表紙:組織工学の世界市場-2023年~2030年
市場調査レポート
商品コード
1345372

組織工学の世界市場-2023年~2030年

Global Tissue Engineering Market - 2023-2030

出版日: | 発行: DataM Intelligence | ページ情報: 英文 195 Pages | 納期: 約2営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=156.76円
組織工学の世界市場-2023年~2030年
出版日: 2023年09月06日
発行: DataM Intelligence
ページ情報: 英文 195 Pages
納期: 約2営業日
ご注意事項 :
本レポートは最新情報反映のため適宜更新し、内容構成変更を行う場合があります。ご検討の際はお問い合わせください。
  • 全表示
  • 概要
  • 目次
概要

市場概要

世界の組織工学の市場規模は、2022年に12億米ドルと評価され、予測期間2023-2030年にCAGR 4.8%で成長し、2030年には17億米ドルに達すると予測されています。患者固有の組織や臓器に応じて複雑な組織構造を作成できる精密な可能性から、3Dバイオ印刷技術へのシフトといった動向が、世界の組織工学市場を独占すると予想されます。

世界の組織工学市場は近年大きく成長しており、今後も上昇傾向が続くと予測されます。同市場は、幹細胞治療、臓器オンチップ技術、遺伝子編集・CRISPR技術が示す顕著な可能性など、いくつかの重要な動向の影響を受け、変革期を迎えています。

さらに、神経疾患、心血管疾患、整形外科疾患の有病率の上昇、3Dバイオ印刷や幹細胞治療などの技術進歩、高齢化人口の増加、交通事故や外傷関連の傷害事例の増加による骨インプラントの需要増などが、組織工学市場規模を押し上げています。

組織工学的アプローチを用いた疾病治療のための研究活動の活発化や、バイオ医薬品・製薬企業の存在も、北米地域需要の要因のひとつであり、Zimmer Biomet、Stryker Corporation、CollPlant Biotechnologies Ltd.などの競合企業が積極的に市場に参入しています。

市場力学

臓器移植需要の増加が組織工学市場の成長を牽引

臓器移植のニーズの高まりが、組織工学市場を後押ししています。臓器提供者の不足は深刻化しており、医療分野で重要な問題となっています。例えば、保健資源サービス庁の2023年の統計によると、約104,234人が全米の移植待機リストに載っています。毎日、17人以上が臓器移植を待ちながら亡くなっています。さらに、10分ごとに臓器移植が必要と報告されています。さらに、この数が増えるにつれ、臓器提供者の不足により、臓器の供給がますます困難になっています。

したがって、組織工学は、損傷した組織や臓器の代わりとなる人体組織の工学を支援することによって、臓器提供者の不足に対処する上で重要な役割を果たすことができます。組織工学者は、生体材料、細胞、生物活性化学物質を組み合わせることによって、体内に容易に統合される機能的組織を開発します。皮膚、血管、膀胱、心臓、その他の種類のこれらの組織はすでに組織工学的に作られ、人間の病気の治療に用いられています。以上のことから、市場は予測期間中に成長すると予想されます。

技術的進歩と共同研究の増加が組織工学市場の成長を促進する

異分野の市場リーダーとの提携による組織工学技術の技術的進歩の高まりが、市場の需要を牽引すると予想されます。例えば、ISS国立研究所2023年の記事によると、ウェイクフォレスト再生医療研究所とRegenMed開発機構との共同研究は、国際宇宙ステーション(ISS)国立研究所の微小重力条件を利用して、Axiom SpaceのAx-2ミッションを通じて、生体工学的に構築された肝臓と腎臓を宇宙に打ち上げることを目指しています。研究チームは、微小重力がこれらの組織の脈管形成をどのように変化させるかを研究することで、臓器移植と疾患モデリングに変革をもたらそうとしています。

というのも、従来の組織工学とは異なり、微小重力条件下では足場を使わない組織開発が可能であり、プロセス全体を単純化し改善できる可能性があるからです。したがって、このプロジェクトが成功すれば、臓器移植の待機者数を大幅に減らし、治療試験のための疾患モデリングを進め、革新的な細胞療法のためのリソースを提供することができます。

