表紙:マイクロ波伝送装置の世界市場-2023年~2030年
市場調査レポート
商品コード
1352159

マイクロ波伝送装置の世界市場-2023年~2030年

Global Microwave Transmission Equipment Market - 2023-2030

出版日: | 発行: DataM Intelligence | ページ情報: 英文 206 Pages | 納期: 約2営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=157.14円
マイクロ波伝送装置の世界市場-2023年~2030年
出版日: 2023年09月27日
発行: DataM Intelligence
ページ情報: 英文 206 Pages
納期: 約2営業日
ご注意事項 :
本レポートは最新情報反映のため適宜更新し、内容構成変更を行う場合があります。ご検討の際はお問い合わせください。
  • 全表示
  • 概要
  • 目次
概要

概要

世界のマイクロ波伝送装置市場は、2022年に53億米ドルに達し、2023-2030年の予測期間にCAGR 2.6%で成長し、2030年には67億米ドルに達すると予測されています。

スマートフォン、IoTデバイス、帯域幅集約型アプリケーションの採用によるデータトラフィックの急増が、大容量バックホールネットワークの需要を生み出しています。マイクロ波伝送装置は、高速のポイントツーポイント接続を提供することで、需要を満たすのに役立ちます。マイクロ波伝送装置は、低遅延、高帯域幅能力、必要なネットワーク高密度化をサポートする能力により、5Gバックホールに適しています。

ネットワークの範囲と容量を改善するために、サービスプロバイダは、スモールセルやマクロセルを含む、より多くのセルサイトを展開しています。マイクロ波リンクは、これらのサイトを迅速かつコスト効率よくコアネットワークに接続するために重要です。リアルタイムゲーム、自律走行車、遠隔手術のような活用領域は、低遅延ネットワークを要求します。最小の信号伝搬遅延を持つマイクロ波リンクは、これらの遅延要求を満たすのに不可欠です。

北米は、世界のマイクロ波伝送装置市場の1/4以上をカバーする成長地域の一つです。この地域は5Gネットワーク展開の最前線です。マイクロ波伝送は、携帯電話タワーとコアネットワーク間の大容量、低遅延通信を提供するため、5Gネットワークのデータトラフィックを管理するために重要な役割を果たしています。

ダイナミクス

5Gネットワークの展開

5Gネットワークは、前世代と比較して著しく高いデータ速度と容量を提供し、このデータトラフィックの増加は、大容量バックホールソリューションの使用を必要とし、マイクロ波伝送装置は、5Gデータ需要をサポートするために必要な接続性を提供する上で重要な役割を果たしています。5Gネットワークは、約束されたカバレッジと容量を提供するために、より多くの基地局とスモールセルを必要とします。

例えば、2023年7月3日、インドにおける5G技術の展開は、9ヵ月間で27万箇所の5Gサイトが展開され、急成長を遂げました。インド政府は5G技術の急速な展開を支持しています。周波数帯の割り当てや官僚的なハードルの軽減など、5Gネットワークの展開を促進する政策や規制措置が重要な役割を果たしています。Atmanirbhar Bharatイニシアチブの下、大手通信事業者は4Gと5Gの設計を行っています。

企業間コラボレーションの活発化

コラボレーションにより、企業はリソースや専門知識を共有し、技術的進歩を加速させることができます。企業は共同で新しいマイクロ波伝送装置を開発し、革新することができ、製品開発サイクルの迅速化と市場競争力の維持につながります。共同作業は、企業が新しい市場に参入したり、既存の市場で存在感を拡大するのに役立ちます。地元企業や国際的な提携とのパートナーシップは、より広範な顧客ベースや流通ネットワークへのアクセスを提供することができます。

