表紙:先進リサイクル技術の世界市場:2023年~2030年
市場調査レポート
商品コード
1382509

先進リサイクル技術の世界市場:2023年~2030年

Global Advanced Recycling Technologies Market - 2023-2030

出版日: | 発行: DataM Intelligence | ページ情報: 英文 189 Pages | 納期: 約2営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=157.14円
先進リサイクル技術の世界市場:2023年~2030年
出版日: 2023年11月17日
発行: DataM Intelligence
ページ情報: 英文 189 Pages
納期: 約2営業日
ご注意事項 :
本レポートは最新情報反映のため適宜更新し、内容構成変更を行う場合があります。ご検討の際はお問い合わせください。
  • 全表示
  • 概要
  • 目次
概要

概要

先進リサイクル技術の世界市場は、2022年に2億6,980万米ドルに達し、2023年~2030年の予測期間中に48.5%のCAGRで成長し、2030年には63億8,100万米ドルに達すると予測されています。

廃棄物を価値ある資源に変える新しい技術に焦点を当てた産業は、先進リサイクル技術と呼ばれています。この技術は、資源効率を改善し、環境への影響を低減し、循環型経済の概念をサポートすることを目指しています。

より持続可能な目標への変化、ケミカルリサイクルプロセスの進歩、顧客の嗜好技術の進歩に伴い、二次原料の必要性は刻々と高まっています。特筆すべきは、ケミカルリサイクルに基づく二次原料は、製造サプライチェーンにおいてバージン原料に取って代わるため、二酸化炭素排出量を削減できることです。

この革新的なリサイクル技術は、高品質のモノマーを効率的に回収することを可能にし、これらのモノマーは、新しいポリマーの製造や、他の分野の原料として使用することができます。このため、熱分解・分解技術分野が世界市場の3分の1以上を占めています。

ダイナミクス

リサイクル分野への投資拡大

投資は、リサイクル事業の拡大と規模拡大を可能にします。これには、最新技術を装備した、より大規模で効率的なリサイクル施設の建設が含まれ、処理能力の拡大を可能にし、市場成長に寄与しています。

例えば、2023年8月11日、Amcor PackagingとMondelez Internationalは、オーストラリアの先進リサイクル技術新興企業Licellaに投資しました。この資金は、オーストラリアのビクトリア州に高度リサイクル施設を建設するために使われます。「先進的リサイクルビクトリア」工場は、高度な水熱液化技術を使用するリセラ社の触媒式水熱反応器を使用します。

新工場は年間2万トンの使用済みプラスチックを処理する能力を持ちます。将来的には、これを毎年12万トンまで拡大する予定です。この投資により、Amcorは、この地域で高まる再生材需要を満たし、2030年までにポートフォリオ全体で再生材含有率30%を達成するという目標を加速させることができます。

高度なリサイクル規制が市場成長を牽引

新しい消費者意識調査によると、先進リサイクルは、米国がより多くのプラスチックをリサイクルするための方法として広く認められています。この調査は、米連邦取引委員会(FTC)が計画しているグリーンガイドの修正に関連し、リサイクルや環境マーケティングに関する主張について米国人に尋ねたものです。調査結果によると、消費者は使用後のプラスチックのリサイクルに使用される様々な手順を支持しており、プラスチックのリサイクル率を上げ、廃棄物を削減する必要性においては、機械的リサイクルも高度なリサイクルも同様に受け入れられる技術であると考えられています。

2023年4月10日、カンザス州のローラ・ケリー知事(民主党)は、高度リサイクル工場を製造施設に分類する超党派の法律に署名しました。独自のリサイクル工程は、農業用シートなどのリサイクル困難なポリマーを、有利な新しいプラスチックに変えます。米国化学工業協会(ACC)は、カンザス州議会がSB114を強力に支持したことを発見し、カンザス州が米国で23番目に同様の法案を可決したことに感激しています。

