デフォルト表紙
市場調査レポート
商品コード
1423489

収穫ロボットの世界市場-2023年~2030年

Global Harvesting Robots Market - 2023-2030

出版日: | 発行: DataM Intelligence | ページ情報: 英文 201 Pages | 納期: 約2営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=156.76円
収穫ロボットの世界市場-2023年~2030年
出版日: 2024年02月09日
発行: DataM Intelligence
ページ情報: 英文 201 Pages
納期: 約2営業日
ご注意事項 :
本レポートは最新情報反映のため適宜更新し、内容構成変更を行う場合があります。ご検討の際はお問い合わせください。
  • 全表示
  • 概要
  • 目次
概要

概要

収穫ロボットの世界市場は、2022年に13億2,000万米ドルに達し、2023-2030年の予測期間中にCAGR 12.25%で成長し、2030年には33億3,000万米ドルに達すると予測されています。

世界の農業セクターにおける人件費の高騰と人手不足が自動化の必要性を高めており、収穫ロボットはこうした課題を相殺する魅力的なソリューションとなっています。ロボット工学、AI、機械学習、センサー技術の継続的な進歩により、収穫ロボットの能力が向上しています。

こうした改良の結果、より効率的で、正確で、様々な作物や地形に対応できる適応性の高い機械が生み出されています。2023年8月、ロボット工学のポストハーベスト分野の企業であるWootzano Ltd.は、米国での正式な事業開始を発表し、最初のAvaraiロボットシステムが活躍しました。

果物の収穫は労働集約的であるため、果実収穫ロボットが市場シェアの半分以上を占めています。同様に、北米が収穫ロボット市場を独占し、最大の市場シェアを獲得しています。2023年2月、自律型果実摘み取りロボットを開発するアドバンスト・ファーム・テクノロジーズ社は、装置を製造するためにより多くの畜舎と製造スペースを拡大すると宣言しました。同社は、カリフォルニア州デービスのすぐ南にある農業用地の納屋の3分の1からスタートしました。

ダイナミクス

農業分野における労働力不足の深刻化

農業分野における労働力不足は、農村部から都市部への移住や労働力プールの高齢化など、いくつかの問題から長らく問題視されてきました。世界銀行によると、2022年には農業分野の雇用は全雇用の27%だったが、2021年には26%まで減少しました。手作業への依存を減らすため、収穫のような重要な作業で労働者が不足していることから、自動化やロボットへの関心が高まっています。

これらのロボットは、人間の労働力よりも多くの利点を提供します。休みなく働き続けることができるため、収穫時間を大幅に短縮し、全体的な効率を高める可能性があります。さらに、さまざまな気象条件のもとで作業でき、熟した農産物をより正確に見分けることができるため、無駄が少なく高品質な収穫が可能になります。

農業分野での自動化導入の増加

農業分野での自動化導入の増加は、収穫ロボット市場の拡大を後押しする大きなカタリストです。技術、特にロボット工学、人工知能、システムマスタリングの継続的な進歩により、収穫ロボットはより効率的で、特殊で、適応性の高いものとなっています。

これらの進歩により、以前は人間の能力や判断力に頼っていた複雑な作業をロボットが実行できるようになった。2023年1月、ラスベガスで開催された2023年コンシューマー・エレクトロニクス・ショー(CES)で、日本の農業技術系新興企業であるAGRISTが、知能を搭載した収穫ロボットを発表しました。新型ロボット「L」はミリ単位の精度で、葉の層から収穫に適した熟したピーマンを選別します。

収穫ロボットの高コスト

収穫ロボットの高額なコストは、農業分野での幅広い使用と市場拡大の大きな障害であり続けています。これらのロボットには多くの利点があるにもかかわらず、多くの農家や農業企業は、ロボットの入手、使用、維持に必要な初期費用を支払うことが困難です。収穫ロボットを購入するために必要な初期費用は、中小規模の農場にとっては高すぎるかもしれないです。

開発費、研究開発、AIを活用した機械学習アルゴリズム、特殊なセンサー、堅牢な機械、精密なマニピュレーターなどの高度な機能の搭載により、これらのロボットの総コストは大幅に上昇します。さらに、さまざまな作物や地形に合わせてこれらのロボットをカスタマイズし、適応させることが、出費に拍車をかけています。