例えば、2023年2月15日、ティゴ・タンザニアとエリクソンは、ダルエスサラーム、ドドマ、ザンジバルで5Gサービスを開始する一方、タンザニア全土で既存の4Gネットワークを近代化・拡大するために提携しました。エリクソンは無線アクセス・ネットワーク(RAN)製品とマイクロ波ソリューションを使用してTigo Tanzaniaの4Gネットワークをアップグレードし、ネットワーク容量と信頼性を向上させます。また、ネットワークの最適化のためにAI対応のコグニティブ・ソフトウェアを導入し、高いパフォーマンスとユーザー体験を確保します。

技術進歩

より高い周波数帯域、高度な変調方式、ビームフォーミング技術を使用する技術の進歩により、周波数帯域効率が向上し、利用可能な周波数帯域でのデータ伝送が可能になります。マイクロ波技術は、高い可用性と耐故障性を保証する、弾力性のある冗長ネットワークアーキテクチャを提供するために進化しています。規制の変更と周波数割り当ての決定は、マイクロ波伝送技術の成長に大きく影響します。メーカーは、進化する規制要件に適応する必要があります。

例えば、2023年 8月30日、中国の科学者は、次世代テラヘルツ通信技術に基づく世界初の潜水艦探知デバイスのテストに成功し、潜水艦探知技術における重要なブレークスルーを達成しました。この革新的なデバイスは、マイクロ波と赤外線放射周波数の間で動作するテラヘルツ波を利用し、外洋下の低周波音源によって引き起こされる極小の表面振動を検出します。

通信距離の限界と信号の脆弱性

マイクロ波信号は直線で伝わるため、送信アンテナと受信アンテナの間に遮るものない見通し線が必要です。建物、山、背の高い草木のような物理的な障害物があると、信号が妨害され、到達範囲とカバー範囲が制限されます。マイクロ波信号は通常、特に地球の大気圏内では比較的短い距離に制限されます。周波数が高くなるにつれて、大気の吸収と散乱が大きくなり、信号範囲が狭くなります。

通信に使われるマイクロ波帯は、他の様々なサービスやアプリケーションと共有されています。他のマイクロ波ソース、気象条件や大気現象からの干渉は、信号の品質と信頼性を低下させます。マイクロ波信号は、特に盗聴装置を隠しやすい都市環境では、傍受されやすい可能性があります。暗号化とセキュリティ対策は、マイクロ波で伝送される機密データを保護するために不可欠です。

目次

第1章 調査手法と調査範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 影響要因
    • 促進要因
      • 5Gネットワークの展開
      • 企業間コラボレーションの活発化
      • 技術進歩
    • 抑制要因
      • 通信距離の限界と信号の脆弱性
    • 機会
    • 影響分析

第5章 産業分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制分析
  • ロシア・ウクライナ戦争の影響分析
  • DMIの見解

第6章 COVID-19分析

第7章 ネットワーク技術別

  • ハイブリッドマイクロ波
  • パケットマイクロ波
  • スモールセルバックホール
  • 時分割多重(TDM)

第8章 コンポーネント別

  • アンテナ
  • RF処理ユニット
  • IDU(屋内ユニット)
  • ODU(屋外ユニット)
  • ケーブル・コネクター

第9章 周波数帯域別

  • Lバンド
  • Sバンド
  • Cバンド
  • Xバンド
  • Kuバンド
  • Kaバンド
  • Vバンド

第10章 設置方式別

  • 完全屋内型
  • 分離設置型
  • 完全屋外型

第11章 用途別

  • ナビゲーション
  • セルラー通信
  • 無線通信
  • 衛星通信
  • レーダー
  • ブロードバンド通信

第12章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • イタリア
    • ロシア
    • その他欧州
  • 南米
    • ブラジル
    • アルゼンチン
    • その他南米
  • アジア太平洋
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他アジア太平洋
  • 中東・アフリカ

第13章 競合情勢

  • 競合シナリオ
  • 市況/シェア分析
  • M&A分析

第14章 企業プロファイル

  • Huawei Technologies Co
    • 企業概要
    • 製品ポートフォリオと説明
    • 財務概要
    • 主な動向
  • NEC Crop.
  • Anritsu
  • Giga-Tronics Inc.
  • Intracom Telecom
  • MegaFon
  • Avait Networks
  • Alcatel-Lucent S.A.
  • LM Ericsson Telefon AB
  • Ceragon Networks Ltd.

