表紙:ガラス添加剤の世界市場-2023年~2030年
市場調査レポート
商品コード
1372101

ガラス添加剤の世界市場-2023年~2030年

Global Glass Additives Market - 2023-2030


出版日
ページ情報
英文 224 Pages
納期
即日から翌営業日
カスタマイズ可能
適宜更新あり
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=144.03円
ガラス添加剤の世界市場-2023年~2030年
出版日: 2023年10月18日
発行: DataM Intelligence
ページ情報: 英文 224 Pages
納期: 即日から翌営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

概要

ガラス添加剤の世界市場は2022年に11億米ドルに達し、2023-2030年の予測期間中にCAGR 3.6%で成長し、2030年には14億米ドルに達すると予測されています。

ガラス添加剤市場は、広範なガラス産業の中でダイナミックかつ急速に発展している分野です。ガラス製品の特性や機能性を向上させるために、ガラス製造工程で様々な材料を添加します。添加剤は、強度の向上、エネルギー効率の向上、高度な光学特性、導電性などの特徴をもたらすことができます。

ガラス添加剤市場を支える顕著な原動力の一つは、建設業界がエネルギー効率が高く、環境的に持続可能な建築ソリューションを重視するようになっていることです。低放射率(Low-E)コーティングのようなエネルギー効率の高いガラス添加剤の需要は、厳しいエネルギー規制やグリーンビルディング基準を満たすために急増しています。さらに自動車分野では、燃費向上と排出ガス削減という業界の目標に沿い、軽量でエネルギー効率の高い自動車用ガラスを作るためにガラス添加剤の利用が進んでいます。

世界市場では金属合金が45.7%のシェアで最大のセグメントを占めています。同様に、アジア太平洋地域はガラス添加剤市場を独占しており、1/3以上の最大市場シェアを獲得しています。同地域はエレクトロニクス製造の中心地と考えられており、技術的に高度なガラス製品に対する需要の高まりを反映して、スマートガラス市場の大幅な成長が見込まれています。

ダイナミクス

高性能ガラスへの需要の高まり

高性能ガラスは、その優れた断熱性、防音性、安全性により、現代の建築に広く採用されています。都市化とインフラ整備に後押しされた世界の建設業界は、その重要な原動力となっています。global construction perspectivesとOxford Economicsによる世界建設レポートでは、2030年までに世界の建設生産高が85%増の15兆5,000億米ドルに達すると予測しており、ガラス添加剤市場に大きな影響を与えています。

自動車分野は、安全性、美観、エネルギー効率を高めるために高性能ガラスに大きく依存しています。世界の自動車用ガラス市場は、自動車生産台数の増加と先進機能に対する消費者の需要により拡大しています。2020年7月、ガーディアン・ガラスはガーディアン・サンガード・スーパーニュートラルのような先進的なガラス・コーティングを導入し、現代アーキテクチャのエネルギー効率要件を満たしました。

高性能ガラスはエレクトロニクス産業に不可欠であり、タッチスクリーン、ディスプレイ、光学部品に応用されています。スマートフォン、タブレット、OLEDテレビの普及に伴い、高度なガラス添加剤のニーズが高まっています。

急速な技術進歩

ナノテクノロジーを頻繁に取り入れた最先端のコーティングの出現は、ガラス業界に革命を巻き起こしました。コーティングは反射防止、セルフクリーニング、太陽光制御などの特性を強化し、建築、自動車、エレクトロニクス分野での需要を刺激しています。

技術の進歩により、環境条件やユーザーの好みに応じて透明度を動的に調整できるスマートガラスが誕生しました。この技術革新は、建築や自動車の分野で大きな関心を集めています。

2023年7月、積層造形で製造可能な新種のガラスを開発するため、オーストリアのウィーンに本社を置くLithoz GmbHは、ドイツのフライブルクに本社を置く技術・光学部品メーカーのGlassomer社と提携しました。この新素材「LithaGlass powered by Glassomer」は、リソグラフィーをベースとしたリトーズのセラミック積層造形技術により加工され、機械的安定性と精度に優れた部品を製造します。

