市場調査レポート
商品コード
1497893

人工多能性幹細胞 (iPS細胞) の世界市場:市場規模、動向、予測 (2024年)

Global Induced Pluripotent Stem Cell (iPSC) Industry Report - Market Size, Trends, and Forecasts, 2024

出版日: | 発行: BioInformant | ページ情報: 英文 389 Pages | 納期: 即納可能 即納可能とは

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=153.16円
人工多能性幹細胞 (iPS細胞) の世界市場:市場規模、動向、予測 (2024年)
出版日: 2024年10月10日
発行: BioInformant
ページ情報: 英文 389 Pages
納期: 即納可能 即納可能とは
  • 全表示
  • 概要
  • 目次
概要

2006年に人工多能性幹細胞 (iPSC) 技術が発見されて以来、幹細胞生物学と再生医療において大きな進展がありました。新たな病態メカニズムが同定・説明され、iPS細胞のスクリーニングによって同定された新薬が開発され、ヒトiPSC由来の細胞を用いた初の臨床試験が開始されました。iPS細胞は、病気の発症や進行の原因を探り、新薬や治療法を開発・試験し、これまで不治の病であった病気を治療するために使用できます。

現在、人工多能性幹細胞 (iPSC) を商業化する方法には次のものがあります:

  • 細胞治療:iPS細胞は、傷害や疾病を回復させる目的で、多様な細胞治療への応用が検討されています。
  • 疾患モデル:疾患の患者からiPS細胞を作製し、疾患特異的な細胞に分化させることで、iPS細胞は「皿の中で」疾患モデルを効果的に作製することができます。
  • 創薬・薬剤開発:iPS細胞は、化合物の同定、標的の検証、化合物のスクリーニング、ツールの発見に生理学的に適切な細胞を提供することで、創薬を一変させる可能性を秘めています。
  • 個別化医療:CRISPRのような技術を用いることで、多くの細胞タイプにおいて、ノックアウトやノックイン (一塩基の変化を含む) を正確かつ指示的に作り出すことができます。iPS細胞とゲノム編集技術の組み合わせは、個別化医療に新たな局面をもたらしています。
  • 毒性学的検査:iPS細胞は毒性学的スクリーニングに使用できます。これは、iPS細胞またはその誘導体 (組織特異的細胞) を用いて、生きた細胞内で化合物や薬剤の安全性を評価することです。
  • 組織工学:iPS細胞は、生体適合性材料から作られた足場に播種することができます。これらの足場は標的組織の構造と性質を模倣し、細胞の増殖と分化のための支援環境を提供することができます。
  • オルガノイドの作製:iPS細胞は、臓器の構造と機能を模倣したオルガノイドと呼ばれる3次元構造体に自己組織化するように誘導することができます。オルガノイドは、臓器発生の研究、病気のモデル化、薬剤の試験などに利用できます。
  • 遺伝子編集:iPS細胞は、CRISPR-Cas9のような技術を用いて遺伝子を改変し、病気の原因となる突然変異を修正したり、特定の遺伝子変化を導入したりすることができます。編集されたiPS細胞は、移植や疾患モデル化のために目的の細胞タイプに分化させることができます。
  • 研究ツール:iPS細胞やiPSC由来細胞は、基礎から応用まで、さまざまな研究用途に広く利用されています。
  • 幹細胞バンキング:iPS細胞のリポジトリは、研究者に、健康なドナーと病気のドナーの両方から作製されたiPSC由来の細胞タイプを用いて、多様な病態を調査する機会を提供します。
  • 培養食肉生産:iPS細胞は、培養食肉を作るための細胞基盤として、クリーンな食肉生産に利用されています。
  • 3Dバイオプリンティング:iPS細胞は、皮膚、心臓、肝臓細胞など、目的の細胞タイプに分化させることができ、それをバイオインクに組み込むことができます。
  • 野生動物の保護と絶滅防止プロジェクト:iPS細胞は野生動物の保護と絶滅防止プロジェクトに利用されています。例えば、Colossal Biosciences社はウーリーマンモスの絶滅を防ぐためにiPS細胞技術を利用しています。