第15章 付録

目次
Product Code: ICT6921

Overview

Global Microwave Transmission Equipment Market reached US$ 5.3 billion in 2022 and is expected to reach US$ 6.7 billion by 2030, growing with a CAGR of 2.6% during the forecast period 2023-2030.

Rapidly growth in data traffic driven by the adoption of smartphones, IoT devices and bandwidth-intensive applications has created a demand for high-capacity backhaul networks. Microwave transmission equipment helps meet the demand being providing high-speed, point-to-point connectivity. Microwave transmission equipment is well-suited for 5G backhaul due to its low latency, high bandwidth capabilities and ability to support the required network densification.

To improve network coverage and capacity, service providers are deploying more cell sites, including small cells and macrocells. Microwave links are crucial for connecting these sites to the core network quickly and cost-effectively. Applications such as real-time gaming, autonomous vehicles and remote surgery demand low-latency networks. Microwave links, with their minimal signal propagation delay, are essential for meeting these latency requirements.

North America is among the growing regions in the global microwave transmission equipment market covering more than 1/4th of the market. The region is at the forefront of 5G network deployment. As microwave transmission, offers high-capacity, low-latency communication between mobile phone towers and core networks, it plays crucial for managing the data traffic in 5G networks.

Dynamics

Deployment of 5G Networks

5G networks offer significantly higher data speeds and capacity compared to previous generations and this increase in data traffic necessitates the use of high-capacity backhaul solutions and microwave transmission equipment plays a crucial role in providing the necessary connectivity to support 5G data demands. 5G networks require a higher number of base stations and small cells to deliver the promised coverage and capacity.

For instance, on 3 July 2023, the rollout of 5G technology in India saw rapid growth with the deployment of 2.7 lakh (270,000) 5G sites within nine months. The Indian government has been supportive of the rapid deployment of 5G technology. Policies and regulatory measures that facilitate the rollout of 5G networks, including the allocation of spectrum and reduction of bureaucratic hurdles, have played a crucial role. Under Atmanirbhar Bharat initiatives top telecom operators developed 4G and 5G designed.

Rising Collaboration Between Companies

Collaboration allows companies to pool their resources and expertise, accelerating technological advancements. Companies can jointly develop and innovate new microwave transmission equipment, leading to faster product development cycles and staying competitive in the market. Collaborative efforts can help companies enter new markets or expand their presence in existing ones. Partnerships with local companies or international alliances can provide access to a broader customer base and distribution networks.

For instance, on 15 February 2023, Tigo Tanzania and Ericsson partnered to launch 5G services in Dar Es Salaam, Dodoma and Zanzibar while modernizing and expanding the existing 4G network across Tanzania. Ericsson is upgrading Tigo Tanzania's 4G network using Radio Access Network (RAN) products and microwave solutions, increasing network capacity and reliability. They will also deploy AI-enabled Cognitive Software for network optimization, ensuring high performance and user experience.

Technology Advancement

Advancement in technology that use higher frequency band, advanced modulation schemes and beamforming techniques that improves spectrum efficiency which allows transmission of data over the available spectrum. Microwave technology is evolving to provide resilient and redundant network architectures, ensuring high availability and fault tolerance. Regulatory changes and spectrum allocation decisions can significantly impact the growth of microwave transmission technology. Manufacturers need to adapt to evolving regulatory requirements.

For instance, on 30 August 2023, Chinese scientists achieved a significant breakthrough in submarine detection technology by successfully testing the world's first submarine-detecting device based on next-generation terahertz communication technology and this innovative device utilizes terahertz waves, which operate between microwave and infrared radiation frequencies, to detect minuscule surface vibrations caused by low-frequency sound sources beneath the open sea.