環境への懸念と課題

近年、循環型経済を推進するため、プラスチック製品やパッケージングに再生材料を使用する意向を表明する企業が増えています。こうした製品や包装に必要な消費者使用後樹脂(PCR)を確保するために、従来の機械的リサイクル方法が広く利用されていますが、包装の種類によっては、この方法では汚染が問題になることがあります。

多くの地域で効果的な廃棄物管理インフラが欠如しているため、リサイクル可能な材料の効率的な収集、選別、処理が妨げられている可能性があります。リサイクル技術は、強力な廃棄物管理システムなしにはその潜在能力を十分に発揮できず、高度リサイクル分野の成長を制限しています。

高度な選別技術の台頭

洗練された選別プロセスの利用増加と革新は、世界の先進リサイクル技術市場にいくつかの成長の展望を開いています。選別手順は、リサイクルプロセスの効率性、正確性、持続可能性を大幅に向上させるため、リサイクル業界全体の成長と発展に貢献しています。

ロボット工学と人工知能(AI)技術は、精度、スピード、効率を向上させることで、ゴミ選別に変革をもたらしました。インテリジェントなロボットシステムは、さまざまな形態の廃棄物をその質に応じて認識・選別し、リサイクルプロセスを迅速化し、材料の回収率を高めることができます。

センサーを利用した選別方法では、センサー、検出器、画像システムを組み合わせて、物理的特性に基づいてさまざまな材料を識別し、分別します。このシステムは、正確で自動化された廃棄物の流れを選別し、リサイクル効率を高め、汚染を低減します。近赤外分光法は材料の識別と特性評価に使用される非破壊分析技術です。リサイクル可能な品目をうまく選別し、異なる廃棄物の流れの組成を評価するために、廃棄物選別工場で広く使用されています。したがって、高度な選別技術の成長は、世界の先進リサイクル技術市場に有利な成長機会を創出します。

目次

第1章 調査手法と調査範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 影響要因
    • 促進要因
      • リサイクル分野への投資拡大
      • 高度なリサイクル規制が市場成長を促進
    • 抑制要因
      • 環境への懸念と課題
    • 機会
      • 高度な選別技術の台頭
    • 影響分析

第5章 産業分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制分析
  • ロシア・ウクライナ戦争の影響分析
  • DMI意見

第6章 COVID-19分析

第7章 技術別

  • 熱分解/分解
  • ガス化
  • 解重合
  • その他

第8章 生産プロセス別

  • ナフサ
  • 重質ガス油
  • ワックス残渣

第9章 エンドユーザー別

  • 包装
  • 建築・建設
  • 家電
  • 自動車
  • ヘルスケア
  • その他

第10章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • イタリア
    • ロシア
    • その他欧州
  • 南米
    • ブラジル
    • アルゼンチン
    • その他南米
  • アジア太平洋地域
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他アジア太平洋地域
  • 中東・アフリカ

第11章 競合情勢

  • 競合シナリオ
  • 市況/シェア分析
  • M&A分析

第12章 企業プロファイル

  • Honeywell International Inc.
    • 会社概要
    • 製品ポートフォリオと説明
    • 財務概要
    • 主な発展
  • Chevron Phillips Chemical Company LLC
  • Synova
  • Erema Group
  • Brightmark
  • Sierra International Machinery
  • Metso Outotec Corporation
  • Machinex Industries Inc.
  • Vecoplan AG
  • Tomra Systems ASA

第13章 付録

目次
Product Code: ICT7426

Overview

Global Advanced Recycling Technologies Market reached US$ 269.8 million in 2022 and is expected to reach US$ 6,381.0 million by 2030, growing with a CAGR of 48.5% during the forecast period 2023-2030.

The industry focused on new techniques for turning waste materials into valuable resources is referred to as advanced recycling technology. The technologies seek to improve resource efficiency, reduce environmental impact and support the concepts of the circular economy.

With the change toward more sustainable goals, advancements in chemical recycling processes and client preference techniques, the need for secondary raw materials is growing every moment. It should be highlighted that chemical recycling-based secondary materials replace virgin raw materials in the manufacturing supply chain, hence lowering carbon emissions.

