表紙:水産養殖用ワクチンの世界市場-2022-2029
市場調査レポート
商品コード
1129258

水産養殖用ワクチンの世界市場-2022-2029

Global Aquaculture Vaccines Market - 2022-2029

出版日: | 発行: DataM Intelligence | ページ情報: 英文 200 Pages | 納期: 約2営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=156.58円
水産養殖用ワクチンの世界市場-2022-2029
出版日: 2022年09月29日
発行: DataM Intelligence
ページ情報: 英文 200 Pages
納期: 約2営業日
ご注意事項 :
本レポートは最新情報反映のため適宜更新し、内容構成変更を行う場合があります。ご検討の際はお問い合わせください。
  • 全表示
  • 概要
  • 目次
概要

市場力学

水産養殖用ワクチンのイノベーションが市場成長を牽引すると予想されます。

技術の進歩により、エランコ社は核酸ワクチンとして知られる新しいクラスのサケウイルスワクチン接種を作成しました。これらの予防接種は、ウイルス感染からサケを保護するための、より集中的な方法を提供します。核酸ワクチンには、抗原の形成を引き起こす病原体の関連する遺伝要素のみが存在します。これらの要素はプラスミドという円形の核酸構造に入れられ、筋肉に注入されると、本物の感染に対する免疫反応に類似した方法で、細胞に抗原を製造するように指示します。核酸ワクチンは、ウイルスのごく一部しか含まれていないため、病気を広げる危険性がないです。

さらに、世界・シーフード・アライアンスによると、植物由来の魚類ワクチンは、養殖魚種に低コストで高い安全性と効果的な保護を提供できる可能性があるとのことです。ワクチン用植物工場の実行可能性、有効性、安全性は、いくつかの前臨床試験および臨床試験で実証されています。植物ベースのプラットフォームは、組換えサブユニットワクチンに魅力的な利点を提供します。生ワクチンの安全性の問題は、植物ベースのワクチンには存在しません。哺乳類ベースの生産システムとは対照的に、細菌毒素や酵母由来の望ましくないタンパク質のような望ましくない、あるいは有害な成分は、植物由来のシステムには発見されていません。また、植物由来系は天然由来系と同様に生合成能が高く、ワクチンの免疫原性を高めることができます。植物から作られる経口ワクチンは最高です。製造手順が簡単で、注射の際に医療機器を追加する必要がないです。高純度の植物由来ワクチンは、ワクチン接種の利便性を高め、免疫反応を促進します。ワクチン抗原を経口摂取すると、胃を通過して腸で吸収され、免疫反応が引き起こされます。養殖場で飼育されている魚は、低コストで安全性が高く、効率的な植物由来のワクチン接種で保護することが可能です。以上のことから、同市場は予測期間中に拡大することが予想されます。

抑制要因

水産養殖用ワクチンの製造・承認に関する厳しい規制政策や複雑なワクチン開発手法が、予測期間中の市場成長を阻害する要因の1つであると考えられます。

産業分析

水産養殖用ワクチン市場は、サプライチェーン分析、価格分析などの様々な産業要因に基づいた市場の詳細な分析を提供します。

COVID-19の影響分析

COVID-19のパンデミックは、ヘルスケアシステムと市場にプラスの影響を与えています。水産養殖業者は、COVID-19の危険への曝露を軽減し、価格下落に伴う金銭的損失を防ぐために保守的な飼養戦略を実施しており、2020年には総生産量が1.3%減少すると予想されます。この数字は未確認ですが、世界の水産養殖生産高が約60年ぶりに年間減少することになり、過去数年に見られた4~5%の安定した成長ペースから著しく脱却することになります。しかし、成長率、生産サイクルの長さ、市場の需要などが異なるため、影響の強さや生産者の対応は魚種によって大きく異なっています。また、養殖種によっては、初期の生産工程が乱れた後、市場供給が変化するのに時間がかかる場合があることを理解することが極めて重要です。さらに、COVID-19感染症用ワクチンの製造動向の変化と相まって、労働力の減少による水産養殖用ワクチン製造の減少も市場に影響を与えています。したがって、上記の記述から、市場は影響を受け、経済活動の再開に伴い、迅速に牽引することが期待されます。