Limited Range and Signal Vulnerabilities

Microwave signals travel in straight lines, requiring an unobstructed line of sight between the transmitting and receiving antennas. Any physical obstacles like buildings, mountains or tall vegetation can disrupt the signal, limiting the range and coverage. Microwave signals are typically limited to relatively short distances, especially in the Earth's atmosphere. As frequency increases, atmospheric absorption and scattering become more significant, reducing signal range.

Microwave bands used for communication are shared with various other services and applications. Interference from other microwave sources, weather conditions or atmospheric phenomena can degrade signal quality and reliability. Microwave signals can be vulnerable to interception, especially in urban environments where eavesdropping equipment can be more easily concealed. Encryption and security measures are essential to protect sensitive data transmitted via microwaves.

Segment Analysis

The global microwave transmission equipment market is segmented based on network technology, component, frequency band, mounting, application and region.

Adoption of Hybrid Microwave Boosts the Market

Hybrid microwave is expected to be the dominant segment with about 1/3rd of the market during the forecast period 2023-2030. The rising demand for high-speed data transmission and connectivity is a significant growth factor. Hybrid microwave systems can provide the required bandwidth and low-latency connectivity. The rollout of 5G networks is a major driver for hybrid microwave systems. 5G networks require a dense network of small cells for effective coverage and microwave backhaul solutions can efficiently connect these small cells to the core network.

According to a paper published in Harvard in 2022, the research introduces a novel approach to signal conversion between optical and microwave frequencies using a time-varying and programmable metasurface integrated with a high-speed photoelectric detection circuit. The primary objective is to convert a light-intensity signal into two microwave binary frequency shift keying signals. An optical signal is directed toward the metasurface-based transmitter to initiate the conversion process.

Geographical Penetration

Adoption of High Capacity Microwave Communication in 5G Networks in Asia-Pacific

Asia-Pacific is the dominant as well as fastest growing regions in the global microwave transmission equipment market covering around 1/3rd of the market in 2022. The region witnessed an increment in mobile data traffic with the adoption of smartphones and the growth of 4G and 5G networks. The fronthaul and backhaul components of 5G networks frequently involve microwave technology, which fuels the demand for microwave transmission equipment.

For instance, on 22 May 2022, SK Telecom, a South Korean carrier, is planning to use frequency-combining technology in the 11 GHz and 80 GHz spectrum bands to provide high-capacity microwave communication for 5G networks on islands off South Korea's coast and this technology aims to transmit large amounts of data wirelessly over long distances, particularly in areas where laying optical cables is challenging, such as islands and mountains.

Competitive Landscape

The major global players in the market include: Huawei Technologies Co, NEC Crop., Anritsu, Giga-Tronics Inc., Intracom Telecom, MegaFon, Avait Networks, Alcatel-Lucent S.A., LM Ericsson Telefon AB and Ceragon Networks Ltd.

COVID-19 Impact Analysis

The pandemic disrupted global supply chains, leading to delays in the manufacturing and delivery of microwave transmission equipment components. Lockdowns, factory closures and restrictions on international trade disrupted the supply of essential materials and components, affecting production schedules. Many manufacturers faced challenges related to the availability of a skilled workforce.

The pandemic led to a shift in demand for microwave transmission equipment. With more people working and studying from home, there was an increased demand for broadband and connectivity solutions. Service providers needed to quickly adapt and expand their networks to meet this surge in demand. To minimize on-site visits and adhere to social distancing guidelines, the industry accelerated the adoption of remote monitoring and maintenance solutions.

Despite the challenges, the rollout of 5G networks continued during the pandemic. Microwave transmission equipment plays a crucial role in 5G backhaul, so there was sustained demand for equipment to support 5G infrastructure. Some telecommunications projects, particularly in regions heavily affected by the pandemic, experienced delays. Deployment timelines for microwave transmission equipment were extended due to disruptions in project planning and execution.

AI Impact

AI algorithms can analyze complex data, such as terrain information and traffic patterns, to optimize the planning and deployment of microwave links and this ensures that microwave transmission equipment is deployed in the most efficient and effective manner, reducing interference and improving signal quality. AI-powered dynamic frequency allocation systems can adapt to changing network conditions in real-time.