iPSC市場の動向

2006年にiPSCが発見されて以来、2013年に最初のiPSC由来細胞製品がヒト患者に移植されるまで、わずか7年しかか要しませんでした。それ以来、iPSC由来細胞は世界中で急速に増加している前臨床研究、医師主導の研究、臨床試験で使用されています。

iPSCの発見は、創薬、毒性試験、in-a-dish疾患モデリングの分野を好転させただけでなく、細胞・遺伝子治療の分野にも強力な影響を与えました。試験管内で増殖し、特殊な細胞へと分化するiPSCの能力により、iPSCは根治的な臨床細胞補充療法や疾患モデリングのための様々なタイプの細胞の理想的な供給源となっています。

もちろん、2013年は画期的な年でした。というのも、神戸にある理化学研究所のセンターで、iPS細胞をヒトに移植する初の細胞治療が開始されたからです。高橋政代博士が率いるこの研究では、黄斑変性症患者を対象にiPSC由来の細胞シートの安全性が調査されました。もう一つの世界初として、Cynata Therapeuticsは2016年、GvHD治療のための同種iPSC由来細胞製品 (CYP-001) の初の正式な臨床試験を開始する承認を受けました。CYP-001はiPSC由来のMSC製品です。この歴史的な臨床試験において、CYP-001は臨床エンドポイントを達成し、ステロイド抵抗性急性GvHDの治療に対する良好な安全性と有効性のデータを示しました。

iPSC由来MSCはステロイド抵抗性の急性移植片対宿主病 (GvHD) の治療で試験されており、iPSC由来ドーパミン作動性前駆細胞はパーキンソン病の治療で評価されています。iPSC由来の網膜色素上皮細胞は、加齢黄斑変性 (AMD) の治療において良好な結果を示しています。さらに、iPSC由来のインスリン分泌β細胞は、1型糖尿病の治療薬として試験されています。

iPSCは同種移植と自家移植の両方に応用できる可能性を持っていますが、iPSC由来製剤を用いた同種療法の開発が自家療法の開発を上回っています。健康なドナーに由来するiPSC由来細胞を利用したいくつかの同種療法は、糖尿病、パーキンソン病、AMDに対処するために使用されており、これらの療法は急速に初期段階の臨床試験に進んでいます。

市場開拓中の競合企業も、創薬、疾患モデル、毒性試験用のiPS細胞由来製品を商品化しています。より広範なiPSC分野では、FUJIFILM CDI (FCDI) が最大かつ最も支配的なプレーヤーの一つです。Cellular Dynamics International (CDI) は、ウィスコンシン大学マディソン校のJames Thomson博士によって2004年に設立され、2007年に初めてヒト体細胞からiPSC株を樹立しました。この偉業は日本の山中伸弥博士の研究室でも同時に達成されました。FUJIFILMは2015年4月、CDIを3億700万米ドルで買収しました。今日、統合された企業 (FCDI) は、研究、創薬、再生医療用途に使用されるiPS細胞から作製されたヒト細胞の世界最大のメーカーです。

2009年に東京大学と京都大学発のベンチャー企業として設立されたReproCELLも、iPS細胞のスペシャリストです。同社は、ヒトiPSC由来の心筋細胞であるReproCardio製品を発売し、世界で初めてiPSC製品を市販しました。欧州市場では、Evotec社、Ncardia社、Axol Bioscience社が有力な競合企業です。ドイツのハンブルグに本社を置くEvotecは、創薬アライアンスと開発パートナーシップ企業です。スループット、再現性、頑健性に関連するiPSCベースの創薬スクリーニングの産業化を目標に、iPSCプラットフォームを開発しています。現在、Evotecのインフラは、世界最大かつ最先端のiPSCプラットフォームのひとつとなっています。

