デフォルト表紙
市場調査レポート
商品コード
1634216

粒子線治療の世界市場 - 2025年~2033年

Global Particle Therapy Market - 2025 - 2033


出版日
ページ情報
英文 176 Pages
納期
即日から翌営業日
カスタマイズ可能
適宜更新あり
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=143.57円
粒子線治療の世界市場 - 2025年~2033年
出版日: 2025年01月13日
発行: DataM Intelligence
ページ情報: 英文 176 Pages
納期: 即日から翌営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

粒子線治療の世界市場は2024年に13億3,000万米ドルに達し、2033年には25億8,000万米ドルに達すると予測され、予測期間2025年から2033年のCAGRは7.9%で成長します。

粒子線治療は、陽子、中性子、炭素イオンなどの荷電粒子を用いてがん細胞を標的とする高度な放射線治療です。X線を使用する一般的な光子ベースの治療とは異なり、粒子線治療は荷電粒子の明確な物理的特徴を利用して放射線をより正確に照射します。この精度の高さにより、隣接する健康な組織への被曝を最小限に抑えながら、腫瘍部位に最大限の放射線を集中させることが可能となり、従来の放射線療法に伴う副作用や長期的な影響のリスクを低減することができます。

粒子線治療に対する需要の増加は、予測期間における市場を牽引する要因です。粒子線治療はがんの治療や管理に使用されるため、がん患者数の増加が粒子線治療の需要を高めています。例えば、米国国立衛生研究所(National Institute of Health)によると、2023年には米国で1,958,310件の新規がん患者が発生すると予測されています。前立腺がんの罹患率は、20年間減少した後、2014年から2019年にかけて毎年3%に達し、99,000人の新規症例が追加される結果となった。

市場力学:

促進要因と抑制要因

粒子線治療の需要増加

粒子線治療に対する需要の増加は、世界の粒子線治療市場の成長における重要な要因になると予測されます。粒子線治療の世界市場は、がんの有病率の上昇、技術の進歩、最近の上市と承認、戦略的パートナーシップ、人々の意識の高まりなどを主な要因として、大幅な拡大が見込まれています。陽子線治療や重粒子線治療を含む粒子線治療は、一般的な光子ベースの放射線治療と比較して、健康な組織への害が少なく、長期的な悪影響が少ないなど、いくつかの利点があります。悪性腫瘍に対するこのような精度の高いターゲティングは、患者の全体的な生活の質を向上させ、その結果、ヘルスケア従事者と患者の両方が粒子線治療を好むようになっています。

粒子線治療のニーズの高まりには、世界のがんの罹患率の上昇が大きく影響しています。がんは依然として世界的に病気の原因の上位に挙げられています。例えば、世界がん研究基金によると、非黒色腫皮膚がん(NMSC)を含む2022年のがん患者数は19,976,499人です。NMSCを除くと、2022年の世界のがん患者数は18,741,966人に減少しました。男性は9,566,825人、女性は9,175,141人です。さらに、IARCによれば、2022年には約2,000万人の新規がん患者(非黒色腫皮膚がん[NMSC]を含む)が発生するといいます。推計によれば、男女ともに5人に1人が、人生のどこかでがんにかかることになります。肺がんは、2022年に最も多く診断されるがんで、約250万人の新規症例、すなわち世界的に悪性腫瘍の8人に1人(全がんの12.4%)を占める。そのため、効果的な代替治療の必要性はかつてないほど高まっています。このような罹患率の増加は、隣接する健康な組織へのダメージを最小限に抑えながら腫瘍を標的にする精度の高さで知られる陽子線および重粒子線治療で構成される粒子線治療のような、改善された治療技術の重要な必要性を浮き彫りにしています。

