デフォルト表紙
市場調査レポート
商品コード
1446801

CCUS(炭素回収・利用・貯留)の世界市場 2024-2031

Global Carbon Capture, Utilization, and Storage Market - 2024-2031

出版日: | 発行: DataM Intelligence | ページ情報: 英文 217 Pages | 納期: 約2営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=157.53円
CCUS(炭素回収・利用・貯留)の世界市場 2024-2031
出版日: 2024年02月13日
発行: DataM Intelligence
ページ情報: 英文 217 Pages
納期: 約2営業日
ご注意事項 :
本レポートは最新情報反映のため適宜更新し、内容構成変更を行う場合があります。ご検討の際はお問い合わせください。
  • 全表示
  • 概要
  • 目次
概要

概要

世界のCCUS(炭素回収・利用・貯留)市場は、2023年に30億米ドルに達し、2031年には165億米ドルに達すると予測され、予測期間2024年のCAGRは24.0%で成長する見込みです。

気候変動に対する懸念とCO2排出削減におけるCCUSの重要性に対する社会的意識の高まりが、CCUSソリューションの需要に拍車をかけています。利害関係者の関与、地域社会への働きかけ、教育キャンペーンなどが、CCUSの取り組みに対する受け入れと支持を高め、市場拡大を後押ししています。

政府、産業界、研究機関、国際機関の協力により、CCUS分野における知識の交換、技術の移転、能力の強化が促進されています。国際的な協力やイニシアティブは、CCUSプロジェクトの世界の実施を促進し、市場成長の一翼を担っています。

国際的には、石油・ガス、化学、発電など複数のセクターが炭素排出の実質的な原因となっています。この地域の産業が堅調であることから、政府の環境規制を遵守し、排出を抑制するためのCCUS技術へのニーズが高まっています。二酸化炭素(CO2)の貯留には、石油・ガス埋蔵量、深部地層、枯渇した石油・塩水帯水層、その他の地質学的貯留資源が利用されます。貯留可能な場所があるため、CCUSプロジェクトは世界的に展開しやすくなっています。

北米は、世界の炭素回収・利用・貯留市場の中で突出した地位を占めていますが、これは主にCO2排出量削減を目的とした政府の取り組みが活発化しているためです。例えば、連邦政府は、二酸化炭素(CO2)排出の回収を目的とした技術の進歩や導入にインセンティブを与える財政支援を提供しており、これにより米国のCO2排出削減努力を支援しています。現在、米国では15のCCS施設が稼動しており、合計で全米の年間CO2排出量の0.4%を回収することができます。さらに、建設中またはさまざまな開発段階にあるCCS施設が121カ所あります。

ダイナミクス

炭素回収・利用・貯留における技術の進歩

CO2排出の吸収のために、先進的な回収方法が開発されています。最も進んだ方法には、燃焼後回収、酸素燃焼、燃焼前回収などがあります。回収されたCO2を利用する技術が進歩した結果、新しい製品や用途が開発されています。炭素の利用とは、回収したCO2を燃料、化学物質、建築資材、消費財などの有用な商品に変えることです。化学反応、バイオテクノロジー、マーケットカタリストの技術開拓は、潜在的な応用範囲を広げ、CO2回収の新たな市場と収入源を開拓しています。

技術革新は、CO2の地中貯留をより安全で費用対効果の高いものにしています。先進的なモニタリングと検証技術により、貯留場所の特性をよりよく把握し、注入されたCO2をより正確に追跡することが可能になり、潜在的な漏出に関連するリスクを低減しています。さらに、CO2貯留にさらなる柔軟性と拡張性を提供する、鉱物化や貯留を伴う直接空気回収などの代替貯留オプションの調査も進行中です。これらの技術に対する認可の増加は、予測期間中の市場成長を後押しします。例えば、2023年6月23日、Rotoboostの炭素回収のための熱触媒分解(TCD)プロセスは、Bureau Veritas Marine &Offshoreから原則承認(AiP)を受けた。Rotoboost社の技術は、液体触媒を利用して天然ガスを水素と固体炭素に変換します。製造された水素は、燃料電池の燃料として、あるいは燃焼エンジンやガス燃焼ボイラーの混合燃料として利用することができます。

