デフォルト表紙
市場調査レポート
商品コード
1654714

世界の干ばつ耐性種子市場-2025-2032年

Global Drought-Tolerant Seeds Market - 2025-2032


出版日
ページ情報
英文 201 Pages
納期
即日から翌営業日
カスタマイズ可能
適宜更新あり
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=146.82円
世界の干ばつ耐性種子市場-2025-2032年
出版日: 2025年02月13日
発行: DataM Intelligence
ページ情報: 英文 201 Pages
納期: 即日から翌営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

世界の干ばつ耐性種子市場は、2024年に24億8,320万米ドルに達し、2032年には39億2,140万米ドルに達すると予測され、予測期間2025-2032年のCAGRは6.7%で成長すると予測されています。

干ばつ耐性種子の需要は、水不足、気候変動、回復力のある農法の必要性に対する懸念の高まりによって、世界中で着実に伸びています。気候変動は、世界的に農業景観を再構築する重要な原動力として浮上しています。不規則な天候パターン、長引く干ばつ、極端な気候条件により、持続可能な食糧生産を確保するために、弾力性のある種子品種の開発が必要となっています。

農家や政策立案者は、気候変動に伴うリスクを軽減し、食料安全保障を守るため、気候変動に強い農業慣行の導入にますます力を入れるようになっています。例えば、2023年3月、インド農業研究評議会(ICAR)は、気候に関連する農業課題に取り組む上で極めて重要な役割を果たしました。ICARは、その全国農業研究システム(NARS)を通じて、7,200以上の畑作・園芸作物の高収量・ストレス耐性品種を開発しました。

さらに、2014-15年から2022-23年の間に、干ばつ、洪水、塩害、熱ストレス耐性など、極端な気候条件に特化した407の精密育種品種を発表しました。これらの進歩は生産性の4.57倍向上に直接貢献し、食用穀物収量を1950-51年の522kg/haから2020-21年には2,386kg/haに押し上げます。気候変動がもたらす課題に取り組むことで、ICARはレジリエントな農業を育成する研究主導型イノベーションの変革の可能性を示しています。

ダイナミクス

干ばつの増加と気候変動

気候変動によって強まる干ばつの発生率の上昇が、干ばつ耐性種子市場の成長を促進しています。気候変動は世界の気温を上昇させ、蒸発を促進し、干ばつを長引かせ、降水パターンを変化させています。その結果、干ばつの頻度と深刻度が増加し、毎年5,500万人以上が影響を受け、さらに数百万人の生活が脅かされています。2030年までには、7億人もの人々が、長引く干ばつによる水不足が原因で避難生活を余儀なくされる危険性があります。

特に干ばつの影響を受けやすい地域の農業部門は、大きな課題に直面しています。水不足による農作物の不作は一般的で、食糧不安と経済的不安定につながります。水不足はすでに世界人口の40%に影響を及ぼしており、作物への需要が高まっています。これらの種子は、乾燥条件下での作物の生存を保証する解決策を提供し、農業への依存度が高い地域にとって不可欠なものとなっています。

干ばつは食糧生産に影響を与えるだけでなく、水資源に負担をかけ、水系伝染病や健康危機のリスクを高めるため、水不足の環境でも育つ作物を開発することの重要性がさらに強調されています。気候変動によって干ばつがより頻繁かつ激しさを増す世界の動向は、干ばつ耐性種子品種の採用を増加させ、気候の不確実性に直面して食糧安全保障を確保するための重要な手段になると予想されます。

農業上の特典に加え、干ばつ耐性種子は、水の使用量を削減し、作物の生育に必要な水の量を確実に減らし、回復力のある農法を支援することで、環境の持続可能性にも貢献します。気候モデルが、特にすでに乾燥した地域で乾燥期間が増加すると予測していることから、干ばつ耐性種子市場は、水不足に関連する環境的・経済的課題の両方に対応し、大幅な成長を遂げる位置にあります。