世界の水産養殖用ワクチン市場レポートでは、約45+市場データ表、40+図、200ページの構成で提供しています。

目次

第1章 調査手法と調査範囲

  • 調査手法
  • 調査目的および調査範囲

第2章 市場の定義と概要

第3章 エグゼクティブサマリー

第4章 市場の力学

  • 市場影響要因
    • 促進要因
      • 水産養殖用ワクチンのイノベーションが市場成長の原動力になると予想されています。
    • 抑制要因
      • 水産養殖用ワクチンの製造・承認に関する厳しい規制方針が市場成長の妨げになると予想されます。
    • 機会
    • 影響分析

第5章 産業分析

  • サプライチェーン分析
  • 価格設定分析

第6章 COVID-19の分析

  • COVID-19の市場分析
    • COVID-19以前の市場シナリオ
    • COVID-19の現在の市場シナリオ
    • COVID-19の後、または将来のシナリオ
  • COVID-19の中での価格ダイナミクス
  • 需要-供給スペクトラム
  • パンデミック時の市場に関連する政府の取り組み
  • メーカーの戦略的な取り組み
  • まとめ

第7章 タイプ別

  • 減衰型生ワクチン
  • 不活性化ワクチン
  • サブユニットワクチン
  • DNAワクチン
  • リコンビナントワクチン

第8章 投与経路別

  • 経口
  • 注射
  • 浸漬
  • その他

第9章 用途別

  • 細菌感染症
  • ウイルス感染
  • 寄生虫感染
  • その他

第10章 魚種タイプ別

  • ティラピア
  • トラウト
  • サーモン
  • シーバス
  • シーバム
  • その他

第11章 エンドユーザー別

  • 動物病院
  • 動物病院
  • その他

第12章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • イタリア
    • スペイン
    • その他欧州
  • 南米
    • ブラジル
    • アルゼンチン
    • その他の南米地域
  • アジア太平洋地域
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他アジア太平洋地域
  • 中東・アフリカ地域

第13章 競合情勢

  • 主な展開と戦略
  • 企業シェア分析
  • 製品ベンチマーク
  • 注目の主要企業リスト

第14章 企業プロファイル

  • Merck & Co., Inc.
    • 企業概要
    • 製品ポートフォリオと説明
    • 主なハイライト
    • 財務概要
  • Tecnovax
  • Hipra
  • Zoetis LLC
  • Phibro Animal Health Corporation
  • Elanco
  • KBNP, INC.
  • Kyoto Biken Laboratories, Inc.
  • Veterquimica S.A.
  • Virbac S.A.

第15章 水産養殖用ワクチンの世界市場-DataM

目次
Product Code: DMVH5834

Market Overview

Aquaculture Vaccines Market size was valued US$ XX million in 2021 and is estimated to reach US$ XX million by 2029, growing at a CAGR of XX % during the forecast period (2022-2029).

A protective immune response is created in an animal during vaccination through administering vaccinations. Antigens from pathogenic organisms that have been turned non-pathogenic through various processes are used in vaccines to stimulate the animal's immune system and raise its resistance to disease when pathogens are met naturally. Vaccination is an easy, effective and preventive method of protecting fish from diseases.

Market Dynamics

Innovation in aquaculture vaccines is expected to drive market growth.

Due to its technological advancements, Elanco has created a new class of salmon virus vaccinations known as nucleic acid vaccines. These immunizations provide a more focused method for protecting salmon from viral infections. Only the relevant genetic elements of the pathogen that cause the formation of an antigen are present in nucleic acid vaccines. These elements are placed into a plasmid, a circular nucleic acid structure, which, when injected into a muscle, instructs cells to manufacture antigens in a manner that resembles the immunological response to a genuine infection. Nucleic acid vaccines do not risk spreading the illness because they only contain a small portion of the virus.

Moreover, according to the global seafood alliance, Plant-based fish vaccines could provide low-cost, high safety and effective protection for farmed fish species. The viability, effectiveness, and safety of plant factories for vaccines have been demonstrated in several pre-clinical and clinical trials. A plant-based platform offers attractive benefits for recombinant subunit vaccines. The safety issues with live vaccinations are not present with plant-based vaccines. In contrast to mammalian-based production systems, undesirable or harmful components, such as bacterial toxins and undesired proteins from yeast, have not been discovered in plant-derived systems. Like naturally occurring systems, plant-based systems have a high capacity for biosynthesis, which boosts the immunogenicity of vaccines. Oral vaccinations made from plants are the best. The production procedure is straightforward, and injection does not require the use of any additional medical equipment. High purity plant-based vaccines make vaccination more convenient and boost immune responses. When vaccine antigens are consumed orally, they pass past the stomach and are absorbed in the intestine, triggering immunological reactions. Fish raised on farms could be protected with low-cost, highly safe, and efficient plant-based vaccinations. Thus, from the above statements, the market is expected to drive in the forecast period.