Ncardiaは2017年にAxiogenesisとPluriomicsの合併により設立されました。その前身であるAxiogenesis は2011年に設立され、当初はマウス胚性幹細胞由来の細胞とアッセイに焦点を当てていました。山中教授のiPSC技術が利用可能になると、Axiogenesisは2010年に欧州企業として初めてライセンス供与を受けた。今日、統合された会社 (Ncardia) は、ヒトiPSCの心臓および神経応用における世界的権威です。2012年に設立されたAxol Bioscienceは、小規模ながらiPSC由来製品を専門とする注目すべき競合企業です。英国ケンブリッジに本社を置き、ヒト細胞培養に特化し、iPSC由来細胞やiPSCに特化した細胞培養製品を提供しています。

もちろん、世界最大の研究供給企業も、多様なiPSC由来製品やサービスを商品化しています。例えば、Lonza、BD Biosciences、Thermo Fisher Scientific、Merck、Takara Bioなど数え切れないほどです。現在、少なくとも90社以上の競合企業が、多様なiPSC製品、サービス、技術、治療薬を提供しています。

当レポートでは、世界のiPS細胞市場の主要企業について、その中核技術、戦略的協力関係、開発中の製品などを調査しています。また、iPSCの研究、生物医学的応用、製造技術、特許、資金調達の現状や、世界のiPSC由来細胞治療薬の開発に関する既知の試験も網羅しています。重要な点として、本書は世界の主要な市場参入企業のプロファイルを掲載し、iPSCの用途別、技術別、細胞タイプ別、地域別 (北米、欧州、アジア太平洋地域、その他世界の地域) の包括的な市場規模内訳を提示しています。また、2030年までの成長率を予測した総市場規模も示しています。

目次

第1章 調査概要

第2章 イントロダクション

第3章 iPS細胞 (iPSC) 業界の現状

  • iPS細胞を用いた自己細胞療法の進歩
    • 開発中の自己iPSC由来細胞治療の事例
    • 自家iPSC由来細胞製品の製造スケジュール
    • iPS細胞の生産コスト
    • iPS細胞の生産の自動化
  • 同種iPS細胞を用いた細胞治療
  • 幹細胞産業全体におけるiPS細胞ベース分析のシェア
  • iPS細胞企業の主な注力分野
  • 市販されているiPSC由来細胞の種類
  • 毒性試験アッセイにおけるiPSC由来細胞タイプの相対的使用状況
  • 臨床試験で使用されるiPSC由来細胞の種類
  • 現在利用可能なiPS細胞技術
    • iPS細胞の関連技術の概略

第4章 人工多能性幹細胞 (iPS細胞) の歴史

  • 2006年:マウス線維芽細胞からの最初のiPS細胞の生成
  • 2007年:ヒトiPS細胞の第1世代
  • 2010年:CiRAの設立
  • 2012年:iPS細胞を使用した初のハイスループットスクリーニング
  • 2013年:日本で初のiPS細胞の臨床試験が承認
  • 2014年:AMDに対する初のiPSC-RPE細胞シート移植
  • 2014年:EBiSC設立
  • 2017年、AMDに対する同種iPS細胞を用いた初の臨床試験
  • 2018年:同種iPS細胞を用いたパーキンソン病の臨床試験
  • 2018年:商業用iPS細胞プラントSMaRTの設立
  • 2019年:日本初のiPS細胞療法センター
  • 2019年:米国で初めてiPS細胞を使用したNIH主催の治験
  • 2020年:Cynata Therapeuticsの世界最大の第3相治験
  • 2021年:臨床試験におけるiPS細胞の製造ツール・ノウハウ
  • 2022年:末梢血細胞を用いたiPS細胞の自社製造

