デフォルト表紙
市場調査レポート
商品コード
1446819

小型モジュール炉の世界市場:2024~2031年

Global Small Modular Reactor Market - 2024-2031

出版日: | 発行: DataM Intelligence | ページ情報: 英文 205 Pages | 納期: 約2営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=160.88円
小型モジュール炉の世界市場:2024~2031年
出版日: 2024年02月13日
発行: DataM Intelligence
ページ情報: 英文 205 Pages
納期: 約2営業日
ご注意事項 :
本レポートは最新情報反映のため適宜更新し、内容構成変更を行う場合があります。ご検討の際はお問い合わせください。
  • 全表示
  • 概要
  • 目次
概要

世界の小型モジュール炉の市場規模は、2023年に95億米ドルに達し、2024~2031年の予測期間中にCAGR 3.8%で成長し、2031年には128億米ドルに達すると予測されています。

小型モジュール炉は、より小型でモジュール式に設計されており、配備と拡張性を提供します。世界の小型モジュール炉市場は、発電、遠隔地やオフグリッド、鉱業、資源採掘など様々な分野から需要が増加しています。小型モジュール炉は、従来の大型原子炉と比較して、独自の安全設計と冷却システムを備えており、安全性に優れています。

北米は、ロシアやカナダといった国々が主要な貢献国であり、小型モジュール炉市場の著しい成長を示しました。北米では、小型モジュール炉は従来の燃料への依存を減らすエネルギーミックスを提供します。エネルギー効率を高め、脆弱性の低減につながります。例えば、2023年3月15日、GE Hitachi BWRX-300はカナダでマイルストーンを達成する小型モジュラ炉を立ち上げます。プロジェクトは2つのフェーズに分割され、これらのフェーズは最初の小型モジュール炉技術であるBWRX300によって完了します。

ダイナミクス

低炭素水素製造の成長要因

小型モジュール炉は、水素製造に低炭素で持続可能なエネルギーソリューションを提供します。大量の低炭素ガスを発生させることができるため、水素製造に適しています。小型モジュール炉は温室効果ガスの排出が少なく、脱炭素化により化石燃料に代わるクリーンな水素の需要が生まれました。小型モジュール炉はモジュール設計で、展開の柔軟性と拡張性を可能にします。遠隔地や仮設を含むさまざまな場所に容易に輸送・設置できるため、大規模な施設の設置が困難な地域での水素製造が可能になります。

例えば、Sumitomo Corporationは2023年6月12日、英国でクリーンな水素製造設備を提供するRolls-Royceの小型モジュール炉を支援します。Rolls-Royceが実施した研究では、低炭素水素製造のための電解に使用される小型モジュール炉の熱と電力の両方を分析しています。Rolls-Royceの小型水炉は、英国のジェネリック設計評価の第2段階を完了しました。

原子力の汎用性

原子力は、よりクリーンな社会の実現につながる汎用性を提供します。太陽光発電、風力発電、水力発電、太陽光発電と原子力を統合したようなクリーン技術におけるさまざまな進歩は、高効率の持続可能なエネルギーシステムを提供します。原子力エネルギーの大きな進歩は、安定した信頼性の高い電力供給を保証するベースロード電源を持っていることです。

原子力はエネルギー密度が高く、大量の電力を生み出します。遠隔地のコミュニティや工業団地など、幅広い応用が可能です。固有の安全機能と建設コストの削減により、クリーンエネルギーインフラの拡大を目指す国々にとって魅力的な選択肢となっています。

小型モジュール炉の限界

小型モジュール炉の建設には、従来の大型原子力発電所と比較して比較的高額な投資が必要となります。小型モジュラー型原子炉の開発、ライセンシング、建設には、多額の資金が必要となる場合があります。小型モジュール炉は一般に、従来の原子炉に比べて出力が小さいです。

小型モジュール炉の承認・認可のための規制プロセスは、長期化・複雑化する可能性があります。原子力技術に関連する政府の厳しい安全基準や規制要件は、小型モジュール炉の導入に課題や遅れをもたらす可能性があります。国民の抵抗を克服し、社会的な受容を得ることは、小型モジュール炉の普及にとって重要な課題となりえます。

目次

第1章 調査手法と調査範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 影響要因
    • 促進要因
      • 低炭素水素製造の成長要因
      • 原子力の汎用性
    • 抑制要因
      • 小型モジュール炉の限界
    • 機会
    • 影響分析

