デフォルト表紙
市場調査レポート
商品コード
1489465

衛星用太陽電池材料の世界市場2024-2031

Global Satellite Solar Cell Materials Market 2024-2031


出版日
ページ情報
英文 182 Pages
納期
即日から翌営業日
カスタマイズ可能
適宜更新あり
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=145.63円
衛星用太陽電池材料の世界市場2024-2031
出版日: 2024年06月05日
発行: DataM Intelligence
ページ情報: 英文 182 Pages
納期: 即日から翌営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

概要

衛星用太陽電池材料の世界市場は、2023年に4,410万米ドルに達し、2031年には1億2,400万米ドルに達すると予測され、予測期間2024-2031年のCAGRは13.8%で成長します。

宇宙探査、通信、地球観測の戦略的重要性を認識し、各国は衛星計画に多大な資源を投入しています。太陽光を電気に変換する太陽電池は衛星システムの必須部品であり、太陽電池に使用される鉱物の需要を押し上げています。世界の衛星用太陽電池材料産業が急速に拡大しているのは、世界各国の政府援助と投資によるところが大きいです。

日本の2022年度予算案によると、宇宙予算は14億米ドルを超え、これにはH3ロケット、技術試験衛星9号、情報収集衛星計画の建設が含まれます。22年度のインドの宇宙活動に対する推定支出計画は18億3,000万米ドルでした。2022年、韓国の科学情報通信省は、人工衛星、ロケット、その他の重要な宇宙機器を製造するため、6億1,900万米ドルの宇宙予算を計画しました。

2023年には、北米が世界の衛星用太陽電池材料市場の35%以上を占め、支配的な地域になると予想されています。この市場成長は、北米が宇宙技術革新と研究の震源地であり、世界最大の宇宙機関であるNASAの存在によるものです。2022年、米国政府は宇宙プログラムに約620億米ドルを支出し、世界最大の支出国となった。米国では、連邦政府機関はその子会社のために、予算と呼ばれる年間323億3,000万米ドルの資金を議会から得ています。

ダイナミクス

衛星小型化のための進歩の高まり

衛星の小型化、電力効率の向上、ミッションの長期化といった衛星設計の改善には、より効率的で長持ちする太陽電池材料の使用が必要です。小型衛星は、一般的な衛星のほぼすべての任務をわずかなコストでこなせるため、小型衛星コンステレーションの開発、打ち上げ、運用がより現実的になっています。

メーカー各社は、エネルギー変換効率を高めつつ、宇宙の過酷な条件に耐える材料を常に探しています。北米の需要は、毎年最も多くの小型衛星を製造している米国がほとんどを牽引しています。2017年から2022年の間に、北米の複数の参加者が596機の超小型衛星を軌道に打ち上げました。NASAは、これらの衛星の建造を目指すプログラムに参加しています。

政府投資の増加

政府の宇宙機関は、科学研究、国家安全保障、環境監視、災害救援のための衛星ミッションに資金を提供し続けています。軌道上で衛星の運用を維持するためには太陽光発電が必要であるため、こうしたプログラムは衛星用太陽電池材料の必要性を大幅に高めています。米国政府は、軍の衛星通信能力を75億米ドル向上させる計画です。

2020年7月、米国国防省はエアバス・ディフェンス・アンド・スペース社に、軍事能力を向上させるための応急措置として、新たな通信衛星を建設する6億3,000万米ドル相当の契約を与えました。2022年11月、ESAは、地球観測における欧州の優位性を維持し、航法サービスを強化し、米国との探査協力を継続するため、今後3年間の宇宙予算を25%増額するよう勧告しました。ESAは22カ国に対し、2023年から2025年にかけて約185億ユーロの予算を採択するよう求めました。

高いコストと限られた材料効率

宇宙用に高品質の太陽電池材料を開発・製造するには、多額の研究開発費が必要です。さらに、宇宙環境の厳しい基準を満たす材料を作るには、特殊な設備や方法が必要になることが多く、その結果、製造コストが上昇します。

材料科学の進歩にもかかわらず、太陽光を電力に変換する太陽電池の効率には依然として限界があります。さらに、放射線被曝、温度変動、小隕石の衝突など、宇宙空間の極限環境は、時間の経過とともに太陽電池材料の性能と寿命にダメージを与える可能性があります。このような制約があるため、衛星用太陽電池の広範な導入には限界があり、効率と耐久性を高めるための継続的な研究が必要となります。

目次

第1章 調査手法と調査範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 影響要因
    • 促進要因
      • 衛星小型化の進展
      • 政府投資の増加
    • 抑制要因
      • 高いコストと限られた材料効率
    • 機会
    • 影響分析

第5章 産業分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制分析
  • ロシア・ウクライナ戦争影響分析
  • DMIの見解