たゆまぬ研究努力により、エネルギー効率を高めるガラス添加剤が開発されました。これは、建築基準法や持続可能性の目標によってエネルギー効率の高いガラスがますます義務付けられている建築設計において、特に適切なものです。

技術の進歩

建築分野は、環境持続可能性に向けたガラス添加剤から大きな利益を得ることができます。エネルギー効率、断熱性、日射調整機能を強化する添加剤入りガラスの需要が急増しています。エネルギー使用量と二酸化炭素排出量の削減を目指す建設業界では、LEED(Leadership in Energy and Environmental Design)のようなグリーンビルディング基準がこの需要を牽引しています。

より軽量で環境に優しいガラスは、燃料使用量と排出量の削減に不可欠であるため、自動車分野での人気が高まっています。ガラス添加剤によって可能になる、より軽量で低燃費の自動車の開発は、自動車部門の持続可能性の目標と完全に一致しています。

ガラス添加剤は、ガラス製品のリサイクル性と耐久性の向上に不可欠な役割を果たしています。添加剤はガラスのリサイクルを促進し、それによって廃棄物を減らし、持続可能性を支持する循環経済モデルを促進します。

コストと価格圧力

持続可能性、エネルギー効率、性能向上に合致した革新的なガラス添加剤の開発には、研究開発への多額の投資が必要です。メーカーはこれらの費用を価格設定によって回収しなければならず、添加剤を豊富に含むガラス製品が価格に敏感な消費者にとって入手しにくくなる可能性があります。

多くのガラス添加剤は特殊な原料を必要とし、その中には調達コストが高いものもあります。例えば、高度なコーティングに使用される特定のナノ材料はコストが高く、製造経費の増加につながります。

添加剤をガラスに組み込むには複雑な製造手順が必要となることが多く、特殊な設備と熟練した労働力が必要となります。こうした側面が製造コストを押し上げます。安全、品質、環境基準を遵守するため、添加剤を組み込んだガラス製品は厳格な試験と認証プロセスを経る。このような努力は必要不可欠ではあるが、製造スケジュールとコストの両方を増大させる。

規制と安全の遵守

添加物を豊富に含むガラス製品は、安全性と品質基準への適合を確認するために、徹底的な試験と認証手続きを受けなければならないです。耐衝撃性、火災安全性、化学的安定性などを評価する必要があり、これらの前提条件を満たすためには時間と資金の両方が必要となります。

エネルギー効率の高いガラスが求められている建設業界では、エネルギー基準やグリーンビルディング基準(LEEDなど)の遵守は譲れません。このような基準を遵守するためには、断熱性や日射制御性を高めるために特定のガラス添加剤やコーティングを使用する必要があります。

自動車分野では厳しい安全・環境規制があります。軽量化やエネルギー効率向上のために使用されるガラス添加剤は、厳格な自動車安全基準(米国のFMVSSなど)や排出ガス規制(欧州のEuro6など)に適合していなければならないです。

欧州連合のREACH(化学物質の登録、評価、認可および制限)規制のような環境持続性規制は、有害物質の使用制限を課すことにより、ガラス製造における特定の添加剤の使用に影響を与えます。

目次

第1章 調査手法と調査範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 影響要因
    • 促進要因
      • 高性能ガラスへの需要の高まり
      • 急速な技術進歩
      • 技術の進歩
    • 抑制要因
      • 規制と安全性の遵守
      • コストと価格圧力
    • 機会
    • 影響分析

第5章 産業分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制分析
  • ロシア・ウクライナ戦争の影響分析
  • DMI意見

第6章 COVID-19分析

第7章 製品別

  • 金属合金
  • ナノ粒子
  • ポリマー
  • 希土類金属

第8章 化学元素別

  • マンガン
  • 硫黄
  • ニッケル
  • チタン
  • クロム
  • ウラン
  • その他

第9章 用途別

  • ガラス転移
  • シリケートガラス製造
  • 空力浮上
  • ネットワークガラス
  • 3Dプリンティング
  • カラー強化
  • その他

第10章 エンドユーザー別

  • パッケージング
  • 建築・建設
  • エレクトロニクス
  • その他

第11章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • イタリア
    • ロシア
    • その他欧州
  • 南米
    • ブラジル
    • アルゼンチン
    • その他南米
  • アジア太平洋
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他アジア太平洋地域
  • 中東・アフリカ