技術の進歩は、粒子線治療の利用しやすさと有効性を大幅に改善しました。最近の技術革新には、コンパクトで安価な陽子線治療装置の出現が含まれ、これにより、より多くの治療センターを多様な場所に設置することが可能になった。これらの技術革新は、総治療費を下げるだけでなく、従来の粒子線治療システムに伴う運用の複雑さを簡素化します。例えば、2024年10月、ジェファーソン研究所は、ハンプトン大学陽子線がん研究所(HUPCI)およびレオ・キャンサー・ケアと協力し、より安全ながん治療法としての陽子線治療の可能性を研究すると発表しました。この共同研究は、高エネルギーの陽子線を使ってがんを狙い撃ちする一方で、周囲の健康な組織へのダメージを最小限に抑える陽子線治療の精度と有効性を向上させるために、新技術を利用することを意図しています。コバルト60のような放射性同位元素に依存する標準的な治療に取って代わることを目指しているため、このイニシアチブは特に重要です。

高い初期費用

初期費用の高さなどが、世界の粒子線治療市場の妨げになると予想されます。粒子線治療センターの設立には、サイクロトロンやシンクロトロンのような高価な機器、特定の遮蔽インフラ、治療中の患者の安全を確保するために必要な技術など、1億米ドル以上の費用がかかります。例えば、国立衛生研究所によると、粒子線治療費は10,030ユーロ(c-ion:肺がん)から39,610ユーロ(陽子線:頭頸部悪性腫瘍)まで様々です。特に資金や医療予算が不十分な低開発国では、こうした多額の資本負担の結果、多くのヘルスケアプロバイダーが参入障壁に直面しています。その結果、粒子線治療の経済的コストが高いため、この革新的な治療法の恩恵を受ける可能性のある人々に広く受け入れられ、利用されることが制限されています。

目次

第1章 調査手法と調査範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 影響要因
    • 促進要因
    • 粒子線治療の需要増加
    • 抑制要因
    • 初期費用が高い
    • 機会
    • 影響分析

第5章 産業分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制分析
  • 償還分析
  • 特許分析
  • SWOT分析
  • DMIの見解

第6章 タイプ別

  • 陽子線治療
  • 重粒子線治療

第7章 システム別

  • シングルルームシステム
  • マルチルームシステム

第8章 用途別

  • 治療
  • 臨床調査

第9章 がんの種類別

  • 小児がん
  • 乳がん
  • 肺がん
  • 頸部がん
  • その他

第10章 エンドユーザー別

  • 病院
  • がん調査機関
  • 診断センター

第11章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • スペイン
    • イタリア
    • その他欧州地域
  • 南米
    • ブラジル
    • アルゼンチン
    • その他南米
  • アジア太平洋地域
    • 中国
    • インド
    • 日本
    • 韓国
    • その他アジア太平洋地域
  • 中東・アフリカ

第12章 競合情勢

  • 競合シナリオ
  • 市況・シェア分析
  • M&A分析

第13章 企業プロファイル

  • IBA Worldwide
    • 会社概要
    • 製品ポートフォリオと概要
    • 財務概要
    • 主な発展
  • Siemens Healthcare Private Limited
  • Hitachi High-Tech Corporation
  • Mevion Medical Systems
  • Provision Healthcare
  • Optivus Proton Therapy, Inc.
  • Sumitomo Heavy Industries, Ltd.
  • ProTom International
  • B dot Medical Inc.
  • Atlas Copco Group

第14章 付録

目次
Product Code: MD9038

The global particle therapy market reached US$ 1.33 billion in 2024 and is expected to reach US$ 2.58 billion by 2033, growing at a CAGR of 7.9% during the forecast period 2025-2033.

Particle therapy is an advanced form of radiation treatment that targets cancerous cells with charged particles such as protons, neutrons, and carbon ions. Unlike typical photon-based therapies that use X-rays, particle therapy uses the distinct physical features of charged particles to deliver radiation more precisely. This precision enables the greatest amount of radiation to be localized at the tumor site while minimizing exposure to adjacent healthy tissues, lowering the risk of side effects and long-term consequences associated with traditional radiation therapies.