世界的に高まるCO2排出量削減への関心

気候変動がもたらす悪影響が広く認識されるにつれ、政府、企業、個人は、温室効果ガスの排出削減にますます熱心に取り組んでいます。包括的な排出削減戦略の一環としてCCUS技術を導入することは、このような関心の高まりによって可能となった。CO2排出量を削減するために、世界中の政府によってより厳しい規則や目標が実施されています。排出削減目標を達成し、問題を回避するために、産業界は現在の規制環境からCCUS技術の調査と投資を奨励されています。

投資家の要求、顧客の嗜好、法的要件に沿うため、持続可能性の目標を企業計画に組み込む企業が増えています。CCUS技術を実用化することで、企業は二酸化炭素排出量の削減と気候変動への対応に取り組んでいることを示すことができます。CCUS技術の継続的な開発により、回収効率の向上、利用アプリケーション、貯蔵容量など、これらのソリューションはますます実現可能性が高まり、二酸化炭素排出量の削減を目指すセクターにとって魅力的なものとなっています。

炭素回収・貯留の高コスト

発電所や工場から排出される二酸化炭素が環境に流入するのを防ぐため、CCSシステムは、排出された二酸化炭素を地下に閉じ込めて貯蔵します。CCS技術の開発と実施には、多額の研究開発・実証費用がかかります。この費用には、回収施設の設計・建設、回収したCO2の輸送インフラ、貯蔵施設などが含まれます。

CCS施設の運営と維持には、回収プロセスのためのエネルギー、モニタリング機器、貯蔵場所の完全性を確保するための定期的なメンテナンスなど、継続的な支出が必要となります。規制要件の遵守とCCSプロジェクトの許可取得は、全体的なコストに上乗せされます。これには、貯蔵場所の環境基準への適合や輸送インフラの安全確保も含まれます。

目次

第1章 調査手法と調査範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 影響要因
    • 促進要因
      • 炭素回収・利用・貯留の技術的進歩
      • 世界のCO2排出削減への関心の高まり
    • 抑制要因
      • 炭素回収・貯留の高コスト
    • 機会
    • 影響分析

第5章 産業分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制分析
  • ロシア・ウクライナ戦争の影響分析
  • DMIの見解

第6章 COVID-19分析

第7章 サービス別

  • キャプチャ
  • 輸送
  • 利用
  • ストレージ

第8章 技術別

  • 燃焼前捕捉
  • 酸素燃焼回収
  • 燃焼後回収

第9章 エンドユーザー別

  • 石油・ガス
  • 発電
  • 鉄鋼
  • 化学・石油化学
  • セメント
  • その他

第10章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • イタリア
    • スペイン
    • その他欧州
  • 南米
    • ブラジル
    • アルゼンチン
    • その他南米
  • アジア太平洋
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他アジア太平洋地域
  • 中東・アフリカ

第11章 競合情勢

  • 競合シナリオ
  • 市況/シェア分析
  • M&A分析

第12章 企業プロファイル

  • EYYonMobil Corporation
    • 会社概要
    • 製品ポートフォリオと説明
    • 財務概要
    • 主な発展
  • Schlumberger
  • Huaneng
  • Linde AG
  • Sulzer
  • Equinor
  • NRG
  • Aker Solutions
  • Mitsubishi Hitachi
  • Skyonic Corp.

第13章 付録

目次
Product Code: ICT7969

Overview

Global Carbon Capture, Utilization and Storage Market reached US$ 3.0 Billion in 2023 and is expected to reach US$ 16.5 Billion by 2031, growing with a CAGR of 24.0% during the forecast period 2024-2031.

Increasing public awareness regarding climate change concerns and the significance of CCUS in reducing CO2 emissions is fueling the demand for CCUS solutions. Stakeholder engagement, outreach within communities and educational campaigns are cultivating enhanced acceptance and backing for CCUS endeavors, thereby aiding market expansion.

Cooperation among governments, industries, research bodies and international entities is fostering the exchange of knowledge, transfer of technology and enhancement of capabilities within the CCUS sector. Global collaborations and initiatives are expediting the implementation of CCUS projects globally, thereby playing a role in market growth.

Internationally, multiple sectors including oil and gas, chemicals and power generation are substantial contributors to carbon emissions. Given the robust industrial presence in the area, there's an increasing need for CCUS technology to comply with governmental environmental regulations and curb emissions. Gas reserves, deep geological formations, depleted oil and saltwater aquifers and other geological storage resources are used to store carbon dioxide (CO2). The availability of storage sites facilitates the deployment of CCUS projects globally.