目次

第1章 調査手法と調査範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 影響要因
    • 促進要因
      • 農業分野における労働力不足の深刻化
      • 農業分野での自動化導入の増加
    • 抑制要因
      • 収穫ロボットに関連する高コスト
    • 機会
    • 影響分析

第5章 産業分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制分析
  • ロシア・ウクライナ戦争の影響分析
  • DMIの見解

第6章 COVID-19分析

第7章 タイプ別

  • 果物収穫ロボット
  • 野菜収穫ロボット
  • 穀物収穫ロボット
  • その他

第8章 動作能力別

  • 半自律型
  • 完全自律型

第9章 用途別

  • 畑作
  • 果樹園
  • ブドウ園
  • 温室

第10章 エンドユーザー別

  • 農家/個人
  • 大規模商業農場

第11章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • イタリア
    • ロシア
    • その他欧州
  • 南米
    • ブラジル
    • アルゼンチン
    • その他南米
  • アジア太平洋
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他アジア太平洋地域
  • 中東・アフリカ

第12章 競合情勢

  • 競合シナリオ
  • 市況/シェア分析
  • M&A分析

第13章 企業プロファイル

  • Agrobot
    • 会社概要
    • 製品ポートフォリオと説明
    • 財務概要
    • 主な発展
  • Dogtooth Technologies Limited
  • Panasonic Holdings Corporation
  • Certhon
  • Harvest CROO Robotics LLC
  • TORTUGA AGRICULTURAL TECHNOLOGIES, INC
  • Harvest Automation
  • OCTINION
  • MetoMotion
  • Advanced Farms Technologies, Inc.

第14章 付録

目次
Product Code: AG7927

Overview

Global Harvesting Robots Market reached US$ 1.32 billion in 2022 and is expected to reach US$ 3.33 billion by 2030, growing with a CAGR of 12.25% during the forecast period 2023-2030.

Escalating labor costs and shortages in the agricultural sector worldwide are driving the need for automation, making harvesting robots an attractive solution to offset these challenges. Continuous advancements in robotics, AI, machine learning, and sensor technologies are enhancing the capabilities of harvesting robots.

These improvements result in more efficient, precise, and adaptable machines capable of handling various crops and terrains. In August 2023, Wootzano Ltd., a company in the post-harvest sector of robotics announced the official opening of its US operations, with the first Avarai robotic system active.

Fruit Harvesting Robots account for over half of the market share due to the labor-intensive nature of fruit picking. Similarly, North America dominates the Harvesting Robots market, capturing the largest market share. In February 2023, Advanced Farm Technologies Inc., a firm that develops autonomous fruit-picking robots, declared that it is expanding more barns and manufacturing space to build its equipment. The company began with a third of a barn on agricultural property just south of Davis, California.

Dynamics

Rising Labor Shortage in the Agricultural Field

The labor shortage in the agricultural sector has long been a problem because of several issues, such as migration from rural to urban areas, and aging labor pools. According to the World Bank, in 2022, employment in agriculture was 27% of the total employment, whereas in 2021, it declined to 26%. To reduce the industry's reliance on manual labor, there is a growing interest in automation and robotics due to the shortage of workers for important operations like harvesting.

These robots offer numerous advantages over human labor. They can work tirelessly without breaks, reducing harvesting time significantly and potentially increasing overall efficiency. Additionally, they can operate in various weather conditions and can be more precise in identifying ripe produce, leading to less waste and higher-quality yields.

Increasing Adoption of Automation in the Agriculture Sector

The increasing adoption of automation inside the agricultural sector is a great catalyst propelling the increase of the harvesting robotic market. The continuous advancements in technology, especially in robotics, artificial intelligence, and system mastering, have made harvesting robots greater efficient, particular, and adaptable.

These advancements have enabled robots to carry out complex tasks previously reliant on human ability and decision-making skills. In January 2023, AGRIST, a Japanese agri-tech startup, unveiled an intelligence-powered harvesting robot at the 2023 Consumer Electronics Show (CES) in Las Vegas. With millimeter accuracy, the new robot "L" selects peppers that are ripe for harvesting through layers of foliage.

High Cost Associated With Harvesting Robot

The high expense of harvesting robots continues to be a significant impediment to their broad use and market expansion in the agriculture industry. Even though these robots have many advantages, many farmers and agricultural enterprises find it difficult to afford the initial outlay needed to acquire, use, and maintain them. The initial cost required to purchase harvesting robots may be too much for small and medium-sized farms.

