costs. A study by the U.S. Environmental Protection Agency (EPA) highlights that while nutrient recovery technologies offer long-term benefits, the upfront costs and complexity of operations can be significant barriers for widespread adoption, especially for smaller municipalities and industries with limited financial resources.

Segment Analysis

The global nutrient recovery systems market is segmented based on type, system type, technology, end-user and region.

Critical Need to ensure the Safety, Reliability and Longevity of Aircraft Structures

The agricultural sector represents the highest demand for nutrient recovery systems, driven by the need for sustainable nutrient management and the rising costs of synthetic fertilizers. Recovered nutrients, particularly phosphorus and nitrogen, are essential for crop growth and soil fertility. Traditional agricultural practices often rely on chemical fertilizers, which can lead to nutrient runoff, water pollution and soil degradation. Nutrient recovery systems offer a sustainable alternative by capturing nutrients from waste streams, such as animal manure and agricultural runoff and converting them into valuable fertilizers.

The U.S. Department of Agriculture (USDA) supports nutrient recovery initiatives to promote sustainable farming practices. By implementing nutrient recovery systems, farmers can reduce their reliance on chemical fertilizers, lower production costs and minimize environmental impacts. Furthermore, the Food and Agriculture Organization (FAO) emphasizes the importance of nutrient recycling in achieving global food security and sustainable agriculture. The adoption of nutrient recovery systems aligns with these objectives, contributing to improved soil health, increased crop yields and reduced environmental pollution.

Geographical Penetration

Advanced Industrial Infrastructure of North America Drives the demand of Nutrient Recovery Systems

North America holds a significant share in the global nutrient recovery systems market, attributed to stringent environmental regulations, advanced wastewater treatment infrastructure and a strong emphasis on sustainable practices. The United States and Canada are prominent players, with both countries investing heavily in nutrient recycling technologies and sustainable agricultural practices. Government incentives and policies supporting circular economy principles further bolster market growth.

The North American market benefits from well-established waste management systems and a high level of consumer and industry awareness regarding environmental issues, driving the adoption of nutrient recycling solutions. Additionally, the Food and Agriculture Organization (FAO) of the United Nations advocates for sustainable nutrient management practices to ensure food security and environmental health. The integration of nutrient recovery systems in agricultural operations aligns with these global efforts, driving market growth.

Competitive Landscape

The major global players in the market include Lenntech, Ostara Nutrient Recovery Technologies, Trident Process Inc, CNP - Centrisys, Xylem, DVO Inc, CLEARAS Water Recovery, NuReSys, Royal Haskoning DHV and Alfa Laval.

Sustainable Analysis

The nutrient recycling market aligns closely with global sustainability goals, particularly the United Nations Sustainable Development Goal 12, which emphasizes responsible consumption and production. By recovering nutrients from waste streams, these systems reduce the need for synthetic fertilizers, thereby decreasing greenhouse gas emissions associated with fertilizer production. For instance, traditional ammonia production accounts for 2% of global carbon emissions, while innovative approaches using renewable energy for ammonia synthesis can significantly lower this footprint.

Economic sustainability is also enhanced, as nutrient recycling can lead to cost savings for industries and municipalities by reducing waste disposal costs and creating valuable by-products like biogas and organic fertilizers. For example, companies like Yara International are investing in green ammonia plants, aiming to produce fertilizers with a lower carbon footprint, thereby supporting sustainable agriculture. By capturing and reusing nutrients, the risk of water pollution is reduced, contributing to healthier aquatic ecosystems.

Impact of Artificial Intelligence (AI) and Internet of Things (IoT)

AI-driven systems analyze vast amounts of data, identifying patterns and optimizing operations in real-time. In industrial sectors, AI-powered predictive maintenance minimizes downtime by detecting equipment failures before they occur. IoT sensors continuously monitor machine performance, sending alerts for maintenance needs. This integration has led to significant cost savings; for example, predictive maintenance reduces machinery downtime by 20-50% and extends asset life by 20-40%.

The combination of AI and IoT is transforming urban landscapes into smart cities. AI-driven traffic management systems optimize traffic flow, reducing congestion and lowering emissions. IoT-enabled smart grids enhance energy distribution by analyzing consumption patterns and adjusting supply accordingly. A study by the International Energy Agency (IEA) found that smart grids reduce energy losses by up to 30%.

Key Developments

  • On April 17, 2024, NPHarvest, a spin-off from Aalto University, successfully raised EUR 2.2 million to commercialize its proprietary nutrient recovery technology. NPHarvest's innovative wastewater treatment equipment effectively captures excess nutrients from concentrated wastewater streams, allowing them to be recycled and sold back to the fertilizer industry.
  • On April 23, 2024, Portland-based Nutrient Recovery Services announced the launch of a "first-of-its-kind" sustainably produced fertilizer derived from its building's waste, rainwater and solar energy. The company operates within the PAE Building, a recognized "living building" that adheres to rigorous environmental standards. This innovative approach marks a significant milestone in the circular economy by recycling nutrients into a fossil fuel-free fertilizer alternative.
  • On September 15, 2022, Biolan Oy, Gasum Oy and Poytyan Maanparannus Oy formed Kiertoravinne Oy, a joint venture dedicated to enhancing the biogas value chain through nutrient recycling. This partnership focuses on supplying digestate-based fertilizers and recycled nutrients sourced from biogas plants.