AI-driven predictive maintenance models can monitor the health of microwave transmission equipment in real-time. By analyzing performance data and identifying potential issues early, AI can reduce downtime and maintenance costs. Microwave transmission equipment can benefit from AI algorithms that dynamically adjust modulation schemes based on link conditions and this ensures that the highest possible data rates are maintained while minimizing errors, especially in adverse weather conditions.

Russia- Ukraine War Impact

The conflict has disrupted global supply chains, potentially affecting the availability of essential components and materials used in the manufacturing of microwave transmission equipment. Manufacturers may face challenges in sourcing components from the region or rely on alternative suppliers, which can impact production timelines and costs. The war has created geopolitical uncertainty, which can affect international trade and business relations.

The conflict has the potential to shift demand for telecom infrastructure in the region. Telecommunications providers in affected areas may prioritize the expansion and fortification of their networks, including microwave transmission links, to ensure communication resilience in times of crisis. Armed conflicts can result in damage to critical infrastructure, including telecom networks.

By Network Technology

  • Hybrid Microwave
  • Packet Microwave
  • Small-Cell Backhaul
  • Time Division Multiplexing (TDM)

By Component

  • Antennas
  • RF Processing Units
  • IDUs
  • ODUs
  • Cables and Connectors

By Frequency Band

  • L Band
  • S Band
  • C Band
  • X Band
  • Ku Band
  • Ka Band
  • V Band

By Mounting

  • Full-Indoor
  • Split-Mount
  • Full-Outdoor

By Application

  • Navigation
  • Cellular Communication
  • Radio Telecommunication
  • Satellite Communication
  • Radar
  • Broadband Communication

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Russia
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • On 2 May 2022, Ceragon Networks Ltd. Entered into an agreement with DISH Wireless to provide ultra-high-capacity IP-50C microwave and IP-50E millimeter-wave transport solutions. DISH is deploying the first cloud-native 5G Smart Network in U.S. and they have selected Ceragon for its proven technology, reliability and deployment capabilities.
  • On 16 August 2021, Broadcast Microwave Services launched the BMTS-M, a bi-directional communication system designed for high-quality, reliable and secure streaming of high-definition mission-critical video and data over long distances within a mesh network. The system includes an aircraft-mounted transceiver that communicates with a ground-based outdoor transceiver and an indoor communications and control unit.
  • On 16 March 2020, Vislink introduced IPLink 3.0, an IP-centric microwave radio platform designed to meet the connectivity needs of ATSC 3.0 while still supporting legacy ASI interfaces used in ATSC 1.0 and other digital transmissions.

Why Purchase the Report?

  • To visualize the global microwave transmission equipment market segmentation based on network technology, component, frequency band, mounting, application and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of microwave transmission equipment market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as excel consisting of key products of all the major players.

The global microwave transmission equipment market report would provide approximately 77 tables, 87 figures and 206 pages.

Target Audience 2023

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Network Technology
  • 3.2. Snippet by Component
  • 3.3. Snippet by Frequency Band
  • 3.4. Snippet by Mounting
  • 3.5. Snippet by Application
  • 3.6. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Deployment of 5G Networks
      • 4.1.1.2. Rising Collaboration Between Companies
      • 4.1.1.3. Technology Advancement
    • 4.1.2. Restraints
      • 4.1.2.1. Limited Range and Signal Vulnerabilities
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Russia-Ukraine War Impact Analysis
  • 5.6. DMI Opinion

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Network Technology

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Network Technology
    • 7.1.2. Market Attractiveness Index, By Network Technology
  • 7.2. Hybrid Microwave*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Packet Microwave
  • 7.4. Small-Cell Backhaul
  • 7.5. Time Division Multiplexing (TDM)

8. By Component

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 8.1.2. Market Attractiveness Index, By Component
  • 8.2. Antennas*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. RF Processing Units
  • 8.4. IDUs
  • 8.5. ODUs
  • 8.6. Cables and Connectors