第5章 iPS細胞に関する研究刊行物

  • iPS細胞刊行物の急速な増加
    • iPS細胞を用いた病態生理学的研究に関するPubMed刊行物
    • リプログラミングに関するPubMed論文
    • iPS細胞の分化に関するPubMed論文
    • 創薬におけるiPS細胞の使用に関するPubMed論文
    • iPS細胞ベースの細胞療法に関するPubMed論文

第6章 iPS細胞:特許情勢の分析

  • iPS細胞特許の出願件数:管轄地域別
  • iPS細胞特許の出願人
  • iPS細胞特許の発明者
  • iPS細胞特許の所有者
  • iPS細胞特許の法的地位

第7章 iPS細胞:臨床試験の情勢

  • iPS細胞の臨床試験の件数
  • iPS細胞の臨床試験の募集状況
  • iPS細胞の臨床試験・研究の設計
  • 治療用・非治療用のiPS細胞臨床試験
    • 非治療的臨床研究:用途別
    • 治療研究の対象となる疾患
    • iPS細胞を用いた治療研究の例
  • iPS細胞ベースの試験:研究段階別
  • iPS細胞の臨床試験:資金提供者の種類別
  • iPS細胞の臨床試験:地理的分布
  • iPS細胞の有望な製品候補
    • CYP-001・CYP-004・CYP-006:Cynata Therapeutics
    • BioVAT-HF:Repairon GmbH
    • HS-001:Heartseed
    • CNTY-101:Century Therapeutics
    • FT-576・FT-819:Fate Therapeutics
    • RPE:National Eye Institute
    • QN-019a:Qihan Biotech
    • iPSC-CL:Heartworks, Inc.
  • 前臨床段階のiPS細胞アセットを保有する企業
    • Aspen Neuroscience
    • Ryne Biotech
    • Bluerock Therapeutics
    • Vita Therapeutics
    • Hopstem Biotechnology
    • Res Nova Bio, Inc.
    • Cytovia Therapeutics
    • Hebecell Corporation
    • Sana Biotechnology
    • SCG Cell Therapy Pte
    • Cytomed
    • Shoreline Biosciences
    • Neukio Biotherapeutics
    • Exacis Biotherapeutics
    • CellOrigin Biotech