Development costs, research, and the incorporation of advanced features like AI-driven machine learning algorithms, specialized sensors, robust machinery, and precise manipulators significantly escalate the overall cost of these robots. Additionally, customization and adaptation of these robots for various crops and terrains add to their expense.

Segment Analysis

The global harvesting robots market is segmented based on type, operational capability, application, end-user and region.

Rising Demand for Automation in Fruit Harvesting

Fruit harvesting robots hold a significant share in the overall harvesting robot market. When harvesting, fruits frequently need to be handled carefully to preserve quality. Fruit harvesting robots can detect ripe fruits, evaluate their condition, and pick them precisely without damaging the produce since they are outfitted with sophisticated sensors and visual systems.

In November 2023, KUKA and the Upper Bavarian company Digital Workbench launched cooperation at Agritechnica, the world's premier agricultural trade show held in Hanover, Germany. The collaboration aims to provide a concrete product, a mobile harvesting robot that will aid fruit growers in the apple harvest.

Geographical Penetration

North America's Adoption of Advanced Agricultural Technology

North America has an incredibly advanced agricultural region that embraces technology upgrades, especially within the U.S. and Canada. Large-scale farming operations inside the region, especially in the fruit, vegetable, and row crop sectors, are driving demand for automated and efficient solutions, which include harvesting robots, to enhance productivity and manage labor shortages.

In November 2023, a $1.2 million National Science Foundation grant was given to WSU (Washington State University) researchers to increase the productivity of robotics used in automated apple harvesting. Researchers are working on a straightforward, inexpensive robot system with a fabric arm and a soft body. The design is intended to delicately harvest apples without endangering the trees, while also allowing the robot to respond quickly.

COVID-19 Impact Analysis

The market for harvesting robots was greatly impacted by the COVID-19 outbreak. Travel restrictions, social distancing measures, and worker safety concerns caused labor shortages in the agricultural industries as the virus spread over the world. This situation brought to light the weaknesses of conventional farming methods that mostly rely on physical labor. As a result, demand for harvesting robots increased dramatically.

But even with the increased demand, the pandemic presented challenges for the market for harvesting robots. Economic uncertainty combined with disruptions in the supply chains for necessary materials and components impacted manufacturing schedules and prevented certain robot manufacturers from increasing their production volumes. The production and deployment processes' temporary halt to expansion hindered the market's development. Furthermore, many agricultural firms experienced financial difficulties as a result of the economic depression brought on by the pandemic.

Russia-Ukraine War Impact Analysis

The war between Russia and Ukraine affected the market for harvesting robots in several ways. Globally, the violence and geopolitical tensions in the area had an impact on some industries, including technology and agriculture, as well as the global economy.

Economic instability was caused by geopolitical tensions. Trade disruptions, a decline in investor confidence, and currency value swings could have all resulted from uncertainty in the area. Potential investments in cutting-edge technologies like harvesting robots were discouraged by this economic volatility since companies had more hesitant to commit capital to such projects during shaky times.

By Type

  • Fruit Harvesting Robots
  • Vegetable Harvesting Robots
  • Grain Harvesting Robots
  • Others

By Operational Capability

  • Semi-Autonomous
  • Fully-Autonomous

By Application

  • Field Crop
  • Orchards
  • Vineyards
  • Greenhouse

By End-User

  • Farmers/Individuals
  • Large-Scale Commercial Farms

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Russia
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • In August 2023, Fieldwork Robotics, Developers of harvesting robots, announced it has received €1.7 million from Elbow Beach Capital, an investor in social impact, sustainability, and decarbonization to bring its AI-supported, raspberry-harvesting robot Alpha to forward-thinking farms.
  • In April 2021, Tortuga, a startup in harvest automation revealed that it has raised $20 million in Series, funding to construct hundreds of robots.
  • In November 2021, Iron Ox, a autonomous farm, declared the launch of its mobile support robot named Grover. Iron Ox claims that Grover is capable of lifting over a thousand pounds and helps with crop monitoring, watering, and harvesting, covering everything from strawberries to leafy greens.

Competitive Landscape

The major global players in the market include Agrobot, Dogtooth Technologies Limited, Panasonic Holdings Corporation, Certhon, Harvest CROO Robotics LLC, TORTUGA AGRICULTURAL TECHNOLOGIES, INC, Harvest Automation, OCTINION, MetoMotion, Advanced Farms Technologies, Inc.

