デフォルト表紙
市場調査レポート
商品コード
1588581

バイオポリマーの世界市場:2024年~2031年

Global Biopolymer Market - 2024-2031


出版日
ページ情報
英文 224 Pages
納期
即日から翌営業日
カスタマイズ可能
適宜更新あり
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=144.06円
バイオポリマーの世界市場:2024年~2031年
出版日: 2024年11月08日
発行: DataM Intelligence
ページ情報: 英文 224 Pages
納期: 即日から翌営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

概要

世界のバイオポリマー市場は、2023年に175億2,000万米ドルに達し、2031年には360億3,000万米ドルに達すると予測され、予測期間2024-2031年のCAGRは9.43%で成長する見込みです。

合成材料の一種であるバイオポリマーは、サトウキビやトウモロコシのような農産物に加え、残材や木材のような植物由来の物質から生産されます。バイオポリマーは、公害や地球温暖化など多くの環境問題を悪化させる従来のポリマーやプラスチックとは異なり、本質的に生分解性です。

市場の拡大は、主にPHAベースの生分解性ポリマーに対する需要の増加に起因しています。多様な最終用途分野で持続可能なパッケージングへの需要が高まっていることを受け、大手パッケージング・プラスチックメーカーは生分解性商品への移行を進めています。バイオポリマーは、生物医学、製薬、食品分野を含むいくつかの用途で利用されています。バイオポリマーは、その優れた回復特性により、様々な形状や寸法の傷の治癒を促進するため、バイオメディカル用途で引っ張りだことなっています。

エレン・マッカーサー財団(EMF)の報告によると、年間7,800万トンの使い捨てプラスチック包装が生産されており、効果的にリサイクルされているのは2%未満です。驚くべきことに、処理施設やゴミ収集施設が不十分なため、この製品の32%が自然環境に排出されています。この事実を踏まえ、政策立案者、製造企業、世界的ブランドは、流出による有害な汚染をなくし、リサイクル率を高める方法を模索しています。その結果、多くの使用済み状況でリサイクル可能な包装を促進するための大きな努力がなされてきました。その結果、製品に対する需要は大幅に増加する見込みです。

ダイナミクス

石油化学プラスチックに代わる持続可能な選択肢

バイオポリマーは、サトウキビ、トウモロコシ、残材、立木などの原料から得られる高分子物質です。バイオポリマーは、地球温暖化や公害の原因となる従来のポリマーやプラスチックとは異なり、生分解性があります。バイオベースポリマーの利用に対する認識が高まることが予想されます。その結果、バイオポリマーは自然のプロセスで分解され、生態系を脅かすことがないため、従来の石油ベースのプラスチックよりも持続可能な代替品と考えられています。

消費者の二酸化炭素排出量に対する意識は高まっており、より環境的に持続可能な商品を求めるようになっています。世界各国の政府は、使い捨てプラスチックの使用制限を課し、天然包装の代替品を推進することで、プラスチック廃棄物を削減する戦略を実施しています。企業や消費者は、従来の石油化学製品由来のプラスチックが生態系に及ぼす影響をますます認識するようになっているため、この動向は予測期間を通じて続くと予想されます。

新興地域の成長を促進する戦略的イニシアティブ

バイオプラスチックとバイオポリマーの市場参入企業は、有機的手法と無機的手法の両方を積極的に活用して成長を促しています。近年、アジア太平洋の新興経済圏では戦略的な前進が顕著です。2019年、トタル・コルビオンはタイのラヨーンに年産7万5,000トンのPLA施設を開設しました。三菱ケミカルホールディング(日本)とレノボ・グループ・リミテッド(中国)は、バイオプラスチック・ベースのスマートフォン部品を製造する合弁会社を設立しました。

さらにインドネシアは、海藻を含むバイオプラスチックの代替品を研究しています。地元企業のEvowareは海藻由来の独自のパッケージを提供しており、環境規制の高まりがアジア太平洋諸国でのバイオプラスチックの必要性を高めると予想しています。さらに、東南アジアにはバイオベースの原料が豊富にあり、バイオプラスチック製造のための原料の持続的な供給が保証されています。このように、規制の進展と原料の入手しやすさが、この地域でのバイオプラスチックのニーズを維持すると予想されます。

生分解性プラスチックの価格上昇

様々な応用分野における市場の拡大は、従来のポリマーに比べて生分解性プラスチックのコストが高いことが制約となっています。生分解性プラスチックの製造コストは、一般的に従来のプラスチックのそれよりも20~80%高いです。この差は、生分解性ポリマーの重合コストが高いことに起因します。