第8章 iPS細胞分野におけるM&A・事業協力・資金調達活動

  • 合併と買収 (M&A) 部門
    • Century Therapeutics・Clade Therapeutics
    • Evotech・Rigenerand
    • Fujifilm Corporation・Atara Biotherapeutics
    • Catalent・RheinCell Therapeutics
    • Axol Biosciences・Censo Biotechnologies
    • Bayer AG・Bluerock Therapeutics
    • Pluriomix・Axiogenesis
  • iPS細胞分野における事業提携/事業協力およびライセンス契約
    • Shinobi Therapeutics・Panasonic
    • SCG Cell Therapy and A*STAR
    • Charles River Laboratories・Pluristyx, Inc.
    • Pluristyx, Inc.・National Resilience, Inc.
    • University of Texas・GeneCure
    • Heartseed, Inc.・Undisclosed Biotech
    • Bluerock Therapeutics・Bit.bio
    • Applied Stem Cell, Inc.・CIRM
    • Resolution Therapeutics・OmniaBio, Inc.
    • REPROCELL, Inc.・CIRM
    • REPROCELL, Inc.・BioBridge Global
    • Elevate Bio・CIRM
    • Evotec・Sernova
    • Evotec・Almiral
    • Quell Therapeutics・Cellistic
    • MDimmune・YiPSCELL
    • Edigene・Neukio Biotherapeutics
    • Matricelf・Ramot
    • Evotec・Boehringer Ingelheim
    • Pluristyx, Pancella・Implant Therapeutics
    • Century Therapeutics・Bristol Myers Squibb
    • Fujifilm Cellular Dynamics・Pheno Vista Biosciences
    • Metrion Biosciences・Bioqube Ventures
    • Cytovia Therapeutics・Cellectis
    • Exacis Biotherapeutics・CCRM
    • Cynata Therapeutics・Fujifilm Corporation
    • Bone Therapeutics・Implant Therapeutics
    • REPROCELL・TEXCELL
    • Jacobio・Herbecell
    • NeuCyte・KIF1A.ORG
    • Kite・Shoreline Biosciences
    • Neuropath Therapeutics・Hopstem Biotechnology
    • Allele Biotech・Cellatoz
    • Bluerock Therapeutics, Fujifilm Cellular Dynamics・Opsis Therapeutics
    • Newcells・Takeda
    • Biocentriq・Kytopen
    • Fujifilm Cellular Dynamics・Sana Biotechnology
    • Evotec・Medical Center Hamburg-Eppdorf (UKE)
    • NeuCyte・Seaver Autism Center for Research and Treatment
    • Cytovia Therapeutics・National Cancer Institute
    • Mogrify・MRC Laboratory of Molecular Biology
  • ベンチャーキャピタルのiPS細胞分野への資金提供
    • Asgard Therapeutics
    • Kenai Therapeutics
    • Pluristyx
    • Fujifilm Cellular Dynamics
    • Mogrify Ltd.
    • Heartseed, Inc.
    • Elevate Bio
    • Aspen Neurosciences
    • Axol Biosciences
    • Thyas, Co. Ltd
    • Synthego
    • Cellino Biotech, Inc
    • Curi Bio
    • Ncardia
    • Evotec SE
    • bit.bio
    • Clade Therapeutics
    • Shoreline Biosciences
    • Kytopen
    • Cytovia Therapeutics & CytoLynx
    • TreeFrog Therapeutics
    • HebeCell Corporation
    • Neukio Biotherapeutics
    • Stemson Therapeutics
    • Vita Therapeutics
    • Century Therapeutics
    • Heartseed
    • Mogrify
    • Metrion Biosciences
    • Elevate Bio
    • Vita Therapeutics

第9章 人工多能性幹細胞 (iPSC) の生成

  • OSKMカクテル
    • Oct4 (Octamer-binding Transcription Factor 4)
    • Sox (SRY-box transcription) 因子2 
    • Klf4 (Kruppel like factor 4)
    • C-Myc
  • 多能性関連転写因子とその機能
    • 異なる細胞源に対する因子の異なる組み合わせ
  • 再プログラミング因子の送達
    • システムの統合
    • 非統合型デリバリーシステム
    • デリバリー (送達) 方法の比較
  • iPS細胞生成におけるゲノム編集技術
    • CRISPR/Cas9 
  • 利用可能なiPS細胞株とその用途

第10章 ヒトiPS細胞バンキング

  • iPS細胞およびiPS細胞株を保管する主要なバイオバンク
    • RIKEN
    • WiCell
    • Fujifilm Cellular Dynamics, Inc.
    • Sampled
    • Coriell Institute for Medical Research
    • European Bank for Induced Pluripotent Stem Cells (EBiSC)
  • iPS細胞バンクの細胞源
  • iPS細胞バンクにおけるリプログラミング方法
  • iPS細胞バンクの所有権と投資