Why Purchase the Report?

  • To visualize the global harvesting robots market segmentation based on type, operational capability, application, end-user and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of harvesting robots market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as Excel consisting of key products of all the major players.

The global Harvesting Robots market report would provide approximately 61 tables, 58 figures and 201 Pages.

Target Audience 2023

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Type
  • 3.2. Snippet by Operational Capability
  • 3.3. Snippet by Application
  • 3.4. Snippet by End-User
  • 3.5. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Rising Labor Shortage in the Agricultural Field
      • 4.1.1.2. Increasing Adoption of Automation in the Agriculture Sector
    • 4.1.2. Restraints
      • 4.1.2.1. High Cost Associated With Harvesting Robot
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Russia-Ukraine War Impact Analysis
  • 5.6. DMI Opinion

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Type

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 7.1.2. Market Attractiveness Index, By Type
  • 7.2. Fruit Harvesting Robots*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Vegetable Harvesting Robots
  • 7.4. Grain Harvesting Robots
  • 7.5. Others

8. By Operational Capability

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Operational Capability
    • 8.1.2. Market Attractiveness Index, By Operational Capability
  • 8.2. Semi-Autonomous*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Fully-Autonomous

9. By Application

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.1.2. Market Attractiveness Index, By Application
  • 9.2. Field Crop*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Orchards
  • 9.4. Vineyards
  • 9.5. Greenhouse

10. By End-User

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.1.2. Market Attractiveness Index, By End-User
  • 10.2. Farmers/Individuals*
    • 10.2.1. Introduction
    • 10.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 10.3. Large-Scale Commercial Farms

11. By Region

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 11.1.2. Market Attractiveness Index, By Region
  • 11.2. North America
    • 11.2.1. Introduction
    • 11.2.2. Key Region-Specific Dynamics
    • 11.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Operational Capability
    • 11.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.2.7.1. U.S.
      • 11.2.7.2. Canada
      • 11.2.7.3. Mexico
  • 11.3. Europe
    • 11.3.1. Introduction
    • 11.3.2. Key Region-Specific Dynamics
    • 11.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Operational Capability
    • 11.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.3.7.1. Germany
      • 11.3.7.2. UK
      • 11.3.7.3. France
      • 11.3.7.4. Italy
      • 11.3.7.5. Russia
      • 11.3.7.6. Rest of Europe
  • 11.4. South America
    • 11.4.1. Introduction
    • 11.4.2. Key Region-Specific Dynamics
    • 11.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Operational Capability
    • 11.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.4.7.1. Brazil
      • 11.4.7.2. Argentina
      • 11.4.7.3. Rest of South America
  • 11.5. Asia-Pacific
    • 11.5.1. Introduction
    • 11.5.2. Key Region-Specific Dynamics
    • 11.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Operational Capability
    • 11.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.5.7.1. China
      • 11.5.7.2. India
      • 11.5.7.3. Japan
      • 11.5.7.4. Australia
      • 11.5.7.5. Rest of Asia-Pacific
  • 11.6. Middle East and Africa
    • 11.6.1. Introduction
    • 11.6.2. Key Region-Specific Dynamics
    • 11.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Operational Capability
    • 11.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.6.7.

12. Competitive Landscape

  • 12.1. Competitive Scenario
  • 12.2. Market Positioning/Share Analysis
  • 12.3. Mergers and Acquisitions Analysis

13. Company Profiles

  • 13.1. Agrobot*
    • 13.1.1. Company Overview
    • 13.1.2. Product Portfolio and Description
    • 13.1.3. Financial Overview
    • 13.1.4. Key Developments
  • 13.2. Dogtooth Technologies Limited
  • 13.3. Panasonic Holdings Corporation
  • 13.4. Certhon
  • 13.5. Harvest CROO Robotics LLC
  • 13.6. TORTUGA AGRICULTURAL TECHNOLOGIES, INC
  • 13.7. Harvest Automation
  • 13.8. OCTINION
  • 13.9. MetoMotion
  • 13.10. Advanced Farms Technologies, Inc.

LIST NOT EXHAUSTIVE

14. Appendix

  • 14.1. About Us and Services
  • 14.2. Contact Us