第12章 競合情勢

  • 競合シナリオ
  • 市況/シェア分析
  • M&A分析

第13章 企業プロファイル

  • Sisecam Group
    • 会社概要
    • 製品ポートフォリオと概要
    • 財務概要
    • 最近の動向
  • Asahi Glass Co., Ltd.
  • Saint-Gobain S.A.
  • Nippon Sheet Glass Co., Ltd.
  • AGC Inc.
  • Guardian Industries
  • Central Glass Co., Ltd.
  • Pilkington Group Limited
  • Vitro, S.A.B. de C.V.
  • Schott AG

第14章 付録

目次
Product Code: CH7136

Overview

Global Glass Additives Market reached US$ 1.1 billion in 2022 and is expected to reach US$ 1.4 billion by 2030, growing with a CAGR of 3.6% during the forecast period 2023-2030.

The glass additives market is a dynamic and rapidly evolving segment within the broader glass industry. It involves the incorporation of various materials during the glass manufacturing process to enhance the properties and functionalities of glass products. The additives can introduce features such as increased strength, enhanced energy efficiency, advanced optical characteristics and electrical conductivity.

One notable driving force behind the glass additives market is the construction industry's increasing emphasis on energy-efficient and environmentally sustainable building solutions. The demand for energy-efficient glass additives, like low-emissivity (Low-E) coatings, has surged to meet strict energy codes and green building standards. Furthermore, the automotive sector is progressively turning to glass additives to create lightweight and energy-efficient glass for vehicles, aligning with the industry's goals of enhancing fuel efficiency and reducing emissions.

Metal alloys hold the largest segment in the global market with a share of 45.7%. Similarly, the Asia-Pacific dominates the glass additives market, capturing the largest market share of over 1/3rd. The region is considered a central hub for electronics manufacturing, substantial growth is anticipated in the smart glass market, reflecting the heightened demand for technologically advanced glass products.

Dynamics

Rising Demand for High-Performance Glass

High-performance glass is widely adopted in contemporary construction due to its exceptional thermal insulation, soundproofing and safety characteristics. The global construction industry, fueled by urbanization and infrastructure development, serves as a significant driver. The global construction report by global construction perspectives and Oxford Economics forecasts a substantial 85% growth in global construction output to reach US$15.5 trillion by 2030, greatly influencing the glass additives market.

The automotive sector heavily relies on high-performance glass to enhance safety, aesthetics and energy efficiency. The global automotive glass market is expanding due to increased vehicle production and consumer demand for advanced features. In July 2020, Guardian Glass has introduced advanced glass coatings such as Guardian SunGuard SuperNeutral to fulfill the energy efficiency requirements of contemporary architecture.

High-performance glass is indispensable in the electronics industry, finding applications in touchscreens, displays and optical components. With the growing prevalence of smartphones, tablets and OLED TVs, the need for advanced glass additives is on the rise.

Swift Technological Progress

The emergence of state-of-the-art coatings, frequently incorporating nanotechnology, has sparked a revolution in the glass industry. The coatings enhance characteristics such as anti-reflectivity, self-cleaning capabilities and solar control, stimulating demand in the architectural, automotive and electronics sectors.

Technological strides have given rise to smart glass, capable of dynamically adjusting its transparency based on environmental conditions or user preferences. It innovation has garnered substantial interest in the construction and automotive domains.

In July 2023, In order to create a new kind of glass that can be produced via additive manufacturing, Lithoz GmbH, with its headquarters in Vienna, Austria, collaborated with Glassomer, a producer of technical and optical components with its headquarters in Freiburg, Germany. The new material, "LithaGlass powered by Glassomer," is processed utilizing Lithoz's ceramic additive manufacturing technology that is lithography-based, producing components with excellent mechanical stability and precision.

Persistent research endeavors have led to the development of glass additives that amplify energy efficiency. It is particularly pertinent in architectural design, where energy-efficient glass is increasingly mandated by building codes and sustainability objectives.