農業バイオテクノロジーの進歩

農業バイオテクノロジー、精密農業、ナノテクノロジー、垂直農法、遺伝子組み換えの進歩は、ばつ耐性種子市場の成長にとって重要な促進要因です。気候変動が激化し干ばつが頻発する中、農家は水不足の状況下で作物の回復力を確保しなければならないというプレッシャーに直面しています。

  • バイオテクノロジーと精密農業-CRISPR-Cas9のようなバイオテクノロジーの革新は、回復力が強化され収量が増加する干ばつ耐性種子の開発を可能にします。精密農業はさらに資源配分を最適化し、乾燥環境における効率的な水利用と作物の適応性を確保します。ナノテクノロジーと垂直農法- ナノテクノロジーに基づく肥料は、水が限られた条件下でも植物が効率的に栄養分を摂取できるようにします。また、垂直農法は、制御された環境で水利用を最適化することにより、持続可能な作物生産をサポートします。遺伝子組み換え作物の普及拡大- 世界全体で1億9,100万ヘクタールの遺伝子組み換え作物が栽培されており、バイオテクノロジーは農業の回復力の要になりつつあります。環境ストレスに耐えるように調整された干ばつ耐性の種子品種は、この動向の自然な延長です。

農業イノベーションが進化を続ける中、気候変動に強い農業ソリューションの緊急ニーズにより、干ばつ耐性種子の需要は拡大する傾向にあります。これらの種子は、増大する環境課題に直面して食糧供給を確保する上で重要な役割を果たすと思われます。

高い研究開発費と時間のかかる開発

高い研究開発コストと時間のかかるプロセスは、干ばつ耐性種子市場の大きな抑制要因です。このような種子の開発には、水不足下でも育つ作物を作るための遺伝子工学や分子生物学のような高度な技術が必要です。広範な実験室での調査、複数シーズンにわたる圃場試験、性能評価が複雑さを増し、多大な資金と技術的資源を必要とします。

さらに、厳しい規制要件がこうした課題に拍車をかけ、市場参入に要する時間を長期化させています。安全性評価や環境・衛生基準への準拠には数年にわたる評価が必要で、開発コストがかさみます。こうした規制の遅れは特に中小企業に不利で、市場参入やイノベーションを制限します。

研究開発能力が少数の大企業に集中することで、市場でのイノベーションと採用がさらに遅れます。中小企業は、資金的・技術的な障壁に直面し、競合を減らし、これらのシーズの入手可能性を低下させます。このような力学は、気候変動に強い農業ソリューションへのニーズが高まっているにもかかわらず、市場全体の成長可能性を妨げています。

こうした制約を克服するために、公開会社は共同研究イニシアティブや官民パートナーシップを活用してコストやリスクを分担しています。規制の枠組みを合理化し、イノベーションにインセンティブを与えることで、製品開発と市場開拓を加速することができます。このような施策により、干ばつ耐性種子の広範な導入が可能になり、持続可能な農業の実践を世界的に支援することができます。

目次

第1章 調査手法と調査範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 影響要因
    • 促進要因
      • 干ばつと気候変動の発生率増加
      • 農業バイオテクノロジーの進歩
    • 抑制要因
      • 高い研究開発費と時間のかかる開発
    • 機会
    • 影響分析

第5章 産業分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制分析
  • 持続可能な分析

第6章 作物タイプ別

  • シリアル・穀物
    • トウモロコシ
    • 小麦
    • 大麦
    • その他
  • 油糧種子および豆類
    • 大豆
    • ひまわり
    • その他
  • 果物・野菜
    • トマト
    • じゃがいも
    • その他
  • その他

第7章 最終用途別

  • 商業的農業
  • 小規模農業
  • 調査機関・治験

第8章 種子の種類別

  • 遺伝子組み換え(GM)
  • 従来型
  • ハイブリッド

第9章 流通チャネル別

  • 直接販売
  • 小売業者・販売業者
  • eコマースプラットフォーム
  • その他

第10章 サスティナビリティ分析

  • 環境分析
  • 経済分析
  • ガバナンス分析

第11章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • イタリア
    • スペイン
    • その他欧州地域
  • 南米
    • ブラジル
    • アルゼンチン
    • その他南米
  • アジア太平洋地域
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他アジア太平洋地域
  • 中東・アフリカ