Restraint

Stringent regulatory policies for the manufacturing and approving of aquaculture vaccines and complicated vaccine development approaches are some factors the market is expected to hamper the market growth in the forecast period.

Industry Analysis

The aquaculture vaccines market provides in-depth analysis of the market based on various industry factors such as supply chain analysis, pricing analysis etc.

COVID-19 Impact Analysis

The COVID-19 pandemic has positively impacted healthcare systems and the market. Aquaculture farmers have implemented conservative stocking strategies to lessen their exposure to COVID-19 hazards and prevent financial losses in the face of declining pricing, which is expected to result in a 1.3 percent decrease in total output in 2020. Although this number hasn't been verified, it would represent the first yearly fall in worldwide aquaculture production in nearly 60 years and a striking break from the steady 4-5 percent pace of growth seen over the past few years. However, due to the variations in growth rates, lengths of production cycles, and market demands, the impact's intensity and the producers' response have varied greatly depending on the species. It's also crucial to understand that market supply for some aquacultured species may take some time to change after early production process disturbances. Additionally, the decrease in aquaculture vaccine manufacturing caused by the reduced workforce combined with changing trends to produce a vaccine for COVID-19 infection has also impacted the market. Thus, from the above statements, the market got affected, and it is expected to gain traction quickly with the resumption of economic activities.

Segment Analysis

Inactivated Vaccines segment is expected to hold the largest market share in aquaculture vaccines market

The inactivated vaccines segment is expected to dominate in 2021. The segment benefits because the process of killing a pathogen that is cultivated and then turned into a vaccine is used to create inactivated vaccinations, also referred to as killed vaccines. These vaccines are the ones that are typically used to prevent various bacterial and viral infections. Moreover, Strong immune responses are produced by inactivated vaccines by keeping the inactive genetic component, and the virus surface exposed antigens are crucial for a strong immune response. Additionally, since inactivated vaccination does not persist in the environment or in the fish that have received it, it is safe, which increases demand. Although regular dosages are necessary, there is very little possibility of a pathogen returning or interfering with the system. One of the most widely used vaccines that are also legally and commercially available is inactivated vaccines. Certain vaccines are available for disorders, including infectious salmon anemia and infectious pancreatic virus, among others. Therefore, it has increased the demand for inactivated aquaculture vaccines. Thus, from the above statements, the market segment is expected to hold the largest market share in the forecast period.

Geographical Analysis

North America region holds the largest market share in the global aquaculture vaccines market

In 2021, North America accounted for the highest revenue share. The market's increasing research and development investment, government support for aquaculture vaccine development, product launches and acquisitions by the key regional players are some of the factors the market is expected to boost in the forecast period. For instance, the University of Florida received planting solutions grant from the Foundation for Food & Agriculture Research (FFAR) in February 2021 for around USD 790,326. The goal of this investment was to aid in the creation of a vaccine delivery method that will stop the tilapia lake virus and other diseases from spreading inside the aquaculture sector. Moreover, in July 2020, Zoetis acquired Fish Vet Group from Benchmark Holdings, PLC. This added to the company's Pharmaq business, which is involved in fish vaccines and services. Thus, from the above statements, the North American region is expected to hold the largest market share in the forecast period.

Competitive Landscape

Major key players in the aquaculture vaccines market are Merck & Co., Inc., Tecnovax, Hipra, Zoetis LLC, Phibro Animal Health Corporation, Elanco, KBNP, INC., Kyoto Biken Laboratories, Inc., Veterquimica S.A., Virbac S.A.

Merck & Co., Inc.:

Overview:

Merck & Co., Inc. is a global health care company that delivers innovative health solutions through its prescription medicines, vaccines, biological therapies and animal health products. The company's operations are principally managed on a product basis and include two operating segments, the pharmaceutical and animal health segments, both reportable. The company offers vaccinations, poultry, cattle, and aquaculture products, among other animal health items. Merck provides managed healthcare services to hospitals, government organizations, wholesalers, retailers, and hospitals. It also provides veterinarians, distributors, and animal producers with animal health products. The company and its subsidiaries operate in the Americas, Europe, the Middle East, Africa, Asia Pacific, and Latin America. Outside of North America and Canada, Merck is known as MSD, and its global headquarters are in Kenilworth, New Jersey.

roduct Portfolio:

AQUAVAC IridoV: AQUAVAC IridoV, an oil-adjuvanted vaccine, is administered intraperitoneally as a single-injection dose to fish weighing no less than 5 grams. Fish susceptible to this disease include species such as Asian seabass, grouper, pompano and Japanese yellowtail.