第6章 COVID-19分析

第7章 材料別

  • ガリウムヒ素(GaAs)
  • シリコン
  • 銅インジウムガリウムセレン化物(CIGS)
  • その他

第8章 軌道別

  • 高度楕円軌道(HEO)
  • 中軌道(MEO)
  • 低軌道(LEO)
  • 静止軌道(GEO)
  • 極軌道

第9章 用途別

  • 宇宙ステーション
  • 人工衛星
  • 探査車
  • その他

第10章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • イタリア
    • ロシア
    • その他欧州
  • 南米
    • ブラジル
    • アルゼンチン
    • その他南米
  • アジア太平洋
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他アジア太平洋地域
  • 中東・アフリカ

第11章 競合情勢

  • 競合シナリオ
  • 市況/シェア分析
  • M&A分析

第12章 企業プロファイル

  • SPECTROLAB
    • 会社概要
    • 製品ポートフォリオと説明
    • 財務概要
    • 主な発展
  • AZUR SPACE Solar Power GmbH
  • ROCKET LAB USA
  • Sharp Corporation
  • CESI S.p.A
  • Thales Alenia Space
  • Airbus
  • MicroLink Devices, Inc.
  • Mitsubishi Electric Corporation
  • Northrop Grumman

第13章 付録

目次
Product Code: MA8444

Overview

Global Satellite Solar Cell Materials Market reached US$ 44.1 million in 2023 and is expected to reach US$ 124.0 million by 2031, growing with a CAGR of 13.8% during the forecast period 2024-2031.

Recognizing the strategic importance of space exploration, communication and Earth observation, countries have given significant resources to satellite programs. Solar cells, which convert sunlight into electricity, are essential components of satellite systems, driving up demand for minerals used in solar cells. The global satellite solar cell materials industry is expanding rapidly, owing by large part to government assistance and investments around the globe.

According to Japan's proposed budget for 2022, the space budget would exceed US$ 1.4 billion, which includes the construction of the H3 rocket, Engineering Test Satellite-9 and the country's Information Gathering Satellite program. The estimated spending plan for India's space activities in FY22 was US$ 1.83 billion. In 2022, South Korea's Ministry of Science and ICT planned a space budget of US$ 619 million for producing satellites, rockets and other critical space equipment.

In 2023, North America is expected to be the dominant region with over 35% of the global satellite solar cell materials market. The market growth is due to North America's status as the epicenter of space innovation and research, as well as the presence of NASA, the world's largest space agency. In 2022, U.S. government spent about US$ 62 billion on space programs, making it the world's largest spender. In U.S., federal agencies receive funding from Congress of US$ 32.33 billion per year, called budgetary resources, for its subsidiaries.

Dynamics

Rising Advancements for Satellite Miniaturization

Satellite improvements in design like downsizing, increased power efficiency and longer mission durations necessitate the use of more efficient and long-lasting solar cell materials. The capacity of small satellites to perform virtually all of the duties of a typical satellite at a fraction of the cost has made it more feasible to develop, launch and operate small satellite constellations.

Manufacturers are constantly looking for materials that can resist the harsh conditions of space while increasing energy conversion efficiency. The demand in North America is mostly driven by U.S., which produces the most small satellites each year. Between 2017 and 2022, several participants in North America launched 596 nanosatellites into orbit. NASA participates in programs aiming at building these satellites.

Rising Government Investments

Government space agencies continue to fund satellite missions for scientific research, national security, monitoring the environment and disaster relief. The programs greatly increase the need for satellite solar cell materials, as solar electricity is required to maintain satellite operations in orbit. UK government plans to upgrade the armed forces' satellite telecommunication capability by US$ 7.5 billion.

In July 2020, UK Ministry of Defence granted Airbus Defence and Space a contract worth US$ 630 million to build a new telecommunications satellite as a stopgap to improve military capabilities. In November 2022, ESA recommended a 25% increase in space funding for the next three years to preserve Europe's dominance in Earth observation, enhance navigation services and continue to collaborate with U.S. on exploration. ESA urged its 22 states to adopt a budget of approximately EUR 18.5 billion for 2023-2025.

High Costs and Limited Material Efficiency

Developing and fabricating high-quality solar cell materials for space applications necessitates significant R&D spending. Furthermore, the creation of materials that fulfill the demanding standards for space settings frequently necessitates specialized facilities and methods, resulting in increased manufacturing costs.

Despite advances in material science, solar cells' efficiency at converting sunlight into power remains restricted. Furthermore, the extreme conditions of space, like as radiation exposure, temperature fluctuations and micrometeoroid impacts, can damage the performance and longevity of solar cell materials over time. The restrictions restrict the broad implementation of satellite solar cells, requiring continued research to enhance efficiency and durability.

Segment Analysis

The global satellite solar cell materials market is segmented based on material, orbit, application and region.