This innovative recycling technique enables the efficient recovery of high-quality monomers, which may be used to make new polymers or as raw materials in other sectors. Therefore, the pyrolysis/ cracking technology segment dominates the global market with more than 1/3rd of the total segmental shares.

Dynamics

The Growing Investment in Recycling Sector

Investments enable recycling operations to expand and scale up. It includes the construction of larger and more efficient recycling facilities outfitted with the latest technologies, allowing for greater processing capacity and contributing to market growth.

For instance, on August 11, 2023, Amcor Packaging and Mondelez International have invested in Licella, an Australian advanced recycling technology startup. The funds will be used to build an advanced recycling facility in Victoria, Australia. The 'Advanced Recycling Victoria' plant will use Licella's Catalytic Hydrothermal Reactor, which uses advanced hydrothermal liquefaction technology.

The new factory will initially have a capacity of 20,000 tons (t) of end-of-life plastics per year. In the future, the company intends to grow this to 120,000t each year. The investment will allow Amcor to meet the region's growing demand for recycled content and accelerate its goal of achieving 30% recycled content throughout its portfolio by 2030.

Advanced Recycling Regulations Drives the Market Growth

According to a new consumer perception study, advanced recycling is a broadly approved way to help U.S. recycle more plastics. The survey asked Americans about recycling and environmental marketing claims that are pertinent to the Federal Trade Commission's (FTC) planned modifications to its Green Guides. Consumers support varied procedures used to recycle post-use plastics, according to the findings - both mechanical and advanced recycling are considered as equally acceptable techniques in the need to raise plastic recycling rates and reduce waste.

On April 10, 2023, Kansas Governor Laura Kelly (D) signed bipartisan legislation classifying advanced recycling plants as manufacturing facilities. The unique recycling processes transform difficult-to-recycle polymers, such as agricultural sheeting, into lucrative new plastics. The American Chemistry Council (ACC) is thrilled that it discovered that the Kansas legislature strongly supported SB 114, making Kansas the 23rd state in U.S. to pass similar legislation.

Environmental Concerns and Challenges

More companies have stated intentions to employ recycled content in their plastic products and packaging in recent years in order to advance the circular economy. Traditional mechanical recycling methods are widely utilized to secure the postconsumer resin (PCR) required for these products and packaging, but contamination can be an issue with this method for some types of packaging.

A lack of effective waste management infrastructure in numerous regions might impede the efficient collection, sorting and processing of recyclable materials. Recycling technologies cannot attain their full potential without a strong waste management system, limiting the growth of the advanced recycling sector.

The Rising Advanced Sorting Techniques

The increased usage and innovation of sophisticated sorting processes is opening up several growth prospects in the globally advanced recycling technologies market. The sorting procedures greatly improve the efficiency, accuracy and sustainability of recycling processes, hence contributing to the recycling industry's overall growth and development.

Robotics and artificial intelligence (AI) technology have transformed garbage sorting by increasing accuracy, speed and efficiency. Intelligent robotic systems can recognize and sort various forms of waste depending on their qualities, speeding the recycling process and enhancing material recovery rates.

Sensor-based sorting methods identify and separate various materials based on their physical properties using a combination of sensors, detectors and imaging systems. The systems offer precise and automated waste stream sorting, increasing recycling efficiency and lowering contamination. NIR spectroscopy is a non-destructive analytical technique used to identify and characterize materials. It is extensively used in waste sorting plants to successfully separate recyclable items and assess the composition of different waste streams. Therefore, the growing advance sorting technique creates the lucrative growth opportunities in the global advanced recycling technologies market.

Segment Analysis

The global advanced recycling technologies market is segmented based on technology, process output, end-user and region.

