表紙:シリコンタイミングデバイスの世界市場:2023年~2030年
市場調査レポート
商品コード
1382506

シリコンタイミングデバイスの世界市場:2023年~2030年

Global Silicon Based Timing Device Market - 2023-2030

出版日: | 発行: DataM Intelligence | ページ情報: 英文 215 Pages | 納期: 約2営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=157.14円
シリコンタイミングデバイスの世界市場:2023年~2030年
出版日: 2023年11月17日
発行: DataM Intelligence
ページ情報: 英文 215 Pages
納期: 約2営業日
ご注意事項 :
本レポートは最新情報反映のため適宜更新し、内容構成変更を行う場合があります。ご検討の際はお問い合わせください。
  • 全表示
  • 概要
  • 目次
概要

概要

シリコンタイミングデバイスの世界市場は、2022年に14億米ドルに達し、2023年~2030年の予測期間中にCAGR 6.6%で成長し、2030年までに24億米ドルに達すると予測されています。

市場における技術の絶え間ない進歩により、非常に精密でコンパクトなシリコンタイミングデバイスが開発されています。この進歩は、次世代エレクトロニクス、5Gネットワーク、IoTデバイスに電力を供給するために必要です。米国地域の主な世界企業は新製品開発に注力しています。例えば、2023年3月、アナログデバイセズ社は、独自のシリコン、レイアウト、パッケージングの進歩を取り入れた極めて低ノイズの2出力DC/DCモジュールレギュレータの発売を発表しました。

LTM8080のフロントエンドは高効率の同期型サイレントスイッチャー降圧レギュレーターで、これに続く2種類の低ノイズ、低ドロップアウト(LDO)レギュレーターは最大40Vの入力で機能します。スイッチングノイズをさらに低減するため、LTM8080のパッケージにはEMIバリアウォールまたはシールドが含まれています。そのため、米国が地域別市場の80.1%以上を占めています。

ダイナミクス

シリコン共振器の製造とパッケージングタイミングデバイス用途でLSIに内蔵可能な入力周波数

エレクトロニクス分野では、小型化が大きな動向となっています。2022年には70%以上の人が小型・軽量の電子機器を好んでいます。シリコン共振器をLSIに組み込むことで、タイミングデバイスのサイズを30%削減することができます。

インテルやTSMCなどの大手半導体企業は、統合タイミングの研究開発に15億米ドル以上を投じています。この投資により最先端のタイミングデバイスが開発され、市場の成長を後押ししています。

例えば、エネルギー効率はエレクトロニクスの主要目標です。タイミングデバイスの消費電力は、シリコン共振器の集積化によって平均15%削減されており、これはバッテリー駆動のデバイスにとって極めて重要です。これは、エネルギー効率の高い電気機器の普及に役立っています。

マイクロ電気機械システム(MEMS)ベースのタイミングソリューション

IoTおよびエッジコンピューティングデバイスの拡大には、小型で電力効率に優れた高精度のタイミングソリューションが不可欠です。MEMSベースのタイミングデバイスは、リアルタイムのデータ処理と同期を可能にすることで、デバイスのパフォーマンスを向上させます。MEMSベースのタイミングソリューションは、先進運転支援システム(ADAS)、エンターテインメントシステム、車載ネットワーキングへの統合が進んでいます。

人々がスマートでコネクテッドな自動車に求める安全性、利便性、インフォテインメント要素は、自動車設計によって再定義されつつあります。車載エレクトロニクスは最も急成長している半導体産業の1つであり、ADASや電気自動車の多様なアプリケーションで利用される電子部品は、この成長の多くの重要な原動力の1つです。

米国国際貿易委員会(USITC)のデータによると、各ガソリン車には330米ドル相当の半導体デバイスが搭載されているのに対し、各ハイブリッド電気自動車に搭載されている半導体デバイスの価値は1,000米ドルから3,500米ドルに及びます。デーティングには、安全システムからパワートレインまですべてを制御する1,400個の半導体デバイスを使用する必要があります。

水晶発振器(QCO)のような代替品との競合

何十年もの間、QCOはタイミングアプリケーションのための伝統的で確立された技術でした。広く知られ、信頼され、様々な産業で使用されています。QCOへの偏重は、シリコンベースのタイミングソリューションが市場シェアを獲得する上で大きな障害となり得ます。

シリコンベースのタイミング手法をQCO専用デバイスと統合すると、互換性の問題が生じます。旧式の装置やシステムをシリコンベースの技術と互換性を持たせるには、新たな投資やリソースが必要になる可能性があります。シリコンベースのタイミングソリューションは長期的なメリットをもたらす可能性がありますが、QCOからの移行にかかる初期コストは、特に予算が限られている中小企業にとっては法外なものとなる可能性があります。