Technological Advancements

The construction sector stands to gain significantly from glass additives geared towards environmental sustainability. The market has witnessed a surge in demand for glass with additives that enhance energy efficiency, insulation and solar control. Following the construction industry's aim to reduce energy use and carbon emissions, this demand is mostly driven by green building standards like LEED (Leadership in Energy and Environmental Design).

Lighter and environmentally friendly glass has become increasingly popular in the automotive sector since it is essential for reducing fuel use and emissions. The development of more lightweight, fuel-efficient automobiles made possible by glass additives is completely in line with the sustainability objectives of the automobile sector.

Glass additives play an integral role in improving the recyclability and durability of glass products. The additives facilitate glass recycling, thereby reducing waste and promoting the circular economy model, which champions sustainability.

Cost and Pricing Pressure

The development of innovative glass additives that align with sustainability, energy efficiency and enhanced performance necessitates substantial investments in research and development. Manufacturers must recover these expenditures through pricing, potentially rendering glass products enriched with additives less accessible to price-sensitive consumers.

Many glass additives necessitate specialized raw materials, some of which can be expensive to procure. For instance, certain nanomaterials employed in advanced coatings come with elevated costs, contributing to increased production outlays.

The incorporation of additives into glass often entails intricate production procedures, requiring specialized equipment and skilled labor. The aspects drive up manufacturing expenses. To adhere to safety, quality and environmental standards, glass products incorporating additives undergo rigorous testing and certification processes. The endeavors, while essential, extend both the production timeline and costs.

Regulatory and Safety Compliance

Glass products enriched with additives must undergo exhaustive testing and certification procedures to ascertain their alignment with safety and quality standards. It entails evaluations for impact resistance, fire safety and chemical stability, necessitating both time and financial investments to meet these prerequisites.

In the construction industry, where energy-efficient glass is in high demand, adherence to energy codes and green building standards (e.g., LEED) is non-negotiable. Complying with these standards often necessitates the utilization of particular glass additives and coatings to enhance insulation and solar control.

The automotive sector contends with stringent safety and environmental regulations. Glass additives employed for weight reduction and energy efficiency must align with rigorous automotive safety standards (e.g., FMVSS in United States) and emissions requirements (e.g., Euro 6 emissions standards in Europe).

Environmental sustainability regulations like the European Union's REACH (Registration, Evaluation, Authorization and Restriction of Chemicals) regulation influence the use of specific additives in glass production by imposing limitations on the use of hazardous substances.

Segment Analysis

The global glass additives market is segmented based on product, chemical elements, application, end-user and region.

Increase in Demand for Metal Alloys in Architectural Contexts

Metal alloys, especially those containing elements such as aluminum, titanium or nickel, possess the capability to significantly bolster the strength and durability of glass, making it 45.7% of the global share. It proves especially crucial in architectural contexts where safety and durability are of paramount concern. The integration of metal additives reinforces the glass, rendering it more resistant to impacts and structural stress.

In April 2022, the strength and durability of the materials and components used in aviation and space exploration have recently been significantly improved due to a new metal alloy created by NASA researchers utilizing a 3D printing technology. It has led to greater and longer-lasting performance.

In comparison to current state-of-the-art alloys, NASA Alloy GRX-810, an oxide dispersion strengthened (ODS) alloy, can withstand temperatures exceeding 2,000 degrees Fahrenheit, is more malleable and can last more than 1,000 times longer. Because ODS alloys can resist more severe conditions before failing, these new alloys can be used to create aerospace parts for high-temperature applications, such as those inside aircraft and rocket engines.

Certain metal alloys exhibit exceptional thermal and electrical conductivity properties. When incorporated into glass, they enhances its ability to conduct heat or electricity effectively. It attribute holds particular significance in electronics applications where glass substrates with improved conductivity are pivotal for manufacturing microelectronics, touchscreens and displays.