第5章 産業分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制分析
  • ロシア・ウクライナ戦争の影響分析
  • DMIの見解

第6章 COVID-19分析

第7章 原子炉別

  • 軽水炉
  • 重水炉
  • 高温ガス炉
  • その他

第8章 接続性別

  • オフグリッド
  • グリッド接続

第9章 立地別

  • 陸上
  • 海洋

第10章 展開別

  • マルチモジュール発電所
  • シングルモジュール発電所

第11章 用途別

  • 発電
  • 脱塩
  • プロセス熱
  • 産業用
  • 水素製造

第12章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • イタリア
    • ロシア
    • その他の欧州
  • 南米
    • ブラジル
    • アルゼンチン
    • その他の南米
  • アジア太平洋
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他のアジア太平洋
  • 中東・アフリカ

第13章 競合情勢

  • 競合シナリオ
  • 市場ポジショニング/シェア分析
  • M&A分析

第14章 企業プロファイル

  • Westinghouse Electric Company LLC
  • NuScale Power, LLC.
  • Terrestrial Energy Inc.
  • Moltex Energy
  • GE Hitachi Nuclear Energy
  • X Energy, LLC.
  • Rolls-Royce
  • Toshiba Energy Systems & Solutions Corporation
  • LeadCold Reactors
  • General Atomics

第15章 付録

目次
Product Code: EP5311

Overview

The Global Small Modular Reactor Market reached US$ 9.5 billion in 2023 and is expected to reach US$ 12.8 billion by 2031 growing with a CAGR of 3.8% during the forecast period 2024-2031.

Small modular reactors are designed to be smaller and modular, which provides deployment and scalability. The global small modular reactor market demand increases from various sectors such as power generation, remote and off-grid, mining and resource extraction. The small modular reactor has unique safety designs and cooling systems that offer safety characteristics when compared with traditional large reactors.

North America witnessed significant growth in the small modular reactor market, countries like Russia and Canada being major contributors. In North America, a small modular reactor offers an energy mix that reduces dependency on traditional fuels. It enhances energy efficiency and leads to decrease vulnerability. For instance, on 15 March 2023, GE Hitachi BWRX-300 launches a small modulator reactor that achieves milestones in Canada. The project is segmented into two phases and these phases are completed by BWRX300 the first small modular reactor technology.

Dynamics

Growth Factors for Low-Carbon Hydrogen Production

Small modular reactors offer low-carbon and sustainable energy solution for the production of hydrogen. It can generate large amounts of low carbon which makes them suitable for hydrogen production. Small modular reactors offer less greenhouse gas emissions and decarbonization created a demand for clean hydrogen as an alternative to fossil fuels. Small modular reactors have a modular design, allowing for flexibility in deployment and scalability. It can be easily transported and installed in various locations, including remote or temporary settings, enabling hydrogen production in areas where it may be challenging to establish large-scale facilities.

For instance, on 12 Jun 2023, Sumitomo Corporation support Rolls-Royce's small modular reactors that provide clean hydrogen facility in UK. The study conducted by Rolls-Royce in which they analyze both heat and power from small modular reactor used by electrolyzes for low-carbon production of hydrogen. Rolls-Royce small water reactor has processed the second stage of UK generic design assessments.

Versatile Nature of Nuclear Power

Nuclear power offers versatility that leads to achieving a cleaner society. Various advancements in clean technologies such as solar, wind, hydropower and solar power integrated with nuclear energy provide highly efficient sustainable energy systems. The major advancement of nuclear energy, it has baseload power that ensures a constant and reliable electric supply.

Nuclear power has high energy density which generates a large amount of electricity. It offers a wide range of application which includes remote communities and industrial complexes. Its inherent safety features and reduced construction costs make them an attractive choice for countries looking to expand their clean energy infrastructure.

Limitations of Small Modular Reactors

Initially building small modular reactors require an investment that can be relatively high compared to traditional larger nuclear power plants. The development, licensing and construction of small modular reactors may involve significant financial resources. Small modular reactors generally have a smaller power output compared to conventional nuclear reactors.

The regulatory process for approving and licensing small modular reactors can be lengthy and complex. Government stringent safety standards and regulatory requirements associated with nuclear technology can pose challenges and delays in bringing small modular reactors. Overcoming public resistance and gaining social acceptance can be a significant challenge for the widespread adoption of small modular reactors.