慢性疾患の増加が組織工学市場の成長を促進する

世界中で慢性疾患の有病率が高まっていることから、効果的な組織工学技術に対する需要が高まることが予想されます。例えば、2022年の世界保健機関(WHO)の報告書によると、慢性疾患は遺伝的、生理的、環境的、行動的要因の組み合わせです。毎年約410億人がこれらの疾病が原因で死亡しており、世界全体の死亡者数の74%を占めています。心血管系疾患を患う患者の死亡数は毎年179億人と最も多く、次いでがんです。

さらに、がんの有病率が上昇しているため、増殖するがん細胞と闘うための3Dバイオ印刷のような効果的な技術が必要とされています。例えば、EurekAlertが2023年に発表した記事によると、韓国機械材料研究所(KIMM)は、NK免疫細胞の機能を強化する世界初の3Dバイオ印刷技術を開発しました。この新技術は、がん治療の効果を高めると期待されています。このように、上記の要因によって、市場は予測期間中に拡大すると予想される、

組織工学技術に伴う高コストが市場の成長を妨げる

組織工学技術に関連する高コストは、研究室や施設の初期投資、再発費用、移植自体のコストなど、いくつかの要因のために、この市場にとって重大な制限となっています。例えば組織工学戦略では、研究室には50,700ドルの費用がかかります。これに対し、組織調達法の施設投資費用は168,750米国ドルでした。組織工学的構造の製造コストも高くつきます。

さらに、細胞や組織の提供プログラムの不足が、組織工学の高コストの一因となっている可能性もあります。民間や政府からの資金需要、過剰な医療費、組織工学戦略を用いた糖尿病性足潰瘍の治療費の高さは、すべて組織工学の高コストの一因となっている可能性があります。上記のような問題の結果、組織工学市場は予測期間中に大きな抑制要因に見舞われることが予想されます。

目次

第1章 調査手法と調査範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 影響要因
    • 促進要因
      • 臓器移植需要の増加
      • 技術進歩と共同研究の拡大
    • 抑制要因
      • 組織工学技術に伴う高コスト
    • 機会
      • 個別化医療に対する需要の増加
    • 影響分析

第5章 産業分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制分析

第6章 COVID-19分析

第7章 素材タイプ別

  • 合成材料
    • ポリマー
    • ハイドロゲル
    • セラミックス
    • 複合材料
  • 生物由来材料
    • 細胞外マトリックス(ECM)タンパク質
    • フィブリン
    • コラーゲン
    • シルク
  • その他

第8章 用途別

  • 整形外科
  • 筋骨格・脊椎
  • 神経学
  • 循環器
  • 皮膚・内臓
  • その他

第9章 エンドユーザー別

  • 病院
  • 学術・研究機関
  • その他

第10章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • スペイン
    • イタリア
    • その他欧州
  • 南米
    • ブラジル
    • アルゼンチン
    • その他南米
  • アジア太平洋
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他アジア太平洋
  • 中東・アフリカ

第11章 競合情勢

  • 競合シナリオ
  • 市況/シェア分析
  • M&A分析

第12章 企業プロファイル

  • Zimmer Biomet
    • 会社概要
    • 製品ポートフォリオと説明
    • 財務概要
    • 主な動向
  • Stryker Corporation
  • 3D BioFibR Inc.
  • Integra LifeSciences Corporation
  • CollPlant Biotechnologies Ltd.
  • AbbVie(Allergan Aesthetics)
  • Becton, Dickinson and Company
  • Athersys, Inc.
  • BioTissue
  • Japan Tissue Engineering Co., Ltd.

第13章 付録

目次
Product Code: BT6742

Market Overview

Global Tissue Engineering Market size is valued at USD 1.2 billion in 2022, it is expected to reach USD 1.7 billion by 2030, with growth at a CAGR of 4.8% over the forecast period 2023-2030. The trend such as the shift towards 3D bioprinting technology due to its precise potential to create intricate tissue structures according to patient-specific tissues and organs is expected to dominate the global tissue engineering market.