Geographical Penetration

Substantial Investments in Infrastructure Development

Asia-Pacific glass additives market is expected to reach up to 41.3% in the forecast period. The Asia-Pacific area is undergoing a construction boom as a result of countries like China, India and Southeast Asian countries investing extensively in infrastructure development. There is an increasing demand for energy-efficient glass additives such as insulating chemicals and low-emissivity (Low-E) coatings to meet rigorous energy restrictions and environmentally conscious building standards capability goals.

Glass additives are indispensable in the production of high-performance glass for these devices, satisfying the burgeoning demand for advanced technology products. The Asia-Pacific construction market is flourishing, spurred by urbanization and infrastructure expansion. By 2030, Oxford Economics projects that the Asia-Pacific area will contribute 59% of the world's construction production, underlining the enormous demand for glass additives in environmentally friendly and energy-efficient building techniques.

In addition, the Chinese government is strongly promoting EVs. Glass additives for EVs, including lightweight glass solutions and coatings to enhance energy efficiency, are expected to witness heightened demand.

Competitive Landscape

The major global players in the market include: Asahi Glass Co., Ltd., Saint-Gobain S.A., Nippon Sheet Glass Co., Ltd., AGC Inc., Guardian Industries, Central Glass Co., Ltd., Pilkington Group Limited, Vitro, S.A.B. de C.V., Schott AG and Sisecam Group.

COVID-19 Impact Analysis

The emergence of COVID-19 has decelerated glass additives market growth, however, due to the lift of the lockdown, markets are slowly gaining traction. The sudden rise in CAGR is attributable to the glass additives market's demand and growth, returning to the pre-pandemic level once the pandemic is over.

Most industrial operations have been shut down as a result of the COVID-19 pandemic's spread and the demand for glass additives products has been significantly impacted. Its numerous end-user industries have experienced a decline as a result.

Russia-Ukraine War Impact Analysis:

Instability caused by war influences energy prices, which can affect the production costs of glass and glass additives products, especially those designed for energy efficiency. High energy prices can make energy-efficient glass additives less cost-effective for consumers. Trade disruptions and restrictions imposed on Russia and Ukraine can affect the export and import of glass additives products. Companies relying on these markets for sales or sourcing materials need to adapt their strategies.

Geopolitical conflicts can have ripple effects on the global economy, which can, in turn, affect consumer spending, construction activity and investments in various regions. The economic factors can indirectly influence the glass additives market. Glass has been one of the industries most negatively impacted by the war. 23 countries on the continent are home to 162 glass manufacturing facilities, all of which are fuel-injected and must run continuously.

By Product

  • Metal Alloys
  • Nanoparticles
  • Polymers
  • Rare Earth Metals

By Chemical Elements

  • Iron
  • Manganese
  • Sulfur
  • Nickel
  • Titanium
  • Chromium
  • Uranium
  • Others

By Application

  • Glass Transition
  • Silicate Glass Manufacturing
  • Aerodynamic Levitation
  • Network Glasses
  • 3D Printing
  • Color Strengthening
  • Others

By End-User

  • Packaging
  • Building & Construction
  • Electronics & Appliances
  • Others

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Russia
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • On October 5, 2022, a brand-new, particularly created additive called BYK-Max CT 4275 is being introduced by BYK Additives, which may be utilized in a wide range of polyamides, including those used in the automotive industry. According to the company, the silicate's unique shape and optimized surface treatment ensure nearly flawless exfoliation in polar systems while improving dispersion and absorption into the thermoplastic matrix.
  • On May 16, 2022, using ocean-bound PET bottles as a feed stream for chemical upcycling into polybutylene terephthalate (PBT) resin, SABIC, a global leader in the chemical industry, today unveiled LNPTM ELCRINTM WF0061BiQ resin.

Why Purchase the Report?

  • To visualize the global glass additives market segmentation based on product, chemical elements, application, end-user and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of glass additives market-level with all segments.
  • The PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as Excel consisting of key products of all the major players.

The global glass additives market report would provide approximately 69 tables, 78 figures and 224 Pages.