North America holds a prominent position in the global carbon capture, utilization and storage market, primarily driven by increasing government initiatives aimed at reducing CO2 emissions. For example, the federal government has provided financial support to incentivize the advancement and adoption of technologies targeting the capture of carbon dioxide (CO2) emissions, thereby supporting efforts to decrease U.S. CO2 emissions. Currently, there are fifteen CCS facilities operational in United States, collectively capable of capturing 0.4%of the nation's annual CO2 emissions. Furthermore, there are an additional 121 CCS facilities either under construction or in various stages of development.

Dynamics

Technological advancements in the Carbon Capture, Utilization and Storage

For the absorption of CO2 emissions advanced capture methods are being developed. Some of the most advanced methods are post-combustion capture, oxy-fuel combustion and pre-combustion capture. New products and uses are being developed as a result of the advancements in technologies for using collected CO2. Utilizing carbon entails turning collected CO2 into useful goods including fuels, chemicals, building supplies and consumer goods. Technological developments in chemical reactions, biotechnology and catalysts are broadening the scope of potential applications and opening up new markets and income streams for CO2 collection.

Technological innovations are making geological storage of CO2 safer and cost-effective. Advanced monitoring and verification techniques enable better characterization of storage sites and more accurate tracking of injected CO2, reducing the risks associated with potential leakage. Additionally, research is ongoing into alternative storage options such as mineralization and direct air capture with storage, which offer additional flexibility and scalability for CO2 storage. Growing approvals for these technologies helps to boost market growth over the forecast period. For instance, on June 23, 2023, The Rotoboost's thermocatalytic decomposition (TCD) process for carbon capture received approval in principle (AiP) from Bureau Veritas Marine & Offshore. Rotoboost's technology transforms natural gas into hydrogen and solid carbon utilizing a liquid catalyst. The produced hydrogen can serve as fuel for fuel cells or be utilized as a blend-in fuel for combustion engines or gas-fired boilers.

Growing Focus On Reducing CO2 Emissions Globally

As the adverse consequences of climate change become more widely recognised, governments, corporations and individuals are showing a growing dedication to reducing greenhouse gas emissions. The implementation of CCUS technology as a component of all-encompassing emission reduction strategies is made possible by this increased focus. Stricter rules and goals are being implemented by governments all over the world to reduce CO2 emissions. In order to meet emission reduction targets and stay out of trouble, industries are encouraged by the current regulatory environment to investigate and invest in CCUS technologies.

An increasing number of businesses are integrating sustainability objectives into their company plans in order to stay in line with investor requirements, customer preferences and legal requirements. By put CCUS technology into practice, businesses can show that they're committed to lowering their carbon footprint and addressing climate change. Continuous developments in CCUS technology, such as enhanced capture efficiency, applications for utilization and storage capacities, make these solutions increasingly feasible and appealing to sectors looking to cut carbon emissions.

High cost of the Carbon Capture and Storage

For the purpose of to prevent carbon dioxide emissions from power stations or industrial operations from entering the environment, CCS systems are made to trap and store these emissions underground. High research, development and demonstration expenses are associated with the development and implementation of CCS technology. The expenses include designing and building capture facilities, transportation infrastructure for captured CO2 and storage facilities.

Operating and maintaining CCS facilities require ongoing expenditures, including energy for capture processes, monitoring equipment and periodic maintenance to ensure the integrity of storage sites. Compliance with regulatory requirements and obtaining permits for CCS projects adds to the overall cost. The includes meeting environmental standards for storage sites and ensuring the safety of transportation infrastructure.

Segment Analysis

The global carbon capture, utilization and storage market is segmented based on service, technology, end-user and region.

Growing Applications of Carbon Capture, Utilization and Storage for Payments Application

Based on the technology, the carbon capture, utilization and storage market is segmented into pre-combustion capture, oxy-fuel combustion capture and post-combustion capture. Pre-combustion capture technology has been in development and use for a longer time. It has been used in many industrial applications and has experienced major developments, especially in the integrated gasification combined cycle (IGCC) power plants and coal gasification.

The effectiveness with pre-combustion capture technology captures carbon dioxide (CO2) emissions is well known. It entails removing CO2 before it burns, usually during the reforming or gasification phases of fuel conversion. The enables a stream of CO2 that is more concentrated, which facilitates its collection and sequestration.