The global tissue engineering market has grown significantly in recent years and is projected to continue on its upward trend. The market is undergoing a transformational period, influenced by several significant trends such as remarkable potential shown by stem cell therapy, organ-on-chip technology, and gene editing and CRISPR technology.

Furthermore, the rising prevalence of neurological disorder, cardiovascular and orthopedic disorders, technological advancements such 3D bioprinting and stem cell therapies, increasing aging population, growing demand for bone implants due to the increasing road accident and trauma related injury cases are driving up the tissue engineering market size.

The growing research activities for treating disease using tissue engineering approach and presence of establish biopharmaceutical and pharmaceutical companies are some of the factors in demand from North American regions with significant competitors like Zimmer Biomet, Stryker Corporation, CollPlant Biotechnologies Ltd., and others actively operating in the market.

Market Dynamics

The Increasing Demand for Organ Transplant to Drive the Growth of the Tissue Engineering Market

The increasing need for organ transplants is propelling the tissue engineering market. The shortage of organ donors is escalating and has become a significant issue in the healthcare sector. For instance, according to Health Resources and Services Administration 2023 statistics around 104,234 individuals are on the national transplant waiting list. Every day, over 17 individuals die while waiting for organ transplants. Furthermore, every 10 minutes, it is reported that an organ transplant is required. In addition, as these numbers rise, it is becoming increasingly difficult to supply organs due to a scarcity of organ donors.

Tissue engineering can thus play a significant part in addressing the scarcity of organ donors by assisting in the engineering of human tissue that will replace damaged tissues and organs. Tissue engineers develop functional tissues that integrate easily into the body by combining biomaterials, cells, and bioactive chemicals. Skin, blood vessels, bladders, hearts, and other types of these tissues have already been tissue engineered and employed in the therapy of human disease. As a result of all of the above, the market is expected to grow during the forecast period.

Growing Technological Advancements and Collaborations will Drive the Tissue Engineering Market Growth

The growing technological advancement in tissue engineering techniques by collarating with different field market leaders is expected to drive the demand for the market. For instance, according to ISS National Laboratory 2023 article, the collaboration between the Wake Forest Institute for Regenerative Medicine and the RegenMed Development Organization, it aims to use the microgravity conditions of the International Space Station (ISS) National Laboratory to launch bioengineered liver and kidney constructions into space via Axiom Space's Ax-2 mission. The Researchers want to transform organ transplantation and disease modeling by studying how microgravity alters the vascularization of these tissues.

Because, unlike traditional tissue engineering, microgravity conditions enable scaffold-free tissue development, potentially simplifying and improving the entire process. Thus, success in this project could significantly reduce organ transplant waitlists, advance disease modeling for therapy testing, and provide resources for innovative cell therapies, revealing how developing potential collaborations and advancements can drive transformative progress in the tissue engineering field.

Rising Prevalence of Chronic Disease will Drive the Tissue Engineering Market Growth

The growing prevalence of chronic disease across the globe is expected to drive the demand for effective tissue engineering techniques. For instance, according to World Health Organization report of 2022, chronic disease is a combination of genetic, physiological, environmental and behavioural factors. Every year approximately 41 Billion people die due to these disease that accounts 74% of total deaths globally. Patients suffering from cardiovascular disease accounts highest number of 17.9 billion deaths every year followed by cancer.

Furthermore, as the prevalence of cancer is rising, there is need of effective technology such as 3D bioprinting to combact with growing cancer cells. For instance, an article published by EurekAlert organization in 2023, Korea Institute of Machinery and Materials (KIMM) has developed the world's first 3D bioprinting technology that will enhance the functioning of NK immune cells. This New technology expected to improve effectiveness of cancer treatment. Thus, owing to the above factors the market is expected to drive over the forecast period,

High Cost Associated with the Tissue Engineering Technique Will Hamper the Growth of the Market

The high cost associated with the tissue engineering technique is a critical limitation for this market due to several factors, such as the initial investment for the laboratory or facility, recurrent fees, and the cost of the transplant itself. In the tissue engineering strategy, for example, the laboratory costs $50,700. In comparison, the facility investment cost for the procured-tissue procedure was US$168,750. Manufacturing costs for tissue-engineered structures can also be costly.