例えば、バインダー、合成紙、医療機器、電子部品、食品包装、農業などに使用されるPHAは、生産コストが高く、収率が低く、入手が制限されています。PLAはPHAよりも生産コストが低いにもかかわらず、石油由来のPEやPPよりもコストが高いです。一般的に、バイオベース材料は開発段階にとどまっており、石油化学製品に匹敵するほど商業化されていないです。

研究開発の高騰や、限定された規模の製造に起因する製造費用、さらに従来の石油由来プラスチックとの大幅な価格差が、多様な産業における生分解性プラスチックの普及を妨げている主な問題です。

目次

第1章 調査手法と調査範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 影響要因
    • 促進要因
      • 石油化学プラスチックに代わる持続可能な選択肢
      • 新興地域での成長を促進する戦略的イニシアティブ
    • 抑制要因
      • 生分解性プラスチックの価格上昇
    • 機会
    • 影響分析

第5章 産業分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制分析
  • ロシア・ウクライナ戦争影響分析
  • DMIの見解

第6章 製品別

  • バイオPE
  • バイオPET
  • PLA
  • PHA
  • 生分解性プラスチック
  • その他

第7章 用途別

  • フィルム
  • ボトル
  • 繊維
  • 種子コーティング
  • 自動車部品
  • 医療用インプラント
  • その他

第8章 エンドユーザー別

  • 包装
  • 消費財
  • 自動車
  • 繊維
  • 農業
  • その他

第9章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • イタリア
    • スペイン
    • その他欧州
  • 南米
    • ブラジル
    • アルゼンチン
    • その他南米
  • アジア太平洋
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他アジア太平洋地域
  • 中東・アフリカ

第10章 競合情勢

  • 競合シナリオ
  • 市況/シェア分析
  • M&A分析

第11章 企業プロファイル

  • BASF SE
    • 会社概要
    • 製品ポートフォリオと説明
    • 財務概要
    • 主な発展
  • Biopolymer Industries
  • Solanyl Biopolymers
  • BioPolymer GmbH & Co. KG
  • Ecovia Renewables Inc.
  • BiologiQ, Inc.
  • ADM
  • DuPont
  • Novamont
  • BIOTEC

第12章 付録

目次
Product Code: MA273

Overview

Global Biopolymer Market reached US$ 17.52 billion in 2023 and is expected to reach US$ 36.03 billion by 2031, growing with a CAGR of 9.43% during the forecast period 2024-2031.

Biopolymers, a category of synthetic materials, are produced from plant-derived substances such as residual wood and timber, in addition to agricultural commodities like sugarcane and corn. Biopolymers are inherently biodegradable, unlike traditional polymers or plastics, which exacerbate numerous environmental problems such as pollution and global warming.

The market expansion is primarily ascribed to the increasing demand for PHA-based biodegradable polymers. In response to the increased demand for sustainable packaging across diverse end-use sectors, leading packaging and plastics manufacturers are transitioning to biodegradable goods. Biopolymers are utilized in several applications, including biomedical, pharmaceutical, and food sectors. Due to their superior recovery properties, they are much sought after in biomedical applications, since they facilitate the healing of wounds of various forms and dimensions.

The Ellen MacArthur Foundation (EMF) reports that 78 million tons of single-use plastic packaging are produced annually, with less than 2% being effectively recycled. Remarkably, 32% of this product is discharged into the natural environment due to inadequate processing and trash collection facilities. In light of this truth, policymakers, manufacturing firms, and worldwide brands are exploring methods to eliminate the harmful pollution caused by leakage and to enhance recycling rates. Consequently, there has been a significant effort to promote packaging that is recyclable in many end-of-life contexts. Consequently, the demand for the product is poised to increase substantially.

Dynamics

A Sustainable Alternative To Petrochemical Plastics

Biopolymers are polymeric substances derived from raw materials such as sugarcane, corn, residual wood, and standing lumber. Biopolymers are biodegradable, unlike conventional polymers or plastics, which contribute to global warming and pollution. The anticipated increase in the perception of bio-based polymer utilization is forecasted. Consequently, biopolymers are considered a more sustainable alternative to conventional petroleum-based plastics, as they can be decomposed through natural processes and do not threaten the ecosystem.

Consumers are increasingly conscientious about their carbon footprint and are requesting more environmentally sustainable items. Governments worldwide are implementing strategies to reduce plastic waste by imposing restrictions on single-use plastics and promoting natural packaging alternatives. This trend is anticipated to persist throughout the projected period, as enterprises and consumers increasingly recognize the ecological repercussions of traditional petrochemical-derived plastics.

Strategic Initiatives Fueling Growth In The Emerging Regions

Market participants in bioplastics and biopolymers are actively utilizing both organic and inorganic techniques to stimulate their growth. Recent years have observed substantial strategic advancements in the Asia-Pacific rising economies. In 2019, Total-Corbion inaugurated a PLA facility in Rayong, Thailand, with a manufacturing capacity of 75,000 tons per annum. Mitsubishi Chemical Holding Corporation (Japan) and Lenovo Group Limited (China) established a joint venture to manufacture bioplastic-based smartphone components.