The global aquaculture vaccines market report would provide an access to an approx. 45+market data table, 40+figures and 200pages.

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Market Definition and Overview

3. Executive Summary

4. Market Dynamics

  • 4.1. Market Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Innovation in aquaculture vaccines is expected to drive market growth.
    • 4.1.2. Restraints:
      • 4.1.2.1. Stringent regulatory policies for the manufacturing and approving of aquaculture vaccines are expected to hamper the market growth.
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Supply Chain Analysis
  • 5.2. Pricing Analysis

6. COVID-19 Analysis

  • 6.1. Analysis of Covid-19 on the Market
    • 6.1.1. Before COVID-19 Market Scenario
    • 6.1.2. Present COVID-19 Market Scenario
    • 6.1.3. After COVID-19 or Future Scenario
  • 6.2. Pricing Dynamics Amid Covid-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Type

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis, and Y-o-Y Growth Analysis (%), By Type
    • 7.1.2. Market Attractiveness Index, By Type Segment
  • 7.2. Attenuated Live Vaccines*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis, US$ Million, 2020-2029 and Y-o-Y Growth Analysis (%), 2021-2029
  • 7.3. Inactivated Vaccines
  • 7.4. Subunit Vaccines
  • 7.5. DNA Vaccines
  • 7.6. Recombinant Vaccines

8. By Route of Administration

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis, and Y-o-Y Growth Analysis (%), By Route of Administration
    • 8.1.2. Market Attractiveness Index, By Route of Administration Segment
  • 8.2. Oral*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis, US$ Million, 2020-2029 and Y-o-Y Growth Analysis (%), 2021-2029
  • 8.3. Injected
  • 8.4. Immersion
  • 8.5. Others

9. By Application

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis, and Y-o-Y Growth Analysis (%), By Application
    • 9.1.2. Market Attractiveness Index, By Application Segment
  • 9.2. Bacterial Infection*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis, US$ Million, 2020-2029 and Y-o-Y Growth Analysis (%), 2021-2029
  • 9.3. Viral Infection
  • 9.4. Parasitic Infection
  • 9.5. Others

10. By Species Type

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis, and Y-o-Y Growth Analysis (%), By Species Type
    • 10.1.2. Market Attractiveness Index, By Species Type Segment
  • 10.2. Tilapia*
    • 10.2.1. Introduction
    • 10.2.2. Market Size Analysis, US$ Million, 2020-2029 and Y-o-Y Growth Analysis (%), 2021-2029
  • 10.3. Trout
  • 10.4. Salmon
  • 10.5. Seabass
  • 10.6. Seabream
  • 10.7. Others

11. By End user

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis, and Y-o-Y Growth Analysis (%), By End user
    • 11.1.2. Market Attractiveness Index, By End user Segment
  • 11.2. Veterinary Hospitals*
    • 11.2.1. Introduction
    • 11.2.2. Market Size Analysis, US$ Million, 2020-2029 and Y-o-Y Growth Analysis (%), 2021-2029
  • 11.3. Veterinary Clinics
  • 11.4. Others