Additionally, the shortage of cell and tissue donation programs may contribute to tissue engineering's high cost. The demand for private and government funding, excessive healthcare spending, and the high expense of treating diabetic foot ulcers using a tissue engineering strategy may all contribute to the high cost of tissue engineering. As a result of the issues mentioned above, the tissue engineering market is expected to experience significant restraints over the forecast period.

Segment Analysis

The global tissue engineering market is segmented based on material type, application, end user and region.

Owing to the Growing Prevalence of Bone Disorders, the Orthopedics Segment Accounted for Approximately 43.2% of the Tissue Engineering Market Share

The orthopedics segment is poised to dominate the tissue engineering market due to growing focus on applying tissue engineering techniques to address orthopedic challenges. This segment is expected to grow owing to the factors such as rising prevalence bone and joint injuries, degenerative conditions, and musculoskeletal disorders, increasing aging population, and growing technological advancements.

For instance, according to the World Health Organization 2022 report, approximately 1.71 billion people are suffering from musculoskeletal conditions globally. This has led to leading causes of disability worldwide, among which low back pain has been the major cause of disability in more than 160 countries. Tissue engineering plays an important role by offering innovative solutions to repair and regenerate damaged bone and cartilage tissues.

Moreover, many companies are utilizing technological advancements such as 3D bioprinting using tissue engineering. For instance, Curiteva, the creator of the world's first 3D printed interbody spinal implants, has granted the medical device a restricted commercial distribution. For spine surgery, the Huntsville-based technology and manufacturing company uses 3D-printed spinal implants. Curiteva's recently FDA-approved Inspire platform is used to create the implants Thus, owing to the above factors the segment is expected to dominate over the forecast period.

Geographical Penetration

North America Accounted for Approximately 37.5% of the Market Share in 2022, Owing to the Rising Prevalence of Geriatric Population

North America, particularly the U.S., dominates the global tissue engineering market due to presence of huge number of key players settled in the region, technological advancements, and high research activities along with developments of 3D bioprinting, organ-on-chip, and stem cell technologies by major players in the area.

The demand for tissue engineering in the pharmaceutical industry is driven by an increase in the number of technologies and rising number of geriatric populations in the region. For instance, according to United States Census Bureau statistics, in U.S. 1 in 6 people are aging over 65. Moreover, in 2020 older population reached about 55.8 Billion or 16.8% of U.S. total population. Thus, tissue engineering will aid in restoring and improving the function of degenerated tissues, catering to the needs.

Moreover, the R&D process in this region is well established that creates opportunities for researcher to discover different technologies. For instance, in June 2023, Emulate, a company that creates in vitro drug research models, has introduced a new device dubbed Chip-A1. Chip-A1 is an extension of the company's Organ-on-a-Chip technology, which allows researchers to model human organs in vitro more accurately. The new chip improves in vitro modeling capabilities for cancer and cosmetics research, which require more precise models of human organs. The Chip-A1 technology is expected to find applications in cancer, cosmetics, and respiratory areas. Thus, owing to above factors the region is expected to grow over the forecast period.

Competitive Landscape

The major global players in the tissue engineering market include Zimmer Biomet, Stryker Corporation, 3D BioFibR Inc., Integra LifeSciences Corporation, CollPlant Biotechnologies Ltd., AbbVie (Allergan Aesthetics), Becton, Dickinson and Company, Athersys, Inc., BioTissue., Japan Tissue Engineering Co., Ltd, and among others.

COVID-19 Impact Analysis

The COVID-19 pandemic began in December 2019 with the SARS-CoV-2 virus in Wuhan, China, quickly spreading throughout the world, creating a significant impact on the tissue engineering market. The virus spreads easily by droplets from infected people, resulting in many illnesses. COVID-19 can cause major organ damage by affecting many organs. Tissue engineering approaches can be used to fix this, in which experts create novel ways to heal injured organs.