Moreover, Indonesia is investigating bioplastic substitutes, including seaweed. Local entity Evoware provides proprietary packaging derived from seaweed, anticipating a rise in environmental restrictions that will elevate the need for bioplastics in Asia-Pacific nations. Moreover, Southeast Asia possesses ample bio-based feedstock, guaranteeing a sustained supply of raw materials for bioplastic manufacturing. Thus, regulatory advancements and the accessibility of feedstock are expected to maintain the need for bioplastics in the region.

Higher Prices Of Biodegradable Plastics

The expansion of the market across various application areas is constrained by the elevated cost of biodegradable plastics relative to conventional polymers. The production cost of biodegradable polymers is generally 20-80% greater than that of traditional plastics. This difference mostly arises from the high polymerization costs of biodegradable polymers, as most methods remain in the developmental stage and have not attained economies of scale.

For example, PHAs, used in binders, synthetic papers, medical devices, electronic components, food packaging, and agriculture, face elevated production costs, low yields, and restricted availability. Despite having a lower production cost than PHAs, PLAs are nevertheless more costly than petroleum-derived PE and PP. In general, bio-based materials remain in the developmental phase and have not been commercialized to the same degree as their petrochemical equivalents.

Elevated research and development, as well as production expenses stemming from limited-scale manufacturing, coupled with substantial price disparities relative to conventional petroleum-based plastics, are primary issues impeding the widespread adoption of biodegradable plastics across diverse industries.

Segment Analysis

The global biopolymer market is segmented based on product, application, end-user, and region.

The Need for Biopolymers in Packaging Rises Due to Environmental, Regulatory, and Consumer-Driven Pressures

The need for biopolymers in packaging is rising due to environmental, regulatory, and consumer-driven issues. Biopolymers are frequently sourced from renewable resources like plants or microbes, rendering them a more sustainable option compared to conventional petroleum-based plastics. The ecological consequences of conventional plastics, especially regarding pollution and prolonged breakdown periods, have spurred heightened interest in sustainable alternatives.

Biopolymers are increasingly popular in consumer goods due to many factors, reflecting a wider movement towards sustainability and environmental responsibility in the consumer product industry. Governments and regulatory agencies worldwide are implementing initiatives to reduce plastic waste and promote the use of more sustainable materials. This has created a regulatory framework that promotes the incorporation of the commodity into consumer goods.

Geographical Penetration

Government Regulations and Market Dynamics Driving Bioplastics and Biopolymers Expansion in Asia-Pacific

Government laws in the Asia-Pacific area that prohibit plastic bags and advanced attempts to address global warming are fostering market expansion. The elevated costs of bioplastics and biopolymers relative to traditional petroleum-based resins constitute a substantial obstacle to market growth in the region. Nonetheless, the diminished living standards and disposable money in the Asia-Pacific region are anticipated to result in a decline in the pricing of bioplastics and biopolymers.

The rising regulations in the plastics sector and the emphasis on sustainable development create potential for substituting plastics with bioplastics in Asia-Pacific. Increasing consumer awareness of sustainable plastics and retailer pressure are driving the need for bioplastics.

Competitive Landscape

The major global players in the market include Biopolymer Industries, BASF SE, Solanyl Biopolymers, BioPolymer GmbH & Co. KG, Ecovia Renewables Inc., BiologiQ, Inc., ADM, DuPont, Novamont, BIOTEC

Russia-Ukraine War Impact Analysis

The Russia-Ukraine conflict has profoundly affected the biopolymer sector, chiefly due to the disruption of manufacturing and supply networks. The departure of more than 300 prominent Western corporations, along with the closure of packaging and manufacturing plants in Ukraine and Russia, has impeded the supply of critical raw materials for biopolymer manufacture.

Petrochemical facilities such as Karpatneftekhim, Ukraine's largest PET plant, were compelled to cease operations due to the imposition of martial law, while glass and packaging manufacturers like Vetropack suspended output, exacerbating supply chain difficulties. The uncertainty regarding the war's longevity, coupled with manufacturing delays, has compelled some enterprises to either diminish or entirely halt activities in the region.

The extensive closures and damage to infrastructure, including the loss of Vetropack's glass factory in Kyiv, have resulted in an uncertain business environment. This has compelled biopolymer manufacturers to explore alternate production centers and reorganize supply chains, especially in Europe and Asia-Pacific, to alleviate the effects on production and distribution.