9. By Frequency Band

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Frequency Band
    • 9.1.2. Market Attractiveness Index, By Frequency Band
  • 9.2. L Band*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. S Band
  • 9.4. C Band
  • 9.5. X Band
  • 9.6. Ku Band
  • 9.7. Ka Band
  • 9.8. V Band

10. By Mounting

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Mounting
    • 10.1.2. Market Attractiveness Index, By Mounting
  • 10.2. Full-Indoor*
    • 10.2.1. Introduction
    • 10.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 10.3. Split-Mount
  • 10.4. Full-Outdoor

11. By Application

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.1.2. Market Attractiveness Index, By Application
  • 11.2. Navigation*
    • 11.2.1. Introduction
    • 11.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 11.3. Cellular Communication
  • 11.4. Radio Telecommunication
  • 11.5. Satellite Communication
  • 11.6. Radar
  • 11.7. Broadband Communication

12. By Region

  • 12.1. Introduction
    • 12.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 12.1.2. Market Attractiveness Index, By Region
  • 12.2. North America
    • 12.2.1. Introduction
    • 12.2.2. Key Region-Specific Dynamics
    • 12.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Network Technology
    • 12.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 12.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Frequency Band
    • 12.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Mounting
    • 12.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 12.2.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.2.8.1. U.S.
      • 12.2.8.2. Canada
      • 12.2.8.3. Mexico
  • 12.3. Europe
    • 12.3.1. Introduction
    • 12.3.2. Key Region-Specific Dynamics
    • 12.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Network Technology
    • 12.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 12.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Frequency Band
    • 12.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Mounting
    • 12.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 12.3.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.3.8.1. Germany
      • 12.3.8.2. UK
      • 12.3.8.3. France
      • 12.3.8.4. Italy
      • 12.3.8.5. Russia
      • 12.3.8.6. Rest of Europe
  • 12.4. South America
    • 12.4.1. Introduction
    • 12.4.2. Key Region-Specific Dynamics
    • 12.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Network Technology
    • 12.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 12.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Frequency Band
    • 12.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Mounting
    • 12.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 12.4.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.4.8.1. Brazil
      • 12.4.8.2. Argentina
      • 12.4.8.3. Rest of South America
  • 12.5. Asia-Pacific
    • 12.5.1. Introduction
    • 12.5.2. Key Region-Specific Dynamics
    • 12.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Network Technology
    • 12.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 12.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Frequency Band
    • 12.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Mounting
    • 12.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 12.5.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.5.8.1. China
      • 12.5.8.2. India
      • 12.5.8.3. Japan
      • 12.5.8.4. Australia
      • 12.5.8.5. Rest of Asia-Pacific
  • 12.6. Middle East and Africa
    • 12.6.1. Introduction
    • 12.6.2. Key Region-Specific Dynamics
    • 12.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Network Technology
    • 12.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 12.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Frequency Band
    • 12.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Mounting
    • 12.6.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application

13. Competitive Landscape

  • 13.1. Competitive Scenario
  • 13.2. Market Positioning/Share Analysis
  • 13.3. Mergers and Acquisitions Analysis

14. Company Profiles

  • 14.1. Huawei Technologies Co*
    • 14.1.1. Company Overview
    • 14.1.2. Product Portfolio and Description
    • 14.1.3. Financial Overview
    • 14.1.4. Key Developments
  • 14.2. NEC Crop.
  • 14.3. Anritsu
  • 14.4. Giga-Tronics Inc.
  • 14.5. Intracom Telecom
  • 14.6. MegaFon
  • 14.7. Avait Networks
  • 14.8. Alcatel-Lucent S.A.
  • 14.9. LM Ericsson Telefon AB
  • 14.10. Ceragon Networks Ltd.

LIST NOT EXHAUSTIVE

15. Appendix

  • 15.1. About Us and Services
  • 15.2. Contact Us