However, due to COVID-19, it has been difficult to obtain the materials needed for the present research. Shipping issues caused delays and cancellations of essential supplies, making it difficult for researchers and businesses to continue their work. Because of the pandemic, this condition hampered scientific development and had a significant impact on tissue engineering.

Russia-Ukraine War Impact Analysis

The Russia-Ukraine conflict has had a negative impact on the tissue engineering sector. The conflict has hampered the chances of global economic recovery, which has hampered the expansion of the tissue engineering sector. The conflict has also produced economic disruption, which has reduced demand for tissue engineering products. Thus, the conflict will create a major impact on the tissue engineering market over some period.

By Material Type

  • Synthetic Materials

Polymers

Hydrogels

Ceramics

Composites

  • Biologically Derived Materials

Extracellular Matrix (ECM) Proteins

Fibrin

Collagen

Silk

  • Others

By Application

  • Orthopedics
  • Musculoskeletal & Spine
  • Neurology
  • Cardiology
  • Skin & Integumentary
  • Others

By End-User

  • Hospitals
  • Academic and Research Institutes
  • Others

By Region

  • North America

U.S.

Canada

Mexico

  • Europe

Germany

U.K.

France

Spain

Italy

Rest of Europe

  • South America

Brazil

Argentina

Rest of South America

  • Asia-Pacific

China

India

Japan

Australia

Rest of Asia-Pacific

  • Middle East and Africa

Key Developments

  • On June 13, 2023, the Indian Drugs Controller has approved the first indigenously developed tissue engineering scaffold from mammalian organs by Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), an animal-derived Class D Biomedical Device that can rapidly heal skin wounds at low cost with minimal scarring.
  • On January 16, 2023, 3DBioFibR, a leading tissue engineering pioneer, announced the release of two new collagen fibre solutions, CollaFibR and CollaFibR 3D scaffold. These off-the-shelf solutions, created using 3D BioFibR's exclusive and revolutionary dry-spinning technology to generate collagen fibres at commercial scales, offer considerable advantages for tissue engineering and tissue culture applications and are now for sale.
  • On January 16, 2023, BioMed X, an independent German biomedical research institute, announced that its ongoing research collaboration with AbbVie has been extended. This marks the opening of the first BioMed X Institute in the United States, which will be in New Haven, Connecticut. The new US-based research cooperation will focus on immunology and tissue engineering, following a first cooperative research study on Alzheimer's disease at the BioMed X Institute in Heidelberg, Germany.

DMI Opinion

The global tissue engineering market is expected to grow more rapidly as a result of the shift toward 3D bioprinting technology for accurate tissue structure development, with trends such as stem cell therapy, organ-on-chip technology, and gene editing driving this expansion. Rising neurological, cardiovascular, and orthopedic illnesses, as well as technical advancements such as 3D bioprinting and stem cell therapies, an aging population, and an increased need for implants due to trauma cases, all contribute to the market's growth.

North America is seeing demand, led by big players, while the necessity for organ transplantation fuels growth. However, large expenses, an absence of contributors, and geopolitical tensions pose difficulties. The orthopedics market is thriving due to bone problems, but COVID-19 and geopolitical issues are hampering progress. Finally, the tissue engineering market is characterized by new trends and opportunities.

Why Purchase the Report?

  • To visualize the global tissue engineering market segmentation based on material type, application, end user, and region as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of tissue engineering market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping is available in excel consisting of key products of all the major players.

The global tissue engineering market report would provide approximately 53 tables, 54 figures and 195 Pages.