Segment Analysis

The global small modular reactor is segmented based on reactor, connectivity, location, deployment, applications and region.

Advancement of Light-water Small Modular Reactor

Small modular reactor light water nuclear reactors are used for easy transportation. The small modular reactor has various advancements that offer mobility and flexibility in situations where power is needed in remote or temporary settings, such as mining operations, military bases, disaster response or small communities.

Light-water small modular reactors offer potential cost advantages compared to larger nuclear power plants. The reduced size and weight can lead to lower construction and maintenance costs, streamlined manufacturing processes and shorter project timelines. The light-water small modular reactor uses renewable energy resources which provides consistent and reliable power generation.

Geographical Penetration

Silicone Market Growth in Asia-Pacific Driven by Innovations and Infrastructure Development

North America and Asia-Pacific witnessed a rise in demand for small modular reactors. Advancements in innovations and technology rapidly growing in these countries such as China, India, Russia and Canada. The countries have major nuclear reactor plants. Collaboration between governments which leads to increase growth and development of infrastructure in these countries, which leads to increased demand for small modular reactors market.

For instance, on 4 June 2023, In an interview with Science and technology ministry, India said that they working on developing new technologies such as small modular reactors which holds a capacity of 300MW. The minister also said first time in India, the Indian government approved a proposal to construct 10 nuclear reactors. The innovation and initiative will boost the growth of the small modular reactor market.

COVID-19 Impact Analysis

The economic uncertainty cause during the pandemic has affected the financing of small modular reactor projects. Investors have taken back their investments which led to a slowdown in funding for new projects. The uncertainty surrounding energy markets and future energy demand has also made it difficult to secure long-term financing for small modular reactors deployments.

The pandemic has affected the regulatory processes involved in the licensing and approval of small modular reactors projects. Safety assessments, inspections and public consultations have been impacted, leading to delays in the regulatory approval timeline. Governments change their priority towards short term energy needs.

Russia-Ukraine War Impact Analysis

Government policies and trade affected the growth of the small modular reactor market. Due to war, there is economic instability and cost fluctuation which affected the overall demand of the small modular reactor market. Due to conflict, there is a limitation and trade restriction that limits the supply chain management of small modular reactor between countries.

For instance, on 5 oct 2022, Due to war between Russia and Ukraine has brought attention to the challenges and vulnerabilities associated with small modular reactors (SMRs) in wartime situations. Russian army seizes Zaporizhzhia nuclear power plant from Ukraine which raise safety concern. The attacks on the Zaporizhzhia plant, involving shelling and rocket strikes, have resulted in operational disruptions and forced shutdowns, impacting the electricity supply in Ukraine.

By Reactors

  • Light-water Reactor
  • Heavy-water Reactor
  • High-temperature Reactor
  • Others

By Connectivity

  • Off-grid
  • Grid-connected

By Location

  • Land
  • Marine

By Deployment

  • Multi-module Power Plant
  • Single-module Power Plant

By Application

  • Power Generation
  • Desalination
  • Process Heat
  • Industrial
  • Hydrogen Production

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Russia
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • On 4 Jun 2023, Oklos plans to open two nuclear power plants. On May 18th the agreement is signed by DOE that will host two commercial powerhouses will provide 30 MW clean electric power and 50 MW clean heating opportunities.
  • On 7 Jun 2023, Collaboration between Fortum and Westing House Electric Company for supplying safe and innovative nuclear technology and also sign MoU for the development and deployment of nuclear technology in Finland.
  • On 27 Jan 2023, Agreement between CANDU Energy Inc and Ontario power generation that they will deploy BWRX-300 small modular reactor before the end of this financial year.

Competitive Landscape

The major global players in the market include Westinghouse Electric Company LLC, NuScale Power, LLC., Terrestrial Energy Inc., Moltex Energy, GE Hitachi Nuclear Energy, X Energy, LLC., Rolls-Royce, Toshiba Energy Systems & Solutions Corporation, LeadCold Reactors, General Atomics.

Why Purchase the Report?

  • To visualize the global small modular reactor market segmented based on reactor, connectivity, location, deployment, application and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of small modular reactor market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as excel consisting of key product of all the major players.