Target Audience: 2023

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet By Product
  • 3.2. Snippet By Chemical Elements
  • 3.3. Snippet By Application
  • 3.4. Snippet By End-User
  • 3.5. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Rising Demand for High-Performance Glass
      • 4.1.1.2. Swift Technological Progress
      • 4.1.1.3. Technological Advancements
    • 4.1.2. Restraints
      • 4.1.2.1. Regulatory and Safety Compliance
      • 4.1.2.2. Cost and Pricing Pressure
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Russia Ukraine War Impact Analysis
  • 5.6. DMI Opinion

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers' Strategic Initiatives
  • 6.6. Conclusion

7. By Product

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 7.1.2. Market Attractiveness Index, By Product
  • 7.2. Metal Alloys
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Nanoparticles
  • 7.4. Polymers
  • 7.5. Rare Earth Metals

8. By Chemical Elements

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Chemical Elements
    • 8.1.2. Market Attractiveness Index, By Chemical Elements
  • 8.2. Iron*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Manganese
  • 8.4. Sulfur
  • 8.5. Nickel
  • 8.6. Titanium
  • 8.7. Chromium
  • 8.8. Uranium
  • 8.9. Others

9. By Application

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.1.2. Market Attractiveness Index, By Application
  • 9.2. Glass Transition*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Silicate Glass Manufacturing
  • 9.4. Aerodynamic Levitation
  • 9.5. Network Glasses
  • 9.6. 3D Printing
  • 9.7. Color Strengthening
  • 9.8. Others

10. By End-User

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.1.2. Market Attractiveness Index, By End-User
  • 10.2. Packaging*
    • 10.2.1. Introduction
    • 10.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 10.3. Building & Construction
  • 10.4. Electronics & Appliances
  • 10.5. Others

11. By Region

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 11.1.2. Market Attractiveness Index, By Region
  • 11.2. North America
    • 11.2.1. Introduction
    • 11.2.2. Key Region-Specific Dynamics
    • 11.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 11.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Chemical Elements
    • 11.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.2.7.1. U.S.
      • 11.2.7.2. Canada
      • 11.2.7.3. Mexico
  • 11.3. Europe
    • 11.3.1. Introduction
    • 11.3.2. Key Region-Specific Dynamics
    • 11.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 11.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Chemical Elements
    • 11.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.3.7.1. Germany
      • 11.3.7.2. UK
      • 11.3.7.3. France
      • 11.3.7.4. Italy
      • 11.3.7.5. Russia
      • 11.3.7.6. Rest of Europe
  • 11.4. South America
    • 11.4.1. Introduction
    • 11.4.2. Key Region-Specific Dynamics
    • 11.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 11.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Chemical Elements
    • 11.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.4.7.1. Brazil
      • 11.4.7.2. Argentina
      • 11.4.7.3. Rest of South America
  • 11.5. Asia-Pacific
    • 11.5.1. Introduction
    • 11.5.2. Key Region-Specific Dynamics
    • 11.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 11.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Chemical Elements
    • 11.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.5.7.1. China
      • 11.5.7.2. India
      • 11.5.7.3. Japan
      • 11.5.7.4. Australia
      • 11.5.7.5. Rest of Asia-Pacific
  • 11.6. Middle East and Africa
    • 11.6.1. Introduction
    • 11.6.2. Key Region-Specific Dynamics
    • 11.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 11.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Chemical Elements
    • 11.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User

12. Competitive Landscape

  • 12.1. Competitive Scenario
  • 12.2. Market Positioning/Share Analysis
  • 12.3. Mergers and Acquisitions Analysis

13. Company Profiles

  • 13.1. Sisecam Group*
    • 13.1.1. Company Overview
    • 13.1.2. Type Portfolio and Description
    • 13.1.3. Financial Overview
    • 13.1.4. Recent Developments
  • 13.2. Asahi Glass Co., Ltd.
  • 13.3. Saint-Gobain S.A.
  • 13.4. Nippon Sheet Glass Co., Ltd.
  • 13.5. AGC Inc.
  • 13.6. Guardian Industries
  • 13.7. Central Glass Co., Ltd.
  • 13.8. Pilkington Group Limited
  • 13.9. Vitro, S.A.B. de C.V.
  • 13.10. Schott AG

LIST NOT EXHAUSTIVE

14. Appendix

  • 14.1. About Us and Services
  • 14.2. Contact Us