Rising Number of Satellite Launches Drives the Segment Growth

Satellite is expected to be the dominant segment with over 30% of the market during the forecast period 2024-2031. The increasing frequency of satellite launches for a variety of purposes, including communication, navigation, earth observation, scientific research and defense, is a major driver of satellite solar cell materials. Each satellite requires solar cells to power its operations, resulting in a steady demand for these components.

Market participants are forging alliances, making acquisitions and merging to enhance their position and extend their products in the market. For example, in May 2023, Arabsat, a global supplier of television and telecommunications satellites, launched its Arabsat Badr-8 with a SpaceX Falcon 9 rocket from Cape Canaveral, Florida, U.S. Badr-8 intends to provide innovative satellite services to customers.

Geographical Penetration

Rising Investments in Space Infrastructure in Asia-Pacific

Asia-Pacific is expected to be the fastest growing region in the global satellite solar cell materials market covering over 20% of the market. The market for satellite solar cell materials is expanding rapidly as a result of growing investment in space-based infrastructure. For example, in September 2023, NewSpace India Limited declared a US$ 1.2 billion investment over the following five years. The program aims to increase industry engagement and encourage commercial enterprises in the sector.

The demand for secure and efficient power generation systems to support space-related activities is increasing as governments, private corporations and international organizations invest more in them. Materials used in satellite solar cells, the primary power source for satellites in orbit, will benefit from this advancement. In addition to increasing demand for solar cell materials, funding for space-based infrastructure projects promotes innovation and technological breakthroughs in the solar cell industry.

Competitive Landscape

The major global players in the market include SPECTROLAB, AZUR SPACE Solar Power GmbH, ROCKET LAB USA, Sharp Corporation, CESI S.p.A, Thales Alenia Space, Airbus, MicroLink Devices, Inc., Mitsubishi Electric Corporation and Northrop Grumman.

COVID-19 Impact Analysis

The epidemic showed the significance of resilience and continuity in essential infrastructure, like satellite communication and observation systems. As a result, there may be more investment in satellite technology for applications like remote sensing, telecommunications and disaster management. As governments and corporations emphasize the upgrading of satellite infrastructure, it has the potential to increase long-term demand for satellite solar cells and materials.

The transition to remote work arrangements and travel constraints presented issues for satellite makers and their supply chains. Lack of in-person encounters hampered collaboration and coordination in the design, testing and production of satellite components, particularly solar cells. It caused delays in product development and distribution.

Russia-Ukraine War Impact

Ukraine is a major global source of raw materials like titanium, which is used to make satellite components like solar cells. Any interruption in the supply chain caused by the conflict could result in material shortages or price rises, affecting satellite solar cell manufacture. The dispute might cause geopolitical instability, affecting trade relations and investment decisions.

Satellite production necessitates globally collaboration and supply networks and any geopolitical friction can disrupt these partnerships, influencing the availability and cost of solar cell components. In contrast, the conflict could raise demand for satellite technology for surveillance and communication purposes, particularly for organizations and governments involved in the conflict or attempting to monitor it.

By Material

  • Gallium Arsenide (GaAs)
  • Silicon
  • Copper Indium Gallium Selenide (CIGS)
  • Others

By Orbit

  • Highly Elliptical Orbit (HEO)
  • Medium Earth Orbit (MEO)
  • Low Earth Orbit (LEO)
  • Geostationary Orbit (GEO)
  • Polar Orbit

By Application

  • Space Stations
  • Satellite
  • Rovers
  • Others

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Russia
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • In 2024, Australia's national research agency, CSIRO, created cutting-edge printed flexible solar cell technology, which was successfully launched into space on March 5 atop Australia's largest private satellite, Optimus-1, as part of SpaceX's Transporter-10 mission. CSIRO is researching the possibilities of printed flexible solar cells as a stable energy source for future space ventures, in partnership with the Australian space transportation supplier, Space Machines Company.
  • In 2023, LONGi has set the new world record for silicon-perovskite tandem solar cells by achieving 33.9 percent efficiency. The achievement has been verified by U.S. National Renewable Energy Laboratory, according to a corporate press release.

Why Purchase the Report?

  • To visualize the global satellite solar cell materials market segmentation based on material, orbit, application and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of satellite solar cell materials market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as excel consisting of key products of all the major players.

The global satellite solar cell materials market report would provide approximately 62 tables, 56 figures and 182 pages.