The increasing demand for particle therapy is the driving factor that drives the market over the forecast period. The increasing number of cancer cases increases the demand for particle therapy since it is used in the treatment and management of cancer. For instance, according to the National Institute of Health, In 2023, the United States is projected to see 1,958,310 new cancer cases. Prostate cancer incidence reached 3% every year from 2014 to 2019, after two decades of reduction, resulting in an additional 99,000 new cases.

Market Dynamics: Drivers & Restraints

Increasing demand for particle therapy

The increasing demand for particle therapy is expected to be a significant factor in the growth of the global particle therapy market. The global particle therapy market is poised for significant expansion, owing mostly to the rising prevalence of cancer, technological advancements, recent launches and approvals, strategic partnerships, and increasing awareness among people. Particle therapy, which includes proton and heavy ion therapies, has several advantages over typical photon-based radiation treatments, including less harm to healthy tissues and fewer long-term negative effects. This precision in targeting malignancies improves patients' overall quality of life, resulting in an increasing preference for particle therapy among both healthcare practitioners and patients.

The rising global incidence of cancer has a substantial impact on the growing need for particle therapy. Cancer remains one of the top causes of sickness worldwide. For instance, According to the World Cancer Research Fund, the number of cancer cases in 2022, including non-melanoma skin cancer (NMSC), was 19,976,499. When NMSCs were eliminated, the global cancer case count was reduced to 18,741,966 in 2022. There were 9,566,825 males and 9,175,141 females. Furthermore, according to the IARC, there will be about 20 million new cancer cases in 2022 (including nonmelanoma skin cancers [NMSCs]). According to estimates, one in every five men and women will get cancer at some point in their lives. Lung cancer was the most often diagnosed cancer in 2022, accounting for about 2.5 million new cases, or one in every eight malignancies globally (12.4% of all cancers). Thus the need for effective treatment alternatives has never been stronger. This rising incidence highlights the critical need for improved therapeutic techniques such as particle therapy, which comprises proton and heavy ion therapies known for their precision in targeting tumors while causing minimal damage to adjacent healthy tissues.

Technological advancements have significantly improved the accessibility and efficacy of particle treatment. Recent innovations include the advent of compact and less expensive proton therapy devices, which made it possible for the installation of more treatment centers in diverse places. These innovations not only lower total treatment costs but also simplify the operational complexity involved with classic particle therapy systems. For instance, in October 2024, Jefferson Lab announced that it is collaborating with the Hampton University Proton Cancer Institute (HUPCI) and Leo Cancer Care to study the potential of proton therapy as a safer cancer treatment option. This collaboration intends to use new technology to improve the precision and effectiveness of proton therapy, which uses high-energy proton beams to target cancers while causing minimal damage to surrounding healthy tissues. This initiative is particularly significant since it aims to replace standard treatments that rely on radioactive isotopes like cobalt-60, which pose inherent radiological dangers.

High initial costs

Factors such as high initial costs are expected to hamper the global particle therapy market. Setting up a particle therapy center can cost more than USD 100 million, which includes expensive equipment such as cyclotrons or synchrotrons, specific shielding infrastructure, and the technologies required to ensure patient safety during treatment. For instance, according to the National Institute of Health, Particle treatment expenses vary from Euro 10,030 (c-ion: lung cancer) to Euro 39,610 (proton: head & neck malignancies). Many healthcare providers face a barrier to entry as a result of these significant capital commitments, particularly in underdeveloped countries with inadequate funding and healthcare budgets. As a result, the high financial cost of particle therapy limits its widespread acceptance and accessibility to individuals who could benefit from this innovative therapeutic technique.

For more details on this report - Request for Sample

Segment Analysis

The global particle therapy market is segmented based on type, system, application, cancer type, end-user, and region.