Product

  • Bio-PE
  • Bio-PET
  • PLA
  • PHA
  • Biodegradable Plastics
  • Other

Application

  • Films
  • Bottle
  • Fibers
  • Seed Coating
  • Vehicle Components
  • Medical Implants
  • Other

End-User

  • Packaging
  • Consumer Goods
  • Automotive
  • Textiles
  • Agriculture
  • Other

By Region

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Spain
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • In April 2023, NatureWorks launched the newest 'Ingeo' biopolymer solution, enhancing strength and softness in biobased nonwovens for hygiene applications.
  • In November 2022, Total Energies Corbion announced a long-term partnership with BGF, concentrating on application development and the provision of Luminy PLA.
  • In October 2022, Braskem declared its intention to augment its I'm greenTM biopolymer production capacity by 30%, allocating US$ 60 million for the initiative. This development, in collaboration with SOG Chemicals, seeks to double the existing capacity for I'm greenTM products.

Why Purchase the Report?

  • To visualize the global biopolymer market segmentation based on product, application, end-user and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of biopolymer market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as Excel consisting of key products of all the major players.

The global bioploymer market report would provide approximately 62 tables, 62 figures, and 224 Pages.

Target Audience 2024

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Product
  • 3.2. Snippet by Application
  • 3.3. Snippet by End-User
  • 3.4. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. A Sustainable Alternative to Petrochemical Plastics
      • 4.1.1.2. Strategic Initiatives Fueling Growth in the Emerging Regions
    • 4.1.2. Restraints
      • 4.1.2.1. Higher Prices Of Biodegradable Plastics
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Russia-Ukraine War Impact Analysis
  • 5.6. DMI Opinion

6. By Product

  • 6.1. Introduction
    • 6.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 6.1.2. Market Attractiveness Index, By Product
  • 6.2. Bio-PE*
    • 6.2.1. Introduction
    • 6.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 6.3. Bio-PET
  • 6.4. PLA
  • 6.5. PHA
  • 6.6. Biodegradable Plastics
  • 6.7. Other

7. By Application

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 7.1.2. Market Attractiveness Index, By Application
  • 7.2. Films*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Bottle
  • 7.4. Fibers
  • 7.5. Seed Coating
  • 7.6. Vehicle Components
  • 7.7. Medical Implants
  • 7.8. Other

8. By End-User

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 8.1.2. Market Attractiveness Index, By End-User
  • 8.2. Packaging *
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Consumer Goods
  • 8.4. Automotive
  • 8.5. Textiles
  • 8.6. Agriculture
  • 8.7. Other

9. By Region

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 9.1.2. Market Attractiveness Index, By Region
  • 9.2. North America
    • 9.2.1. Introduction
    • 9.2.2. Key Region-Specific Dynamics
    • 9.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 9.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 9.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.2.6.1. US
      • 9.2.6.2. Canada
      • 9.2.6.3. Mexico
  • 9.3. Europe
    • 9.3.1. Introduction
    • 9.3.2. Key Region-Specific Dynamics
    • 9.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 9.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 9.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.3.6.1. Germany
      • 9.3.6.2. UK
      • 9.3.6.3. France
      • 9.3.6.4. Italy
      • 9.3.6.5. Spain
      • 9.3.6.6. Rest of Europe
  • 9.4. South America
    • 9.4.1. Introduction
    • 9.4.2. Key Region-Specific Dynamics
    • 9.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 9.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 9.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.4.6.1. Brazil
      • 9.4.6.2. Argentina
      • 9.4.6.3. Rest of South America
  • 9.5. Asia-Pacific
    • 9.5.1. Introduction
    • 9.5.2. Key Region-Specific Dynamics
    • 9.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 9.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 9.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.5.6.1. China
      • 9.5.6.2. India
      • 9.5.6.3. Japan
      • 9.5.6.4. Australia
      • 9.5.6.5. Rest of Asia-Pacific
  • 9.6. Middle East and Africa
    • 9.6.1. Introduction
    • 9.6.2. Key Region-Specific Dynamics
    • 9.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 9.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User

10. Competitive Landscape

  • 10.1. Competitive Scenario
  • 10.2. Market Positioning/Share Analysis
  • 10.3. Mergers and Acquisitions Analysis

11. Company Profiles

  • 11.1. BASF SE*
    • 11.1.1. Company Overview
    • 11.1.2. Product Portfolio and Description
    • 11.1.3. Financial Overview
    • 11.1.4. Key Developments
  • 11.2. Biopolymer Industries
  • 11.3. Solanyl Biopolymers
  • 11.4. BioPolymer GmbH & Co. KG
  • 11.5. Ecovia Renewables Inc.
  • 11.6. BiologiQ, Inc.
  • 11.7. ADM
  • 11.8. DuPont
  • 11.9. Novamont
  • 11.10. BIOTEC

LIST NOT EXHAUSTIVE

12. Appendix

  • 12.1. About Us and Services
  • 12.2. Contact Us