Promoting Packaging Sustainability Through Circular Economy Principles and Innovative Collaborations

Packaging materials such as plastics, paper, cardboard and glass contribute significantly to global trash generation. The high volume of packaging waste fuels the demand for sophisticated recycling technology to treat and recycle these materials efficiently. Governments, businesses and consumers are increasingly emphasizing a circular economy strategy, particularly in the packaging industry. Advanced recycling technologies, which enable the recycling and reuse of packaging materials in accordance with circular economy principles, play a critical role in closing the loop.

On September 27, 2023, Pactiv Evergreen Inc., a leading North American manufacturer of fresh food and beverage packaging and ExxonMobil, a leader in advanced recycling technology, are collaborating to provide certified-circular packaging solutions to major food brands and food service providers. Pactiv Evergreen will soon deliver certified circular polypropylene (PP) packaging materials to its customers, utilizing ExxonMobil's Exxtend technology for enhanced recycling. The revolutionary products will meet all food contact regulation criteria and specifications.

Geographical Penetration

In Europe's Sustainable Markets, Advanced Recycling Technologies is Thriving

Technological developments unveil the untapped potential of established industrial methods, allowing organizations to achieve levels that humans cannot. It also applies to recycling technologies. With growing environmental concerns and a shift toward more sustainable practices, technical advancement has become essential in recycling activities.

The recycling rate in U.S. has historically been low. According to municipal solid waste material surveys, recycling rates in countries such as Germany, Slovenia and other European countries have excelled, leaving U.S. with a 32% recycling rate (including composting). Therefore, the European markets accounts for majority of the global advanced recycling technologies market.

COVID-19 Impact Analysis

The pandemic's economic uncertainty caused delays in planned initiatives and investments in the recycling sector. Many companies postponed or reduced their investment plans, affecting the growth and expansion of the market for advanced recycling technology.

Economic concerns and uncertainty impacted recycling project funding and financing alternatives. Some investors and financial organizations became more cautious, making it difficult to secure finance for the development and implementation of advanced recycling technology. Priorities were diverted to immediate health and safety problems, as well as economic recovery, as a result of the pandemic. During the crisis, several environmental projects, such as recycling and sustainability, may have been temporarily deprioritized or received less attention and financing.

Russia-Ukraine War Impact Analysis

Supply chains can be disrupted by geopolitical tensions, affecting the availability of raw materials, components and technology important to the advanced recycling sector. It could cause delays and cost increases. In response to geopolitical events, governments may change policies and regulations, influencing the support and incentives provided to the recycling industry, including advanced recycling technology.

By Technology

  • Pyrolysis / Cracking
  • Gasification
  • Depolymerization
  • Others

By Process Output

  • Naphtha
  • Heavy Gas Oil
  • Wax Residue

By End-User

  • Packaging
  • Building and Construction
  • Consumer Electronics
  • Automotive
  • Healthcare
  • Others

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Russia
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • On October 3, 2023, Lummus Technology, a global provider of process technologies and value-driven energy solutions, has announced a collaboration with Dongyang Environment Group to introduce Lummus' innovative plastics recycling technology to South Korea. Dongyang Environment's subsidiary, Seohae Green Chemical, will run the facility in Seosan, Chungcheongnam-do, Korea.
  • On April 25, 2023, Cyclic Materials, a Kingston, Ontario-based advanced metals recycling company focused on producing critical minerals, has raised US$ 27 million in an oversubscribed Series.
  • On December 24, 2022, ExxonMobil has announced the successful launch of one of North America's largest advanced recycling facilities. The plant, located at the company's integrated manufacturing complex in Baytown, Texas, employs patented technology to degrade difficult-to-recycle polymers and convert them into raw materials for new products. It can process more than 80 million pounds of plastic trash per year, promoting a circular economy for post-use plastics and diverting plastic waste from landfills.

Competitive Landscape

major global players in the market include: Honeywell International Inc., Chevron Phillips Chemical Company LLC, Synova, Erema Group, Brightmark, Sierra International Machinery, Metso Outotec Corporation, Machinex Industries Inc., Vecoplan AG and Tomra Systems ASA.

Why Purchase the Report?