The global small modular reactor market report would provide approximately 77 tables, 74 figures and 205 Pages

Target Audience 2024

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet By Reactor
  • 3.2. Snippet By Connectivity
  • 3.3. Snippet By Location
  • 3.4. Snippet By Deployment
  • 3.5. Snippet By Application
  • 3.6. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Driver
      • 4.1.1.1. Growth Factors for Low-Carbon Hydrogen Production
      • 4.1.1.2. Versatile Nature of Nuclear Power
    • 4.1.2. Restraints
      • 4.1.2.1. Limitations of Small Modular Reactors
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Russia-Ukraine War Impact Analysis
  • 5.6. DMI Opinion

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Reactor

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Reactor
    • 7.1.2. Market Attractiveness Index, By Reactor
  • 7.2. Light-water Reactor*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Heavy-water Reactor
  • 7.4. High-temperature Reactor
  • 7.5. Others

8. By Connectivity

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Connectivity
    • 8.1.2. Market Attractiveness Index, By Connectivity
  • 8.2. Off-grid*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Grid-connected

9. By Location

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Location
    • 9.1.2. Market Attractiveness Index, By Location
  • 9.2. Land*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Marine

10. By Deployment

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment
    • 10.1.2. Market Attractiveness Index, By Deployment
  • 10.2. Multi-module Power Plant *
    • 10.2.1. Introduction
    • 10.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 10.3. Single-module Power Plant

11. By Application

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.1.2. Market Attractiveness Index, By Application
  • 11.2. Power Generation*
    • 11.2.1. Introduction
    • 11.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 11.3. Desalination
  • 11.4. Process Heat
  • 11.5. Industrial
  • 11.6. Hydrogen Production

12. By Region

  • 12.1. Introduction
    • 12.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 12.1.2. Market Attractiveness Index, By Region
  • 12.2. North America
    • 12.2.1. Introduction
    • 12.2.2. Key Region-Specific Dynamics
    • 12.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Reactor
    • 12.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Connectivity
    • 12.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Location
    • 12.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment
    • 12.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 12.2.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.2.8.1. U.S.
      • 12.2.8.2. Canada
      • 12.2.8.3. Mexico
  • 12.3. Europe
    • 12.3.1. Introduction
    • 12.3.2. Key Region-Specific Dynamics
    • 12.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Reactor
    • 12.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Connectivity
    • 12.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Location
    • 12.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment
    • 12.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 12.3.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.3.8.1. Germany
      • 12.3.8.2. UK
      • 12.3.8.3. France
      • 12.3.8.4. Italy
      • 12.3.8.5. Russia
      • 12.3.8.6. Rest of Europe
  • 12.4. South America
    • 12.4.1. Introduction
    • 12.4.2. Key Region-Specific Dynamics
    • 12.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Reactor
    • 12.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Connectivity
    • 12.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Location
    • 12.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment
    • 12.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 12.4.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.4.8.1. Brazil
      • 12.4.8.2. Argentina
      • 12.4.8.3. Rest of South America
  • 12.5. Asia-Pacific
    • 12.5.1. Introduction
    • 12.5.2. Key Region-Specific Dynamics
    • 12.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Reactor
    • 12.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Connectivity
    • 12.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Location
    • 12.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment
    • 12.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 12.5.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.5.8.1. China
      • 12.5.8.2. India
      • 12.5.8.3. Japan
      • 12.5.8.4. Australia
      • 12.5.8.5. Rest of Asia-Pacific
  • 12.6. Middle East and Africa
    • 12.6.1. Introduction
    • 12.6.2. Key Region-Specific Dynamics
    • 12.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Reactor
    • 12.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Connectivity
    • 12.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Location
    • 12.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment
    • 12.6.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application

13. Competitive Landscape

  • 13.1. Competitive Scenario
  • 13.2. Market Positioning/Share Analysis
  • 13.3. Mergers and Acquisitions Analysis

14. Company Profiles

  • 14.1. Westinghouse Electric Company LLC *
    • 14.1.1. Company Overview
    • 14.1.2. Product Portfolio and Description
    • 14.1.3. Financial Overview
    • 14.1.4. Key Developments
  • 14.2. NuScale Power, LLC.
  • 14.3. Terrestrial Energy Inc.
  • 14.4. Moltex Energy
  • 14.5. GE Hitachi Nuclear Energy
  • 14.6. X Energy, LLC.
  • 14.7. Rolls-Royce
  • 14.8. Toshiba Energy Systems & Solutions Corporation
  • 14.9. LeadCold Reactors
  • 14.10. General Atomics

LIST NOT EXHAUSTIVE

15. Appendix

  • 15.1. About Us and Services
  • 15.2. Contact Us