高い初期コスト

新技術を検討する際、企業はしばしば投資収益率(ROI)を分析します。シリコンベースのタイミングソリューションを導入するための初期コストは、長期的なメリットや節約が初期支出を上回るかどうかについて懸念を抱かせる可能性があります。

初期価格が高いためにシリコンベースのソリューションが採用されず、水晶発振器(QCO)のような確立された代替品に比べて市場シェアが低くなる可能性があります。これは市場全体の成長を妨げる可能性があります。景気後退期や先行き不透明な時期には、企業は革新的技術への支出を延期したり制限したりする可能性があります。技術更新の延期など、コスト削減を優先する可能性があります。

目次

第1章 調査手法と調査範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 影響要因
    • 促進要因
      • タイミングデバイス用のLSI統合が可能なシリコン共振器の製造とパッケージング技術
      • MEMSベースのタイミングソリューション
    • 抑制要因
      • 水晶発振器(QCO)などの競合
      • 高い初期コスト
    • 機会
    • 影響分析

第5章 産業分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制分析
  • ロシア・ウクライナ戦争の影響分析
  • DMI意見

第6章 COVID-19分析

第7章 タイプ別

  • クロックジェネレーター
  • クロックバッファ
  • ジッター減衰器

第8章 実装タイプ別

  • 面実装
  • スルーホール

第9章 入力周波数別

  • 200 MHZ以上
  • 50 MHZ~200 MHZ
  • 50 MHZ以下

第10章 用途別

  • エレクトロニクス
  • データセンター
  • 自動車
  • 産業用
  • 医療・ヘルスケア
  • その他

第11章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • イタリア
    • ロシア
    • その他欧州
  • 南米
    • ブラジル
    • アルゼンチン
    • その他南米
  • アジア太平洋地域
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他アジア太平洋地域
  • 中東・アフリカ

第12章 競合情勢

  • 競合シナリオ
  • 市況/シェア分析
  • M&A分析

第13章 企業プロファイル

  • Microchip Technology INC
    • 企業概要
    • 水素供給源のポートフォリオと概要
    • 財務概要
    • 主な発展
  • Sitime Corp.
  • Rohm Co., Ltd.
  • Skyworks Solutions INC
  • Texas Instruments Incorporated
  • Renesas Electronics Corporation
  • Semicon Components Industries, LLC
  • Analog Devices, INC
  • Infinion
  • Torex Semiconductor Ltd.

第14章 付録

目次
Product Code: ICT7423

Overview

Global Silicon Based Timing Devices Market reached US$ 1.4 billion in 2022 and is expected to reach US$ 2.4 billion by 2030, growing with a CAGR of 6.6% during the forecast period 2023-2030.

Continuous advances in technology in the market have resulted in the development of very precise and compact silicon-based timing devices. The advancements are required to power the next generation of electronics, 5G networks and IoT devices. The key global players in U.S. region are focusing on the new product developments. For instance, in March 2023, Analog Devices, Inc. has announced the availability of an exceptionally low noise two output DC/DC Module regulator that incorporates proprietary silicon, layout and packaging advances.

The front-end of the LTM8080 is a high-efficiency synchronous Silent Switcher step-down regulator, which is followed by two different low noise, low dropout (LDO) regulators that function from up to 40 V input. To further reduce switching noise, the LTM8080's package includes an EMI barrier wall or shield. Therefore, U.S. is dominating the regional market with more than 80.1% of the country market shares.

Dynamics

Silicon Resonator Fabrication and Packaging Input Frequency Capable of LSI integration for Timing Device Application

In the electronics sector, miniaturization is a major trend. More than 70% of people preferred tiny and lightweight electronic devices in 2022. Its demand is met by incorporating silicon resonators into LSIs, which has resulted in a 30% reduction in the size of timing devices.

Leading semiconductor companies, such as Intel and TSMC, have committed more than US$1.5 billion in integrated timing research and development. The expenditures have resulted in the development of cutting-edge timing devices, which has fueled market growth.

For instance, energy efficiency is a primary goal for electronics. Timing devices' power consumption has been lowered by an average of 15% due to integrated silicon resonators, which is critical for battery-powered devices. It has aided in the widespread adoption of energy-efficient electrical equipment.

Micro-Electro-Mechanical Systems (MEMS) Based Timing Solutions

Small, power-efficient and precise timing solutions are critical to the expansion of IoT and edge computing devices. MEMS-based timing devices improve device performance by enabling real-time data processing and synchronization. Timing solutions based on MEMS are progressively being integrated into advanced driving assistance systems (ADAS), entertainment systems and in-vehicle networking.

The safety, convenience and infotainment elements that people demand from a smart, connected automobile are being redefined by automotive design. Automotive electronics is one of the fastest-growing semiconductor industries and electronic components utilized in diverse applications in ADAS and electric vehicles are among the many important drivers of this growth.