  • To visualize the global advanced recycling technologies market segmentation based on technology, process output, end-user and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of advanced recycling technologies market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as excel consisting of key products of all the major players.

The global advanced recycling technologies market report would provide approximately 61 tables, 60 figures and 189 Pages.

Target Audience 2023

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Technology
  • 3.2. Snippet by Process Output
  • 3.3. Snippet by End-User
  • 3.4. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. The Growing Investment in Recycling Sector
      • 4.1.1.2. Advanced Recycling Regulations Drives the Market Growth
    • 4.1.2. Restraints
      • 4.1.2.1. Environmental Concerns and Challenges
    • 4.1.3. Opportunity
      • 4.1.3.1. The Rising Advanced Sorting Techniques
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Russia-Ukraine War Impact Analysis
  • 5.6. DMI Opinion

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Technology

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 7.1.2. Market Attractiveness Index, By Technology
  • 7.2. Pyrolysis / Cracking*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Gasification
  • 7.4. Depolymerization
  • 7.5. Others

8. By Process Output

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Process Output
    • 8.1.2. Market Attractiveness Index, By Process Output
  • 8.2. Naphtha*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Heavy Gas Oil
  • 8.4. Wax Residue

9. By End-User

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 9.1.2. Market Attractiveness Index, By End-User
  • 9.2. Packaging*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Building and Construction
  • 9.4. Consumer Electronics
  • 9.5. Automotive
  • 9.6. Healthcare
  • 9.7. Others

10. By Region

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 10.1.2. Market Attractiveness Index, By Region
  • 10.2. North America
    • 10.2.1. Introduction
    • 10.2.2. Key Region-Specific Dynamics
    • 10.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 10.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Process Output
    • 10.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.2.6.1. U.S.
      • 10.2.6.2. Canada
      • 10.2.6.3. Mexico
  • 10.3. Europe
    • 10.3.1. Introduction
    • 10.3.2. Key Region-Specific Dynamics
    • 10.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 10.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Process Output
    • 10.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.3.6.1. Germany
      • 10.3.6.2. UK
      • 10.3.6.3. France
      • 10.3.6.4. Italy
      • 10.3.6.5. Russia
      • 10.3.6.6. Rest of Europe
  • 10.4. South America
    • 10.4.1. Introduction
    • 10.4.2. Key Region-Specific Dynamics
    • 10.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 10.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Process Output
    • 10.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.4.6.1. Brazil
      • 10.4.6.2. Argentina
      • 10.4.6.3. Rest of South America
  • 10.5. Asia-Pacific
    • 10.5.1. Introduction
    • 10.5.2. Key Region-Specific Dynamics
    • 10.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 10.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Process Output
    • 10.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.5.6.1. China
      • 10.5.6.2. India
      • 10.5.6.3. Japan
      • 10.5.6.4. Australia
      • 10.5.6.5. Rest of Asia-Pacific
  • 10.6. Middle East and Africa
    • 10.6.1. Introduction
    • 10.6.2. Key Region-Specific Dynamics
    • 10.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 10.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Process Output
    • 10.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User

11. Competitive Landscape

  • 11.1. Competitive Scenario
  • 11.2. Market Positioning/Share Analysis
  • 11.3. Mergers and Acquisitions Analysis

12. Company Profiles

  • 12.1. Honeywell International Inc.*
    • 12.1.1. Company Overview
    • 12.1.2. Product Portfolio and Description
    • 12.1.3. Financial Overview
    • 12.1.4. Key Developments
  • 12.2. Chevron Phillips Chemical Company LLC
  • 12.3. Synova
  • 12.4. Erema Group
  • 12.5. Brightmark
  • 12.6. Sierra International Machinery
  • 12.7. Metso Outotec Corporation
  • 12.8. Machinex Industries Inc.
  • 12.9. Vecoplan AG
  • 12.10. Tomra Systems ASA

LIST NOT EXHAUSTIVE

13. Appendix

  • 13.1. About Us and Services
  • 13.2. Contact Us