Growing product launches by the major key players helps to boost segment growth over the forecast period. For instance, on June 21, 2022, Johnson Matthey launched new Low Carbon Solutions offering to reduce syngas carbon emissions by up to 95%. JM is incorporating its well-established Advanced ReformingTM technologies with top pre-combustion CO2 capture providers to offer economical decarbonization solutions. CLEANPACE enables producers throughout the syngas value chain to upgrade current assets, leading to noteworthy and lasting reductions in carbon emissions.

Geographical Penetration

North America is Dominating the Carbon Capture, Utilization and Storage Market

Despite large investments in research and development, North America has led the way in CCUS technology developments. Due to the creation of cutting-edge CCUS technology and solutions, the sector is now a market leader globally. North American regulatory frameworks support the project in order to promote the usage of CCUS technology.

The growing government investments on the research and developments of carbon capture, utilization and storage helps to boost regional market growth over the forecast period. The U.S. Department of Energy (DOE) has a longstanding commitment to supporting research and development in Carbon Capture and Storage (CCS), currently through its Fossil Energy and Carbon Management Research, Development, Demonstration and Deployment program.

From fiscal year 2010 to fiscal year 2022, Congress allocated a total of US$ 9.2 billion in annual appropriations for FECM, with US$ 2.7 billion specifically earmarked for CCS-related budget items. Additionally, Congress allocated a supplemental appropriation of US$ 4.4 billion in 2022 dollars for CCS as part of the American Recovery and Reinvestment Act of 2009.

Competitive Landscape.

The major global players in the market include ExxonMobil Corporation, Schlumberger, Huaneng, Linde AG, Sulzer, Equinor, NRG, Aker Solutions, Mitsubishi Hitachi, Skyonic Corp.

COVID-19 Impact Analysis

Due to shortages of labor, supply chain delays and travel limitations, the COVID 19 epidemic has hampered the completion of CCUS projects around the globe. Project schedule delays have been noted when businesses and governments give priority to health and safety protocols and devote money to pandemic response initiatives. Investment in CCUS projects has decreased due to the pandemic's economic uncertainty. Major key players in the market are reassessing their spending priorities in reaction to financial difficulties and market volatility and may postpone or cancel planned initiatives.

The pandemic has caused changes in policy and delays in the regulatory procedures related to the implementation of CCUS. The development and implementation of policies and incentives supporting CCUS initiatives have been postponed due to governments prioritizing urgent economic and public health concerns. Energy consumption has varied during the pandemic, with decreases noted in sectors such as manufacturing, transportation and aviation. Consequently, the economic justification for deploying CCUS has been affected by the reduced demand for carbon capture and storage technology in industries with lower emissions.

Russia-Ukraine War Impact Analysis

The Russia and Ukraine are major producers and suppliers of the materials used in CCUS technology, the war between the two nations has a negative impact on the global supply chain for CCUS equipment and components. It could have an impact on the deployment of CCUS projects globally by causing delays in project periods and possible shortages of essential components. Natural gas, which is frequently used as a feedstock for CCUS plants, is a major export from Russia. The availability and cost of feedstock for CCUS projects may be impacted by any disruptions to Russian natural gas supply brought on by the conflict, which have an effect on project viability and investment decisions.

Political instability brought on by the war between Russia and Ukraine cause market volatility and undermine investor trust in CCUS projects. The financing and advancement of CCUS efforts globally impacted by investors' increased caution when funding projects situated in areas that are thought to be politically unstable. The disagreement has an impact on laws and rules pertaining to the investment and deployment of CCUS. In reaction to geopolitical concerns, governments give priority to domestic energy security and diversification plans, which might have an impact on the funding and incentives available for CCUS projects.

By Service

  • Capture
  • Transportation
  • Utilization
  • Storage

By Technology

  • Pre-combustion capture
  • Oxy-fuel combustion capture
  • Post-combustion capture

By End-User

  • Oil & gas
  • Power generation
  • Iron & steel
  • Chemical & petrochemical
  • Cement
  • Others

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Spain
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • On March 01, 2022, Niti Aayog launched carbon capture utilization and storage policy framework. As India progresses towards achieving net-zero emissions by 2070, the significance of Carbon Capture, Utilization and Storage (CCUS) is underscored as a crucial strategy for reducing carbon emissions in challenging sectors to accomplish decarbonization goals.
  • On January 30, 2023, Petronas and ExxonMobil collaborated together to pursue carbon capture and storage (CCS) activation projects in Malaysia. In the agreements finalized on Friday, both companies will outline the subsequent actions, including advancing the technical scopes for the CCS value chain, assessing designated fields for carbon dioxide storage, creating an appropriate commercial framework and devising an advocacy strategy to promote regulations and policy development for facilitating CCS projects.
  • On November 30, 2022, Niti Aayog launched carbon capture utilization and storage policy framework. Carbon Capture, Utilization and Storage (CCUS) technology, which aims to decarbonize carbon dioxide (CO2) emissions from industries with high pollution levels such as steel, cement, oil, gas, petrochemicals, chemicals and fertilizers, is crucial for the country to achieve a reduction of approximately 750 million metric tons per annum (mtpa) of carbon capture by the year 2050.