第12章 競合情勢

  • 競合シナリオ
  • 市況・シェア分析
  • M&A分析

第13章 企業プロファイル

  • Corteva
    • 会社概要
    • 製品ポートフォリオと概要
    • 財務概要
    • 主な発展
  • Bayer AG
  • Syngenta
  • UPL
  • KWS SAAT SE & Co. KGaA
  • Arcadia Biosciences
    • ヘフティ・シード・カンパニー
  • Mahyco
  • Redwood Seeds
  • BASF

第14章 付録

目次
Product Code: AG9141

The global drought-tolerant seeds market reached US$ 2,483.2 million in 2024 and is expected to reach US$ 3,921.4 million by 2032, growing at a CAGR of 6.7% during the forecast period 2025-2032.

The demand for drought-tolerant seeds has been growing steadily worldwide, driven by increasing concerns over water scarcity, climate change and the need for resilient agricultural practices. Climate change has emerged as a critical driver reshaping the agrarian landscape globally. Erratic weather patterns, prolonged droughts and extreme climatic conditions have necessitated the development of resilient seed varieties to ensure sustainable food production.

Farmers and policymakers are increasingly focusing on adopting climate-resilient agricultural practices to mitigate the risks associated with climate variability and safeguard food security. For example, in March 2023, the Indian Council of Agricultural Research (ICAR) played a pivotal role in addressing climate-related agricultural challenges. ICAR, through its National Agricultural Research System (NARS), has developed more than 7,200 high-yielding and stress-tolerant varieties of field and horticultural crops.

Additionally, between 2014-15 and 2022-23, it released 407 precision-bred varieties specifically for extreme climatic conditions, including drought, flood, salinity and heat stress tolerance. These advancements have directly contributed to a 4.57x increase in productivity, boosting food grain yields from 522 kg/ha in 1950-51 to 2,386 kg/ha in 2020-21. By addressing the challenges posed by climate change, ICAR demonstrates the transformative potential of research-driven innovation in fostering resilient agriculture.

Dynamics

Rising Incidence of Droughts and Climate Change

The rising incidence of droughts, intensified by climate change, is driving the growth of the drought-tolerant seed market. Climate change is increasing global temperatures, which accelerates evaporation, prolongs droughts and alters precipitation patterns. It has led to an increase in the frequency and severity of droughts, affecting over 55 million people annually and threatening the livelihoods of millions more. By 2030, as many as 700 million people are at risk of being displaced due to water scarcity caused by prolonged droughts.

The agricultural sector, particularly in drought-prone regions, faces significant challenges. Crop failures due to water shortages are common, leading to food insecurity and economic instability. With water scarcity already impacting 40% of the world's population, the demand for drought-tolerant crops is growing. These seeds offer a solution to ensure crop survival in arid conditions, making them essential for regions heavily dependent on agriculture.

Droughts not only impact food production but also strain water resources, increasing the risk of waterborne diseases and health crises, further underscoring the importance of developing crops that can thrive in water-scarce environments. The global trend toward more frequent and intense droughts, driven by climate change, is expected to increase the adoption of drought-tolerant seed varieties, making them a key tool for ensuring food security in the face of climate uncertainty.

In addition to agricultural benefits, drought-tolerant seeds contribute to environmental sustainability by reducing water use, ensuring that crops require less water to grow and supporting resilient farming practices. With climate models predicting a rise in dry spells, particularly in already arid regions, the drought-tolerant seed market is positioned for substantial growth, addressing both environmental and economic challenges related to water scarcity.

Advancements in Agricultural Biotechnology

Advancements in agricultural biotechnology, precision farming, nanotechnology, vertical farming and gene editing are significant drivers for the growth of the drought-tolerant seeds market. As climate change intensifies and droughts become more frequent, farmers face mounting pressure to ensure crop resilience under water-scarce conditions.