12. By Region

  • 12.1. Introduction
    • 12.1.1. Market Size Analysis, US$ Million, 2020-2029 and Y-o-Y Growth Analysis (%), 2021-2029, By Region
    • 12.1.2. Market Attractiveness Index, By Region
  • 12.2. North America
    • 12.2.1. Introduction
    • 12.2.2. Key Region-Specific Dynamics
    • 12.2.3. Market Size Analysis, and Y-o-Y Growth Analysis (%), By Type
    • 12.2.4. Market Size Analysis, and Y-o-Y Growth Analysis (%), By Route of Administration
    • 12.2.5. Market Size Analysis, and Y-o-Y Growth Analysis (%), By Application
    • 12.2.6. Market Size Analysis, and Y-o-Y Growth Analysis (%), By Species Type
    • 12.2.7. Market Size Analysis, and Y-o-Y Growth Analysis (%), By End user
    • 12.2.8. Market Size Analysis, and Y-o-Y Growth Analysis (%), By Country
      • 12.2.8.1. U.S.
      • 12.2.8.2. Canada
      • 12.2.8.3. Mexico
  • 12.3. Europe
    • 12.3.1. Introduction
    • 12.3.2. Key Region-Specific Dynamics
    • 12.3.3. Market Size Analysis, and Y-o-Y Growth Analysis (%), By Type
    • 12.3.4. Market Size Analysis, and Y-o-Y Growth Analysis (%), By Route of Administration
    • 12.3.5. Market Size Analysis, and Y-o-Y Growth Analysis (%), By Application
    • 12.3.6. Market Size Analysis, and Y-o-Y Growth Analysis (%), By Species Type
    • 12.3.7. Market Size Analysis, and Y-o-Y Growth Analysis (%), By End user
    • 12.3.8. Market Size Analysis, and Y-o-Y Growth Analysis (%), By Country
      • 12.3.8.1. Germany
      • 12.3.8.2. U.K.
      • 12.3.8.3. France
      • 12.3.8.4. Italy
      • 12.3.8.5. Spain
      • 12.3.8.6. Rest of Europe
  • 12.4. South America
    • 12.4.1. Introduction
    • 12.4.2. Key Region-Specific Dynamics
    • 12.4.3. Market Size Analysis, and Y-o-Y Growth Analysis (%), By Type
    • 12.4.4. Market Size Analysis, and Y-o-Y Growth Analysis (%), By Route of Administration
    • 12.4.5. Market Size Analysis, and Y-o-Y Growth Analysis (%), By Application
    • 12.4.6. Market Size Analysis, and Y-o-Y Growth Analysis (%), By Species Type
    • 12.4.7. Market Size Analysis, and Y-o-Y Growth Analysis (%), By End user
    • 12.4.8. Market Size Analysis, and Y-o-Y Growth Analysis (%), By Country
      • 12.4.8.1. Brazil
      • 12.4.8.2. Argentina
      • 12.4.8.3. Rest of South America
  • 12.5. Asia Pacific
    • 12.5.1. Introduction
    • 12.5.2. Key Region-Specific Dynamics
    • 12.5.3. Market Size Analysis, and Y-o-Y Growth Analysis (%), By Type
    • 12.5.4. Market Size Analysis, and Y-o-Y Growth Analysis (%), By Route of Administration
    • 12.5.5. Market Size Analysis, and Y-o-Y Growth Analysis (%), By Application
    • 12.5.6. Market Size Analysis, and Y-o-Y Growth Analysis (%), By Species Type
    • 12.5.7. Market Size Analysis, and Y-o-Y Growth Analysis (%), By End user
    • 12.5.8. Market Size Analysis, and Y-o-Y Growth Analysis (%), By Country
      • 12.5.8.1. China
      • 12.5.8.2. India
      • 12.5.8.3. Japan
      • 12.5.8.4. Australia
      • 12.5.8.5. Rest of Asia Pacific
  • 12.6. Middle East and Africa
    • 12.6.1. Introduction
    • 12.6.2. Key Region-Specific Dynamics
    • 12.6.3. Market Size Analysis, and Y-o-Y Growth Analysis (%), By Type
    • 12.6.4. Market Size Analysis, and Y-o-Y Growth Analysis (%), By Route of Administration
    • 12.6.5. Market Size Analysis, and Y-o-Y Growth Analysis (%), By Application
    • 12.6.6. Market Size Analysis, and Y-o-Y Growth Analysis (%), By Species Type
    • 12.6.7. Market Size Analysis, and Y-o-Y Growth Analysis (%), By End user

13. Competitive Landscape

  • 13.1. Key Developments and Strategies
  • 13.2. Company Share Analysis
  • 13.3. Product Benchmarking
  • 13.4. List of Key Companies to Watch

14. Company Profiles

  • 14.1. Merck & Co., Inc.*
    • 14.1.1. Company Overview
    • 14.1.2. Product Portfolio and Description
    • 14.1.3. Key Highlights
    • 14.1.4. Financial Overview
  • 14.2. Tecnovax
  • 14.3. Hipra
  • 14.4. Zoetis LLC
  • 14.5. Phibro Animal Health Corporation
  • 14.6. Elanco
  • 14.7. KBNP, INC.
  • 14.8. Kyoto Biken Laboratories, Inc.
  • 14.9. Veterquimica S.A.
  • 14.10. Virbac S.A.

LIST NOT EXHAUSTIVE

15. Global Aquaculture Vaccines Market - DataM

  • 15.1. Appendix
  • 15.2. About Us and Applications
  • 15.3. Contact Us