Proton Therapy segment is expected to dominate the global particle therapy market share

The proton therapy segment is anticipated to dominate the global particle therapy market owing to its unique advantages, technological advancements, and increasing acceptance among healthcare providers and patients. Proton therapy uses charged particles, or protons, to deliver targeted radiation to malignant tumors while limiting damage to surrounding healthy tissues. This accuracy is especially useful for treating cancers near important organs, such as brain tumors or pediatric cancers, where conventional radiation therapies may represent a larger risk of collateral damage. As more people become aware of the benefits of proton therapy, demand for its utilization increases.

The increasing prevalence of cancer, as well as technological improvements that have made proton therapy more accessible and effective, are driving the segment's rise. Compact proton therapy devices and advanced imaging techniques have improved treatment delivery, resulting in more efficient patient management and better clinical outcomes. These technological advancements are critical in resolving the limits of standard photon treatment, hence strengthening proton therapy's market position.

Furthermore, the growing number of proton therapy centers worldwide contributes to the segment's dominance. Major investments and launches by healthcare organizations and governments have contributed to financing the establishment of new centers equipped with modern proton treatment devices. For instance, in February 2024, the University of Leeds initiated a trial supported by the National Institute for Health and Care Research (NIHR) and the Medical Research Council (MRC) to look into a possible treatment for brain cancer. A new clinical trial concentrating on proton beam therapy for brain cancer began in the United Kingdom, representing a significant leap in cancer treatment choices. This trial, called APPROACH (Analysis of Proton vs Photon Radiotherapy in Oligodendroglioma and Assessment of Cognitive Health), seeks to determine whether proton beam therapy can lessen long-term side effects when compared to regular photon radiotherapy. The experiment is aimed specifically at patients diagnosed with oligodendroglioma, a kind of brain cancer that affects roughly 350 people in the UK each year.

Geographical Analysis

North America is expected to hold a significant position in the global particle therapy market share

North America is anticipated to hold a significant portion of the global particle therapy market owing to the rising prevalence of cancer, technological advancements, recent product launches and approvals, strategic partnerships, and increasing awareness. The higher prevalence of cancer in North America also contributes to the increased demand for advanced treatment solutions. This alarming trend highlights the critical need for effective treatment alternatives, encouraging healthcare experts and patients to look into sophisticated medicines like particle therapy. As more patients become aware of the benefits of proton therapy, they are turning to this tailored treatment technique, which allows for more precise tumor targeting while avoiding damage to adjacent healthy tissues.

For instance, according to an article published by the National Institute of Health in 2024, the United States is projected to see 2,001,140 new cancer cases. North America's dominance in the particle therapy segment is due to technological breakthroughs. The emergence of small proton therapy systems has transformed the scene by making treatment more accessible and affordable. These systems require less physical space than traditional setups, allowing more hospitals and clinics to use proton therapy in their cancer treatment options. Furthermore, advances such as pencil-beam scanning and real-time imaging technology improve the precision of proton treatment, allowing practitioners to deliver targeted radiation more effectively while reducing damage to adjacent healthy tissues. This level of accuracy is especially useful for treating tumors near essential structures, such as those found in pediatric patients or brain cancers.

For instance, in December 2023, Nationwide Children's Hospital and The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James) have announced the opening of a $100 million, 55,000-square-foot proton therapy center, the first treatment facility in central Ohio to provide this highly targeted form of radiation therapy for the treatment of complex tumors that cannot be removed surgically.

Asia Pacific is growing at the fastest pace in the global particle therapy market

One of the key drivers of this expansion is Asia Pacific's huge and expanding population, which contributes to an increased incidence of oncological disorders. As cancer incidence continues to increase across this diverse region, the need for advanced treatment modalities like particle therapy becomes increasingly critical.

For instance, according to the National Institute of Health, the estimated number of cancer cases in India in 2022 is 14,61,427 (crude rate: 100.4 per 100,000). In India, one in every nine people is likely to develop cancer over their lifetime. Males and females were more likely to acquire lung and breast cancers, respectively. This alarming trend underscores the urgent need for effective treatment options that can address the unique challenges posed by various types of cancer prevalent in the region.