Why Purchase the Report?

  • To visualize the global carbon capture, utilization and storage market segmentation based on service, technology, end-user and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of Carbon Capture, Utilization and Storage market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as excel consisting of key products of all the major players.

The global carbon capture, utilization and storage market report would provide approximately 74 tables, 60 figures and 217 Pages.

Target Audience 2024

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Service
  • 3.2. Snippet by Technology
  • 3.3. Snippet by End-User
  • 3.4. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Technological advancements in the Carbon Capture, Utilization and Storage
      • 4.1.1.2. Growing Focus on Reducing CO2 Emissions Globally
    • 4.1.2. Restraints
      • 4.1.2.1. High Cost of the Carbon Capture and Storage
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Russia-Ukraine War Impact Analysis
  • 5.6. DMI Opinion

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Service

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Service
    • 7.1.2. Market Attractiveness Index, By Service
  • 7.2. Capture*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Transportation
  • 7.4. Utilization
  • 7.5. Storage

8. By Technology

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 8.1.2. Market Attractiveness Index, By Technology
  • 8.2. Pre-combustion capture*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Oxy-fuel combustion capture
  • 8.4. Post-combustion capture

9. By End-User

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 9.1.2. Market Attractiveness Index, By End-User
  • 9.2. Oil & gas*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Power generation
  • 9.4. Iron & steel
  • 9.5. Chemical & petrochemical
  • 9.6. Cement
  • 9.7. Others

10. By Region

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 10.1.2. Market Attractiveness Index, By Region
  • 10.2. North America
    • 10.2.1. Introduction
    • 10.2.2. Key Region-Specific Dynamics
    • 10.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Service
    • 10.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 10.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.2.6.1. U.S.
      • 10.2.6.2. Canada
      • 10.2.6.3. Mexico
  • 10.3. Europe
    • 10.3.1. Introduction
    • 10.3.2. Key Region-Specific Dynamics
    • 10.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Service
    • 10.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 10.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.3.6.1. Germany
      • 10.3.6.2. UK
      • 10.3.6.3. France
      • 10.3.6.4. Italy
      • 10.3.6.5. Spain
      • 10.3.6.6. Rest of Europe
  • 10.4. South America
    • 10.4.1. Introduction
    • 10.4.2. Key Region-Specific Dynamics
    • 10.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Service
    • 10.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 10.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.4.6.1. Brazil
      • 10.4.6.2. Argentina
      • 10.4.6.3. Rest of South America
  • 10.5. Asia-Pacific
    • 10.5.1. Introduction
    • 10.5.2. Key Region-Specific Dynamics
    • 10.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Service
    • 10.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 10.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.5.6.1. China
      • 10.5.6.2. India
      • 10.5.6.3. Japan
      • 10.5.6.4. Australia
      • 10.5.6.5. Rest of Asia-Pacific
  • 10.6. Middle East and Africa
    • 10.6.1. Introduction
    • 10.6.2. Key Region-Specific Dynamics
    • 10.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Service
    • 10.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 10.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User

11. Competitive Landscape

  • 11.1. Competitive Scenario
  • 11.2. Market Positioning/Share Analysis
  • 11.3. Mergers and Acquisitions Analysis

12. Company Profiles

  • 12.1. EYYonMobil Corporation*
    • 12.1.1. Company Overview
    • 12.1.2. Product Portfolio and Description
    • 12.1.3. Financial Overview
    • 12.1.4. Key Developments
  • 12.2. Schlumberger
  • 12.3. Huaneng
  • 12.4. Linde AG
  • 12.5. Sulzer
  • 12.6. Equinor
  • 12.7. NRG
  • 12.8. Aker Solutions
  • 12.9. Mitsubishi Hitachi
  • 12.10. Skyonic Corp.

LIST NOT EXHAUSTIVE

13. Appendix

  • 13.1. About Us and Services
  • 13.2. Contact Us