  • Biotechnology and Precision Agriculture - Biotechnological innovations, such as CRISPR-Cas9, enable the development of drought-tolerant crops with enhanced resilience and higher yields. Precision farming further optimizes resource allocation, ensuring efficient water usage and crop adaptability in arid environments.
  • Nanotechnology and Vertical Farming - Nanotechnology-based fertilizers ensure plants receive nutrients efficiently, even in water-limited conditions. Vertical farming techniques also support sustainable crop production by optimizing water use in controlled environments.
  • Rising Adoption of GM Crops - With 191 million hectares of genetically modified crops under cultivation globally, biotechnology is becoming a cornerstone of agricultural resilience. Drought-tolerant seed varieties, tailored to withstand environmental stresses, are a natural extension of this trend.

As agricultural innovation continues to evolve, the demand for drought-tolerant seeds is poised to grow, driven by the urgent need for climate-resilient farming solutions. These seeds will play a critical role in securing food supply in the face of increasing environmental challenges.

High R&D Costs and Time-Intensive Development

High R&D costs and time-intensive processes are significant restraints for the drought-tolerant seeds market. Developing such seeds requires advanced technologies like genetic engineering and molecular biology to create crops that can thrive under water scarcity. Extensive laboratory research, multi-season field trials and performance evaluations add to the complexity, demanding significant financial and technical resources.

Stringent regulatory requirements further add to these challenges, prolonging the time needed for market entry. Safety assessments and compliance with environmental and health standards require multi-year evaluations, escalating development costs. These regulatory delays particularly disadvantage smaller firms, limiting market participation and innovation in drought-tolerant seeds.

The concentration of R&D capabilities among a few large players further slows innovation and adoption in the market. Smaller companies face financial and technical barriers, reducing competition and availability of these seeds. This dynamic hinders the overall growth potential of the drought-tolerant seeds market despite the increasing need for climate-resilient agriculture solutions.

To overcome these restraints, companies leverage collaborative research initiatives and public-private partnerships to share costs and risks. Streamlining regulatory frameworks and incentivizing innovation can accelerate product development and market entry. These measures could enable broader adoption of drought-tolerant seeds, supporting sustainable agriculture practices globally.

Segment Analysis

The global drought-tolerant seeds market is segmented based on crop type, end-user, seed type, distribution channel and region.

Growing Consumer Interest in Highly Stable and Resistant to Protein Coagulation Milk

The demand for genetically modified (GM) seeds in the drought-tolerant seeds market is growing due to the increasing need for crops that can withstand water scarcity and unpredictable climate conditions. GM seeds are engineered to offer enhanced resistance to drought, making them highly desirable in regions prone to arid and semi-arid climates. This demand is driven by the agricultural sector's need for more resilient, higher-yielding crops that can maintain productivity under limited water availability.

Additionally, GM seeds contribute to improving food security by enabling consistent crop production in challenging environmental conditions. As climate change intensifies, the market for GM drought-tolerant seeds is expected to continue expanding, offering significant growth opportunities for biotechnology companies and seed developers.

For instance, in May 2024, Bioceres Crop Solutions launched its genetically modified HB4 drought-tolerant wheat seeds in Argentina, making the technology available to agricultural input retailers. In 2023, the company outlined plans to scale up the technology through private agreements with farmers and collaborations with seed multipliers ahead of full commercialization. The launch marks a significant step in expanding the reach of drought-tolerant wheat solutions in key markets.

Geographical Penetration

Rising Demand for Drought-Tolerant Seeds in North America

The demand for drought-tolerant seeds in North America is rising due to the increasing frequency of droughts and unpredictable water availability. Climate change has exacerbated these conditions, particularly in key agricultural regions like the Midwest and Canada, where maintaining consistent crop yields during dry spells is critical for farm productivity.

Farmers are adopting drought-tolerant seed varieties to ensure resilience against water scarcity. These seeds reduce the reliance on irrigation, conserve water and help safeguard yields during drought periods. As environmental concerns and the need for sustainable farming practices grow, drought-tolerant seeds are becoming an essential part of modern agricultural solutions.

For instance, in August 2024, Syngenta's recent launch of its NK Seeds corn portfolio exemplifies this demand, with several hybrids designed for drought resistance. Through substantial investment in R&D, Syngenta continues to develop seed solutions that meet the specific needs of North American farmers, providing them with reliable and sustainable options to address water stress and ensure long-term productivity.