As per United States International Trade Commission (USITC) data, each gasoline-powered car has semiconductor devices worth 330 US$, whereas the value of semiconductor devices in each hybrid electric vehicle ranges from US$ 1,000 to US$ 3,500. Dating necessitates the use of 1,400 semiconductor devices that regulate everything from safety systems to powertrains.

Competition from Alternatives Like Quartz Crystal Oscillators (QCOs)

For many decades, QCOs have been a traditional and well-established technology for timing applications. It is widely known, trusted and used in a variety of industries. The bias toward QCOs can be a substantial impediment to silicon-based timing solutions acquiring market share.

Integrating silicon-based timing methods with QCO-specific devices can provide compatibility issues. Making outdated equipment and systems compatible with silicon-based technologies may necessitate new investments and resources. While silicon-based timing solutions may provide long-term benefits, the initial costs of migrating from QCOs may be prohibitive for some organizations, particularly small enterprises with limited budgets.

Higher Initial Cost

When exploring new technologies, businesses often analyze the return on investment (ROI). The initial cost of installing silicon-based timing solutions may raise concerns regarding whether the long-term benefits and savings will outweigh the initial outlay.

High initial prices may prevent silicon-based solutions from being adopted, resulting in a lesser market share compared to well-established alternatives such as Quartz Crystal Oscillators (QCOs). It has the potential to hinder overall market growth. Companies may postpone or limit expenditures on innovative technology during economic downturns or periods of uncertainty. It may prioritize cost-cutting tactics, such as postponing technological updates.

Segment Analysis

The global silicon based timing device market is segmented based on type, mounted type, input frequency, application and region.

Electronics Application Segment Drives Dominance of Silicon-Based Timing Devices in Global Market

Timing devices based on silicon are used in a wide range of electronic systems, including consumer electronics, industrial equipment and automotive systems. Market growth is being driven by the rising use of silicon-based timing solutions in these systems. Therefore, the electronics application segment dominates the global market with more than 1/4th of the market.

For instance, according to the Automotive Component Manufacturers Association of India (ACMA), electronics and information and communication technology (ICT) are changing the method that people perceive mobility. The auto electronics market was valued US$ 200 billion by 2020. The use of electronics in automobiles is the single most important driver of change in the industry; practically all automotive innovation originates directly or indirectly from electronic innovations.

Geographical Penetration

Owing to Higher Demand from Various Industries, North American Market is Growing

Timing devices based on silicon are critical components in many industries, including telecommunications, aerospace, automotive and consumer electronics. The industries' considerable presence in North America increases the demand for improved timing solutions. The aerospace and defense industries in North America rely on very accurate timing devices for applications such as navigation, communication and synchronization. The industry helps to drive the demand for improved timing technology. Therefore, the North American market is dominating the global market with nearly 1/3rd of the global market share.

COVID-19 Impact Analysis

During the pandemic, demand for silicon-based timing devices fluctuated across industries. While consumer electronics and communication equipment (e.g., laptops, cellphones and networking devices) experienced rising demand as remote work and digital connectivity rose, sectors such as automotive and aerospace saw reductions owing to lower production and travel limitations.

The uncertainty surrounding the pandemics duration and impact made it difficult for businesses to plan their output and investments. In reaction to the uncertain economic situation, several businesses delayed or reduced R&D projects and capital investments.

Russia-Ukraine War Impact Analysis

Timing devices based on silicon rely on a variety of raw materials and components. The war could cause shortages and price hikes by disrupting the availability of key materials. Geopolitical uncertainty can make it difficult for companies to plan and invest in production and development. Companies may postpone or reduce their expansion and research and development initiatives.

By Type

  • Clock Generators
  • Clock Buffers
  • Jitter Attenuators

By Mounted Type

  • Green Hydrogen
  • Grey Hydrogen
  • Blue Hydrogen
  • Other Sources

By Input Frequency

  • Above 200 MHZ
  • 50 MHZ to 200 MHZ
  • Up to 50 MHZ

By Application

  • Electronics
  • Data Centers
  • Automotive
  • Industrial
  • Medical and Healthcare
  • Others

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Russia
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • In March 2023, Analog Devices, Inc. has announced the availability of an exceptionally low noise two output DC/DC Module regulator that incorporates proprietary silicon, layout and packaging advances.
  • In August 2022, Skyworks Solutions, Inc. introduced the NetSync clock integrated circuit devices Si551x and Si540x, as well as the AccuTime IEEE 1588 software. The developments meet the needs of mobile operators and equipment vendors in 5G networks.
  • In February 2021, Renesas and Fixstars collaborated to develop a collection of tools for designing software for cars with advanced driving and safety features (AD and ADAS). The collaboration will assist the company in hastening the development of software that enables things like automated driving and vehicle safety systems.