Competitive Landscape

The major global players in the global particle therapy market include IBA Worldwide, Siemens Healthcare Private Limited, Hitachi High-Tech Corporation, Mevion Medical Systems, Provision Healthcare, Optivus Proton Therapy, Inc., Sumitomo Heavy Industries, Ltd., ProTom International, B dot Medical Inc., Atlas Copco Group among others.

Emerging Players

Panacea, Terapet, and P-Cure among others

Key Developments

  • In September 2024, The Tata Memorial Centre (TMC) launched in-house research initiatives focused on maximizing the use of proton beam therapy for cancer treatment, marking a significant advancement in oncology care in India. This initiative coincides with the one-year anniversary of TMC's proton therapy facility, which was inaugurated to provide cutting-edge radiation treatment options for both pediatric and adult cancer patients. The facility at TMC is equipped with state-of-the-art technology, including the latest Pencil Beam Scanning (PBS) capabilities and Intensity Modulated Proton Therapy (IMPT).

Why Purchase the Report?

  • Pipeline & Innovations: Reviews ongoing clinical trials, product pipelines, and forecasts upcoming advancements in medical devices and pharmaceuticals.
  • Product Performance & Market Positioning: Analyzes product performance, market positioning, and growth potential to optimize strategies.
  • Real-world Evidence: Integrates patient feedback and data into product development for improved outcomes.
  • Physician Preferences & Health System Impact: Examines healthcare provider behaviors and the impact of health system mergers on adoption strategies.
  • Market Updates & Industry Changes: Covers recent regulatory changes, new policies, and emerging technologies.
  • Competitive Strategies: Analyzes competitor strategies, market share, and emerging players.
  • Pricing & Market Access: Reviews pricing models, reimbursement trends, and market access strategies.
  • Market Entry & Expansion: Identifies optimal strategies for entering new markets and partnerships.
  • Regional Growth & Investment: Highlights high-growth regions and investment opportunities.
  • Supply Chain Optimization: Assesses supply chain risks and distribution strategies for efficient product delivery.
  • Sustainability & Regulatory Impact: Focuses on eco-friendly practices and evolving regulations in healthcare.
  • Post-market Surveillance: Uses post-market data to enhance product safety and access.
  • Pharmacoeconomics & Value-Based Pricing: Analyzes the shift to value-based pricing and data-driven decision-making in R&D.

The global particle therapy market report delivers a detailed analysis with 60+ key tables, more than 50 visually impactful figures, and 176 pages of expert insights, providing a complete view of the market landscape.

Target Audience 2024

  • Manufacturers: Pharmaceutical, Medical Device, Biotech Companies, Contract Manufacturers, Distributors, Hospitals.
  • Regulatory & Policy: Compliance Officers, Government, Health Economists, Market Access Specialists.
  • Technology & Innovation: AI/Robotics Providers, R&D Professionals, Clinical Trial Managers, Pharmacovigilance Experts.
  • Investors: Healthcare Investors, Venture Fund Investors, Pharma Marketing & Sales.
  • Consulting & Advisory: Healthcare Consultants, Industry Associations, Analysts.
  • Supply Chain: Distribution and Supply Chain Managers.
  • Consumers & Advocacy: Patients, Advocacy Groups, Insurance Companies.
  • Academic & Research: Academic Institutions.