Target Audience 2023

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Material Type
  • 3.2. Snippet by Application
  • 3.3. Snippet by End User
  • 3.4. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. The Increasing Demand for Organ Transplant
      • 4.1.1.2. The Growing Technological Advancements and Collaborations
    • 4.1.2. Restraints
      • 4.1.2.1. The High Cost Associated with the Tissue Engineering Technique
    • 4.1.3. Opportunity
      • 4.1.3.1. Increasing Demand for Personalized Medicine
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's 5 Forces Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID-19
    • 6.1.2. Scenario During COVID-19
    • 6.1.3. Scenario Post COVID-19
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Material Type

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material Type
    • 7.1.2. Market Attractiveness Index, By Material Type
  • 7.2. Synthetic Materials*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
      • 7.2.2.1. Polymers
      • 7.2.2.2. Hydrogels
      • 7.2.2.3. Ceramics
      • 7.2.2.4. Composites
  • 7.3. Biologically Derived Materials
      • 7.3.1.1. Extracellular Matrix (ECM) Proteins
      • 7.3.1.2. Fibrin
      • 7.3.1.3. Collagen
      • 7.3.1.4. Silk
  • 7.4. Others

8. By Application

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 8.1.2. Market Attractiveness Index, By Application
  • 8.2. Orthopedics*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Musculoskeletal & Spine
  • 8.4. Neurology
  • 8.5. Cardiology
  • 8.6. Skin & Integumentary
  • 8.7. Others

9. By End User

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End User
    • 9.1.2. Market Attractiveness Index, By End User
  • 9.2. Hospitals*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Hospitals
  • 9.4. Academic and Research Institutes
  • 9.5. Others

10. By Region

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 10.1.2. Market Attractiveness Index, By Region
  • 10.2. North America
    • 10.2.1. Introduction
    • 10.2.2. Key Region-Specific Dynamics
    • 10.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material Type
    • 10.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End User
    • 10.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.2.6.1. U.S.
      • 10.2.6.2. Canada
      • 10.2.6.3. Mexico
  • 10.3. Europe
    • 10.3.1. Introduction
    • 10.3.2. Key Region-Specific Dynamics
    • 10.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material Type
    • 10.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End User
    • 10.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.3.6.1. Germany
      • 10.3.6.2. U.K.
      • 10.3.6.3. France
      • 10.3.6.4. Spain
      • 10.3.6.5. Italy
      • 10.3.6.6. Rest of Europe
  • 10.4. South America
    • 10.4.1. Introduction
    • 10.4.2. Key Region-Specific Dynamics
    • 10.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material Type
    • 10.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End User
    • 10.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.4.6.1. Brazil
      • 10.4.6.2. Argentina
      • 10.4.6.3. Rest of South America
  • 10.5. Asia-Pacific
    • 10.5.1. Introduction
    • 10.5.2. Key Region-Specific Dynamics
    • 10.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material Type
    • 10.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End User
    • 10.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.5.6.1. China
      • 10.5.6.2. India
      • 10.5.6.3. Japan
      • 10.5.6.4. Australia
      • 10.5.6.5. Rest of Asia-Pacific
  • 10.6. Middle East and Africa
    • 10.6.1. Introduction
    • 10.6.2. Key Region-Specific Dynamics
    • 10.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material Type
    • 10.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End User

11. Competitive Landscape

  • 11.1. Competitive Scenario
  • 11.2. Market Positioning/Share Analysis
  • 11.3. Mergers and Acquisitions Analysis

12. Company Profiles

  • 12.1. Zimmer Biomet*
    • 12.1.1. Company Overview
    • 12.1.2. Product Portfolio and Description
    • 12.1.3. Financial Overview
    • 12.1.4. Key Developments
  • 12.2. Stryker Corporation
  • 12.3. 3D BioFibR Inc.
  • 12.4. Integra LifeSciences Corporation
  • 12.5. CollPlant Biotechnologies Ltd.
  • 12.6. AbbVie (Allergan Aesthetics)
  • 12.7. Becton, Dickinson and Company
  • 12.8. Athersys, Inc.
  • 12.9. BioTissue
  • 12.10. Japan Tissue Engineering Co., Ltd.

LIST NOT EXHAUSTIVE

13. Appendix

  • 13.1. About Us and Services
  • 13.2. Contact Us