Target Audience 2024

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1.Methodology and Scope

  • 1.1.Research Methodology
  • 1.2.Research Objective and Scope of the Report

2.Definition and Overview

3.Executive Summary

  • 3.1.Snippet by Material
  • 3.2.Snippet by Orbit
  • 3.3.Snippet by Application
  • 3.4.Snippet by Region

4.Dynamics

  • 4.1.Impacting Factors
    • 4.1.1.Drivers
      • 4.1.1.1.Rising Advancements for Satellite Miniaturization
      • 4.1.1.2.Rising Government Investments
    • 4.1.2.Restraints
      • 4.1.2.1.High Costs and Limited Material Efficiency
    • 4.1.3.Opportunity
    • 4.1.4.Impact Analysis

5.Industry Analysis

  • 5.1.Porter's Five Force Analysis
  • 5.2.Supply Chain Analysis
  • 5.3.Pricing Analysis
  • 5.4.Regulatory Analysis
  • 5.5.Russia-Ukraine War Impact Analysis
  • 5.6.DMI Opinion

6.COVID-19 Analysis

  • 6.1.Analysis of COVID-19
    • 6.1.1.Scenario Before COVID-19
    • 6.1.2.Scenario During COVID-19
    • 6.1.3.Scenario Post COVID-19
  • 6.2.Pricing Dynamics Amid COVID-19
  • 6.3.Demand-Supply Spectrum
  • 6.4.Government Initiatives Related to the Market During Pandemic
  • 6.5.Manufacturers Strategic Initiatives
  • 6.6.Conclusion

7.By Material

  • 7.1.Introduction
    • 7.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 7.1.2.Market Attractiveness Index, By Material
  • 7.2.Gallium Arsenide (GaAs)*
    • 7.2.1.Introduction
    • 7.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3.Silicon
  • 7.4.Copper Indium Gallium Selenide (CIGS)
  • 7.5.Others

8.By Orbit

  • 8.1.Introduction
    • 8.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Orbit
    • 8.1.2.Market Attractiveness Index, By Orbit
  • 8.2.Highly Elliptical Orbit (HEO)*
    • 8.2.1.Introduction
    • 8.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3.Medium Earth Orbit (MEO)
  • 8.4.Low Earth Orbit (LEO)
  • 8.5.Geostationary Orbit (GEO)
  • 8.6.Polar Orbit

9.By Application

  • 9.1.Introduction
    • 9.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.1.2.Market Attractiveness Index, By Application
  • 9.2.Space Stations*
    • 9.2.1.Introduction
    • 9.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3.Satellite
  • 9.4.Rovers
  • 9.5.Others

10.By Region

  • 10.1.Introduction
    • 10.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 10.1.2.Market Attractiveness Index, By Region
  • 10.2.North America
    • 10.2.1.Introduction
    • 10.2.2.Key Region-Specific Dynamics
    • 10.2.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 10.2.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Orbit
    • 10.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.2.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.2.6.1.U.S.
      • 10.2.6.2.Canada
      • 10.2.6.3.Mexico
  • 10.3.Europe
    • 10.3.1.Introduction
    • 10.3.2.Key Region-Specific Dynamics
    • 10.3.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 10.3.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Orbit
    • 10.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.3.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.3.6.1.Germany
      • 10.3.6.2.UK
      • 10.3.6.3.France
      • 10.3.6.4.Italy
      • 10.3.6.5.Russia
      • 10.3.6.6.Rest of Europe
  • 10.4.South America
    • 10.4.1.Introduction
    • 10.4.2.Key Region-Specific Dynamics
    • 10.4.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 10.4.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Orbit
    • 10.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.4.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.4.6.1.Brazil
      • 10.4.6.2.Argentina
      • 10.4.6.3.Rest of South America
  • 10.5.Asia-Pacific
    • 10.5.1.Introduction
    • 10.5.2.Key Region-Specific Dynamics
    • 10.5.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 10.5.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Orbit
    • 10.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.5.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.5.6.1.China
      • 10.5.6.2.India
      • 10.5.6.3.Japan
      • 10.5.6.4.Australia
      • 10.5.6.5.Rest of Asia-Pacific
  • 10.6.Middle East and Africa
    • 10.6.1.Introduction
    • 10.6.2.Key Region-Specific Dynamics
    • 10.6.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 10.6.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Orbit
    • 10.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application

11.Competitive Landscape

  • 11.1.Competitive Scenario
  • 11.2.Market Positioning/Share Analysis
  • 11.3.Mergers and Acquisitions Analysis

12.Company Profiles

  • 12.1.SPECTROLAB*
    • 12.1.1.Company Overview
    • 12.1.2.Product Portfolio and Description
    • 12.1.3.Financial Overview
    • 12.1.4.Key Developments
  • 12.2.AZUR SPACE Solar Power GmbH
  • 12.3.ROCKET LAB USA
  • 12.4.Sharp Corporation
  • 12.5.CESI S.p.A
  • 12.6.Thales Alenia Space
  • 12.7.Airbus
  • 12.8.MicroLink Devices, Inc.
  • 12.9.Mitsubishi Electric Corporation
  • 12.10.Northrop Grumman

LIST NOT EXHAUSTIVE

13.Appendix

  • 13.1.About Us and Services
  • 13.2.Contact Us