Competitive Landscape

The major global players in the market include Corteva, Bayer AG, Syngenta, UPL, KWS SAAT SE & Co. KGaA, Arcadia Biosciences, Hefty Seed Company, Mahyco, Redwood Seeds and BASF.

Key Developments

  • In October 2024, Moldova, in collaboration with the FAO, launched a drought relief program to support farmers severely impacted by crop losses exceeding 70%. The initiative provides immediate support while enhancing agricultural resilience and sustainability.
  • In November 2024, Corteva is set to launch its drought-resistant hybrid Hard Red Winter wheat in North America by 2027. This launch is a key move in advancing climate-resilient wheat varieties. The product aims to address the growing demand for more sustainable farming solutions. The hybrid wheat promises increased yield and better drought tolerance.
  • In May 2024, The ICAR-Central Tuber Crops Research Institute (CTCRI) developed and released a new drought-tolerant tapioca (cassava) variety, Sree Kaveri, aimed at addressing mid-season drought challenges. The variety offers significant agricultural benefits, including a high yield of 51 tonnes per hectare and 28% starch content. This development is the outcome of extensive research involving the evaluation of 30 cassava clones, including indigenous, released and South American varieties.
  • In April 2024, Zambia launched pilot projects for drought-tolerant seed varieties at the Zambia Agriculture Research Institute (ZARI), aimed at bolstering food security amidst extreme weather challenges. The initiative, a partnership between the Presidential Delivery Unit (PDU), UPL and Advanta Seeds, is designed to equip farmers with climate-resilient crops capable of withstanding unpredictable weather patterns.
  • In June 2024, The Federal Government of Nigeria, in partnership with the African Agricultural Technology Foundation and the Institute for Agricultural Research, introduced four new drought and pest-resistant maize varieties. These varieties, launched under the Tela Maize Nigeria program, are expected to significantly boost maize production, with yields potentially rising from 2-3 tonnes to 9-10 tonnes per hectare.
  • In March 2023, ICARDA Morocco, in collaboration with INRA-Maroc and Benchaib Semences, developed six new drought-tolerant varieties of durum wheat and barley to combat severe droughts affecting dryland regions like Morocco. Funded by the Crop Trust under the DIIVA-PR project, these climate-resilient varieties are designed to enhance food production, nutritional quality and farmer resilience.

By Crop Type

  • Cereals & Grains
    • Corn
    • Wheat
    • Rice
    • Barley
    • Others
  • Oilseeds and Pulses
    • Soybeans
    • Sunflower
    • Others
  • Fruits and Vegetables
    • Tomato
    • Potato
    • Others
  • Others

By End-User

  • Commercial Farming
  • Small-Scale Farming
  • Research Institutions & Trials

By Seed Type

  • Genetically Modified (GM)
  • Conventional
  • Hybrid

By Distribution Channel

  • Direct Sales
  • Retailers & Distributors
  • E-commerce Platforms
  • Others

By Region

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Spain
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Why Purchase the Report?

  • To visualize the global drought-tolerant seeds market segmentation based on crop type, end-user, seed type, distribution channel and region.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points at the drought-tolerant seeds market level for all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as excel consisting of key products of all the major players.

The global drought-tolerant seeds market report would provide approximately 70 tables, 64 figures and 201 pages.

Target Audience 2024

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Crop Type
  • 3.2. Snippet by End-User
  • 3.3. Snippet by Seed Type
  • 3.4. Snippet by Distribution Channel
  • 3.5. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Rising Incidence of Droughts and Climate Change
      • 4.1.1.2. Advancements in Agricultural Biotechnology
    • 4.1.2. Restraints
      • 4.1.2.1. High R&D Costs and Time-Intensive Development
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Sustainable Analysis