By Type

  • Nitrogen recovery systems
  • Phosphorus recovery systems
  • Potassium recovery systems
  • Lithium recovery systems
  • Others

By System Type

  • Centralized System
  • Decentralized System

By Technology

  • Struvite Precipitation
  • Biogas Production
  • Composting
  • Membrane Separation
  • Others

By End-User

  • Industrial
    • Agriculture
    • Fertilizer Industry
    • Food & beverage
    • Chemical manufacturing
    • Others
  • Municipal nutrient recovery systems
    • Wastewater treatment plants
    • City planning and development

By Region

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Spain
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Why Purchase the Report?

  • To visualize the global nutrient recovery systems market segmentation based on type, system type, technology, end-user and region.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points at the nutrient recovery systems market level for all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as excel consisting of key products of all the major players.

The global nutrient recovery systems market report would provide approximately 70 tables, 64 figures and 205 pages.

Target Audience 2024

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Type
  • 3.2. Snippet by System Type
  • 3.3. Snippet by Technology
  • 3.4. Snippet by End-User
  • 3.5. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Environmental Regulations and Sustainable Agriculture
      • 4.1.1.2. Rising Concerns Over Water Quality
    • 4.1.2. Restraints
      • 4.1.2.1. High Capital and Operational Costs
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Sustainable Analysis
  • 5.6. DMI Opinion

6. By Type

  • 6.1. Introduction
    • 6.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 6.1.2. Market Attractiveness Index, By Type
  • 6.2. Nitrogen recovery systems*
    • 6.2.1. Introduction
    • 6.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 6.3. Phosphorus recovery systems
  • 6.4. Potassium recovery systems
  • 6.5. Lithium recovery systems
  • 6.6. Others

7. By System Type

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By System Type
    • 7.1.2. Market Attractiveness Index, By System Type
  • 7.2. Centralized System*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Decentralized System

8. By Technology

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 8.1.2. Market Attractiveness Index, By Technology
  • 8.2. Struvite Precipitation*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Biogas Production
  • 8.4. Composting
  • 8.5. Membrane Separation
  • 8.6. Others

9. By End-User

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 9.1.2. Market Attractiveness Index, By End-User
  • 9.2. Industrial*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
      • 9.2.2.1. Agriculture
      • 9.2.2.2. Fertilizer Industry
      • 9.2.2.3. Food & beverage
      • 9.2.2.4. Chemical manufacturing
      • 9.2.2.5. Others
  • 9.3. Municipal nutrient recovery systems
      • 9.3.1.1. Wastewater treatment plants
      • 9.3.1.2. City planning and development

10. Sustainability Analysis

  • 10.1. Environmental Analysis
  • 10.2. Economic Analysis
  • 10.3. Governance Analysis

11. By Region

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 11.1.2. Market Attractiveness Index, By Region
  • 11.2. North America
    • 11.2.1. Introduction
    • 11.2.2. Key Region-Specific Dynamics
    • 11.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By System Type
    • 11.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 11.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.2.7.1. US
      • 11.2.7.2. Canada
      • 11.2.7.3. Mexico
  • 11.3. Europe
    • 11.3.1. Introduction
    • 11.3.2. Key Region-Specific Dynamics
    • 11.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By System Type
    • 11.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 11.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.3.7.1. Germany
      • 11.3.7.2. UK
      • 11.3.7.3. France
      • 11.3.7.4. Italy
      • 11.3.7.5. Spain
      • 11.3.7.6. Rest of Europe
  • 11.4. South America
    • 11.4.1. Introduction
    • 11.4.2. Key Region-Specific Dynamics
    • 11.4.3. Key Region-Specific Dynamics
    • 11.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By System Type
    • 11.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 11.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.4.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.4.8.1. Brazil
      • 11.4.8.2. Argentina
      • 11.4.8.3. Rest of South America
  • 11.5. Asia-Pacific
    • 11.5.1. Introduction
    • 11.5.2. Key Region-Specific Dynamics
    • 11.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By System Type
    • 11.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 11.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.5.7.1. China
      • 11.5.7.2. India
      • 11.5.7.3. Japan
      • 11.5.7.4. Australia
      • 11.5.7.5. Rest of Asia-Pacific
  • 11.6. Middle East and Africa
    • 11.6.1. Introduction
    • 11.6.2. Key Region-Specific Dynamics
    • 11.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By System Type
    • 11.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 11.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User

12. Competitive Landscape

  • 12.1. Competitive Scenario
  • 12.2. Market Positioning/Share Analysis
  • 12.3. Mergers and Acquisitions Analysis

13. Company Profiles

  • 13.1. Lenntech*
    • 13.1.1. Company Overview
    • 13.1.2. Product Portfolio and Description
    • 13.1.3. Financial Overview
    • 13.1.4. Key Developments
  • 13.2. Ostara Nutrient Recovery Technologies,
  • 13.3. Trident Process Inc
  • 13.4. CNP - Centrisys,
  • 13.5. Xylem
  • 13.6. DVO Inc
  • 13.7. CLEARAS Water Recovery
  • 13.8. NuReSys
  • 13.9. Royal Haskoning DHV
  • 13.10. Alfa Laval.

LIST NOT EXHAUSTIVE

14. Appendix

  • 14.1. About Us and Services
  • 14.2. Contact Us