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Technology
  • 3.2. Snippet by Cancer Type
  • 3.3. Snippet by Application
  • 3.4. Snippet by End-User
  • 3.5. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
    • 4.1.2. Increasing Demand for Particle Therapy
    • 4.1.3. Restraints
    • 4.1.4. High Initial Costs
    • 4.1.5. Opportunity
    • 4.1.6. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Reimbursement Analysis
  • 5.6. Patent Analysis
  • 5.7. SWOT Analysis
  • 5.8. DMI Opinion

6. By Type

  • 6.1. Introduction
    • 6.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 6.1.2. Market Attractiveness Index, By Type
  • 6.2. Proton Therapy*
    • 6.2.1. Introduction
    • 6.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 6.3. Heavy Ion Therapy

7. By System

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By System
    • 7.1.2. Market Attractiveness Index, By System
  • 7.2. Single Room Systems*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Multi-room Systems

8. By Application

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 8.1.2. Market Attractiveness Index, By Application
  • 8.2. Treatment*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Clinical Research

9. By Cancer Type

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Cancer Type
    • 9.1.2. Market Attractiveness Index, By Cancer Type
  • 9.2. Pediatric Cancer*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Breast Cancer
  • 9.4. Lung Cancer
  • 9.5. Neck Cancer
  • 9.6. Others

10. By End User

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End User
    • 10.1.2. Market Attractiveness Index, By End User
  • 10.2. Hospitals*
    • 10.2.1. Introduction
    • 10.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 10.3. Cancer Research Institutes
  • 10.4. Diagnostic Centres

11. By Region

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 11.1.2. Market Attractiveness Index, By Region
  • 11.2. North America
    • 11.2.1. Introduction
    • 11.2.2. Key Region-Specific Dynamics
    • 11.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By System
    • 11.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Cancer Type
    • 11.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.2.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.2.8.1. U.S.
      • 11.2.8.2. Canada
      • 11.2.8.3. Mexico
  • 11.3. Europe
    • 11.3.1. Introduction
    • 11.3.2. Key Region-Specific Dynamics
    • 11.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By System
    • 11.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Cancer Type
    • 11.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.3.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.3.8.1. Germany
      • 11.3.8.2. U.K.
      • 11.3.8.3. France
      • 11.3.8.4. Spain
      • 11.3.8.5. Italy
      • 11.3.8.6. Rest of Europe
  • 11.4. South America
    • 11.4.1. Introduction
    • 11.4.2. Key Region-Specific Dynamics
    • 11.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By System
    • 11.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Cancer Type
    • 11.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.4.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.4.8.1. Brazil
      • 11.4.8.2. Argentina
      • 11.4.8.3. Rest of South America
  • 11.5. Asia-Pacific
    • 11.5.1. Introduction
    • 11.5.2. Key Region-Specific Dynamics
    • 11.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By System
    • 11.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Cancer Type
    • 11.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.5.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.5.8.1. China
      • 11.5.8.2. India
      • 11.5.8.3. Japan
      • 11.5.8.4. South Korea
      • 11.5.8.5. Rest of Asia-Pacific
  • 11.6. Middle East and Africa
    • 11.6.1. Introduction
    • 11.6.2. Key Region-Specific Dynamics
    • 11.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By System
    • 11.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Cancer Type
    • 11.6.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User

12. Competitive Landscape

  • 12.1. Competitive Scenario
  • 12.2. Market Positioning/Share Analysis
  • 12.3. Mergers and Acquisitions Analysis

13. Company Profiles

  • 13.1. IBA Worldwide*
    • 13.1.1. Company Overview
    • 13.1.2. Product Portfolio and Description
    • 13.1.3. Financial Overview
    • 13.1.4. Key Developments
  • 13.2. Siemens Healthcare Private Limited
  • 13.3. Hitachi High-Tech Corporation
  • 13.4. Mevion Medical Systems
  • 13.5. Provision Healthcare
  • 13.6. Optivus Proton Therapy, Inc.
  • 13.7. Sumitomo Heavy Industries, Ltd.
  • 13.8. ProTom International
  • 13.9. B dot Medical Inc.
  • 13.10. Atlas Copco Group

LIST NOT EXHAUSTIVE

14. Appendix

  • 14.1. About Us and Services
  • 14.2. Contact Us