6. By Crop Type

  • 6.1. Introduction
    • 6.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Crop Type
    • 6.1.2. Market Attractiveness Index, By Crop Type
  • 6.2. Cereals & Grains*
    • 6.2.1. Introduction
    • 6.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
    • 6.2.3. Corn
    • 6.2.4. Wheat
    • 6.2.5. Rice
    • 6.2.6. Barley
    • 6.2.7. Others
  • 6.3. Oilseeds & Pulses
    • 6.3.1. Soybeans
    • 6.3.2. Sunflower
    • 6.3.3. Others
  • 6.4. Fruits and Vegetables
    • 6.4.1. Tomato
    • 6.4.2. Potato
    • 6.4.3. Others
  • 6.5. Others

7. By End-User

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 7.1.2. Market Attractiveness Index, By End-User
  • 7.2. Commercial Farming*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Small-Scale Farming
  • 7.4. Research Institutions & Trials

8. By Seed Type

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Seed Type
    • 8.1.2. Market Attractiveness Index, By Seed Type
  • 8.2. Genetically Modified (GM)*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Conventional
  • 8.4. Hybrid

9. By Distribution Channel

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Distribution Channel
    • 9.1.2. Market Attractiveness Index, By Distribution Channel
  • 9.2. Direct Sales*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Retailers & Distributors
  • 9.4. E-commerce Platforms
  • 9.5. Others

10. Sustainability Analysis

  • 10.1. Environmental Analysis
  • 10.2. Economic Analysis
  • 10.3. Governance Analysis

11. By Region

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 11.1.2. Market Attractiveness Index, By Region
  • 11.2. North America
    • 11.2.1. Introduction
    • 11.2.2. Key Region-Specific Dynamics
    • 11.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Crop Type
    • 11.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Seed Type
    • 11.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Distribution Channel
    • 11.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.2.7.1.1. US
      • 11.2.7.1.2. Canada
      • 11.2.7.1.3. Mexico
  • 11.3. Europe
    • 11.3.1. Introduction
    • 11.3.2. Key Region-Specific Dynamics
    • 11.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Crop Type
    • 11.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Seed Type
    • 11.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Distribution Channel
    • 11.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.3.7.1.1. Germany
      • 11.3.7.1.2. UK
      • 11.3.7.1.3. France
      • 11.3.7.1.4. Italy
      • 11.3.7.1.5. Spain
      • 11.3.7.1.6. Rest of Europe
  • 11.4. South America
    • 11.4.1. Introduction
    • 11.4.2. Key Region-Specific Dynamics
    • 11.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Crop Type
    • 11.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Seed Type
    • 11.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Distribution Channel
    • 11.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.4.7.1.1. Brazil
      • 11.4.7.1.2. Argentina
      • 11.4.7.1.3. Rest of South America
  • 11.5. Asia-Pacific
    • 11.5.1. Introduction
    • 11.5.2. Key Region-Specific Dynamics
    • 11.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Crop Type
    • 11.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Seed Type
    • 11.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Distribution Channel
    • 11.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.5.7.1.1. China
      • 11.5.7.1.2. India
      • 11.5.7.1.3. Japan
      • 11.5.7.1.4. Australia
      • 11.5.7.1.5. Rest of Asia-Pacific
  • 11.6. Middle East and Africa
    • 11.6.1. Introduction
    • 11.6.2. Key Region-Specific Dynamics
    • 11.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Crop Type
    • 11.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Seed Type
    • 11.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Distribution Channel

12. Competitive Landscape

  • 12.1. Competitive Scenario
  • 12.2. Market Positioning/Share Analysis
  • 12.3. Mergers and Acquisitions Analysis

13. Company Profiles

  • 13.1. Corteva*
    • 13.1.1. Company Overview
    • 13.1.2. Product Portfolio and Description
    • 13.1.3. Financial Overview
    • 13.1.4. Key Developments
  • 13.2. Bayer AG
  • 13.3. Syngenta
  • 13.4. UPL
  • 13.5. KWS SAAT SE & Co. KGaA
  • 13.6. Arcadia Biosciences
    • 13.6.1. Hefty Seed Company
  • 13.7. Mahyco
  • 13.8. Redwood Seeds
  • 13.9. BASF

LIST NOT EXHAUSTIVE

14. Appendix

  • 14.1. About Us and Services
  • 14.2. Contact Us