Competitive Landscape

The major global players in the market include: Sitime Corp., Rohm Co., Ltd., Skyworks Solutions INC, Texas Instruments Incorporated, Renesas Electronics Corporation, Semicon Components Industries, LLC, Analog Devices, INC, Infinion and Torex Semiconductor Ltd.

Why Purchase the Report?

  • To visualize the global silicon based timing device market segmentation based on type, mounted type, input frequency, application and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of silicon based timing device market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Hydrogen Source mapping available as excel consisting of key products of all the major players.

The global silicon based timing device market report would provide approximately 77 tables, 74 figures and 215 Pages.

Target Audience 2023

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Type
  • 3.2. Snippet by Mounted Type
  • 3.3. Snippet by Input Frequency
  • 3.4. Snippet by Application
  • 3.5. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Silicon Resonator Fabrication and Packaging Technology Capable of LSI integration for Timing Device Application
      • 4.1.1.2. Micro-Electro-Mechanical Systems (MEMS) Based Timing Solutions
    • 4.1.2. Restraints
      • 4.1.2.1. Competition from Alternatives Like Quartz Crystal Oscillators (QCOs)
      • 4.1.2.2. Higher Initial Cost
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Russia-Ukraine War Impact Analysis
  • 5.6. DMI Opinion

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Type

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 7.1.2. Market Attractiveness Index, By Type
  • 7.2. Clock Generators*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Clock Buffers
  • 7.4. Jitter Attenuators

8. By Mounted Type

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Mounted Type
    • 8.1.2. Market Attractiveness Index, By Mounted Type
  • 8.2. Surface Mount*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Through Hole

9. By Input Frequency

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Input Frequency
    • 9.1.2. Market Attractiveness Index, By Input Frequency
  • 9.2. Above 200 MHZ*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. 50 MHZ to 200 MHZ
  • 9.4. Up to 50 MHZ

10. By Application

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.1.2. Market Attractiveness Index, By Application
  • 10.2. Electronics*
    • 10.2.1. Introduction
    • 10.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 10.3. Data Centers
  • 10.4. Automotive
  • 10.5. Industrial
  • 10.6. Medical and Healthcare
  • 10.7. Others

11. By Region

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 11.1.2. Market Attractiveness Index, By Region
  • 11.2. North America
    • 11.2.1. Introduction
    • 11.2.2. Key Region-Specific Dynamics
    • 11.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Mounted Type
    • 11.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Input Frequency
    • 11.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.2.7.1. U.S.
      • 11.2.7.2. Canada
      • 11.2.7.3. Mexico
  • 11.3. Europe
    • 11.3.1. Introduction
    • 11.3.2. Key Region-Specific Dynamics
    • 11.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Mounted Type
    • 11.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Input Frequency
    • 11.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.3.7.1. Germany
      • 11.3.7.2. UK
      • 11.3.7.3. France
      • 11.3.7.4. Italy
      • 11.3.7.5. Russia
      • 11.3.7.6. Rest of Europe
  • 11.4. South America
    • 11.4.1. Introduction
    • 11.4.2. Key Region-Specific Dynamics
    • 11.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Mounted Type
    • 11.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Input Frequency
    • 11.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.4.7.1. Brazil
      • 11.4.7.2. Argentina
      • 11.4.7.3. Rest of South America
  • 11.5. Asia-Pacific
    • 11.5.1. Introduction
    • 11.5.2. Key Region-Specific Dynamics
    • 11.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Mounted Type
    • 11.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Input Frequency
    • 11.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.5.7.1. China
      • 11.5.7.2. India
      • 11.5.7.3. Japan
      • 11.5.7.4. Australia
      • 11.5.7.5. Rest of Asia-Pacific
  • 11.6. Middle East and Africa
    • 11.6.1. Introduction
    • 11.6.2. Key Region-Specific Dynamics
    • 11.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Mounted Type
    • 11.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Input Frequency
    • 11.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application

12. Competitive Landscape

  • 12.1. Competitive Scenario
  • 12.2. Market Positioning/Share Analysis
  • 12.3. Mergers and Acquisitions Analysis

13. Company Profiles

  • 13.1. Microchip Technology INC*
    • 13.1.1. Company Overview
    • 13.1.2. Hydrogen Source Portfolio and Description
    • 13.1.3. Financial Overview
    • 13.1.4. Key Developments
  • 13.2. Sitime Corp.
  • 13.3. Rohm Co., Ltd.
  • 13.4. Skyworks Solutions INC
  • 13.5. Texas Instruments Incorporated
  • 13.6. Renesas Electronics Corporation
  • 13.7. Semicon Components Industries, LLC
  • 13.8. Analog Devices, INC
  • 13.9. Infinion
  • 13.10. Torex Semiconductor Ltd.

LIST NOT EXHAUSTIVE

14. Appendix

  • 14.1. About Us and Services
  • 14.2. Contact Us