第11章 iPS細胞の生物医学的活用

  • 基礎調査におけるiPS細胞
    • 細胞運命制御を理解する
    • 細胞の若返りを理解する
    • 多能性を理解する
    • 組織と臓器の発達を研究する
    • iPS細胞からヒト配偶子を作製する
    • 研究者向けiPS細胞関連サービスの提供者
  • 創薬におけるiPS細胞の活用
    • iPS細胞を用いた心血管疾患治療薬の試験
    • iPS細胞株を用いた神経疾患治療薬の試験
    • iPS細胞株を用いた希少疾患治療薬の試験
  • 毒性学研究におけるiPS細胞の活用
    • iPS細胞を用いて毒性試験を行った薬剤の例
    • 毒性試験研究で使用されるiPSC由来の細胞タイプ:相対的利用度
  • 疾患モデルにおけるiPS細胞の活用
    • iPSC由来細胞でモデル化した心血管疾患
    • iPSC由来肝細胞を用いた肝疾患のモデル化
    • 神経変性疾患モデルにおけるiPS細胞
    • 疾患モデル化のためのiPSC由来オルガノイド
    • がん由来iPS細胞
  • 細胞ベースの治療におけるiPS細胞の活用
    • iPS細胞ベースの治療法のみに焦点を当てた企業
  • iPS細胞のその他の新しい用途
    • 組織工学におけるiPS細胞の活用
    • 家畜由来のiPS細胞
    • 絶滅危惧種の動物の保護のためのiPS細胞株
    • 培養肉におけるiPS細胞

第12章 市場分析

  • 世界のiPS細胞市場:地域別
  • 世界のiPS細胞市場:技術別
  • 世界のiPS細胞市場:生医学の用途別
  • 世界のiPS細胞市場:由来細胞の種類別
  • 市場促進要因
    • iPS細胞市場に影響を与える現在の要因
  • 市場抑制要因
    • 経済的課題
    • ゲノム不安定性
    • 免疫原性
    • バイオバンキング

第13章 企業プロファイル

  • AcceGen
    • ASC-CRISPR iPSs遺伝子編集技術サービス
  • Acellta, Ltd.
    • 技術
  • AddGene, Inc.
    • ウイルスプラスミド
  • Allele Biotechnology, Inc.
    • 技術
  • ALSTEM, Inc.
    • 細胞株生成ツール
    • 細胞不死化キット
    • iPS細胞キット
    • 細胞株
    • 遺伝子編集
    • iPS細胞株
    • ウイルスパッケージングツール
  • Altos Labs
    • altosの科学
  • AMS Biotechnology, Ltd. (AMSBIO)
    • 細胞株製品
  • Applied StemCell (ASC)
    • iPS細胞ベースの前臨床CROサービス
    • GMPグレード iPS細胞サービスと製品
    • GMP TARGATT iPS細胞-iNKプラットフォーム
    • CRISPR iPS細胞ゲノム編集サービス
    • iPS細胞生成サービス
    • iPS細胞分化サービス
    • 幹細胞製品
  • Asgard Therapeutics
  • Aspen Neurosciences, Inc.
    • Aspenの臨床パイプライン
  • Astellas Pharma, Inc.
    • 同種細胞療法
    • ユニバーサルドナー細胞技術
    • アステラスの強力なパイプライン
  • Axol Biosciences, Ltd.
    • Axolの遺伝子組み換え疾患ライン
    • カスタム型ヒトiPS細胞およびiPS細胞サービス
    • Axolの製品
  • BioCentriq
  • バイオセントリク
    • LEAP高度治療プラットフォーム
  • Bit.bio
    • 治療薬
    • Opti-Oxリプログラミング技術
  • BlueRock Therapeutics LP
    • Bluerockの細胞療法
    • 細胞+遺伝子プラットフォーム
    • BlueRockの細胞治療プログラム
  • BrainXell
    • 製品
    • カスタムサービスプロジェクト
    • 社内アッセイサービス
  • Cartherics Pty, Ltd.
    • 同種CAR免疫細胞
  • Catalent Biologics
    • OneBio統合スイート
    • 医薬品原料の開発
    • 医薬品開発
    • 分析サービス
    • CatalentのiPS細胞サービス
  • Cellistic
    • パルスプラットフォーム
    • エコープラットフォーム
    • iPS細胞を用いた同種移植アプローチ
  • CellOrigin Biotech (Hangzhou), Co., Ltd.
  • Celogics, Inc.
    • 心筋細胞
  • Cellular Engineering Technologies (CET)
    • iPS細胞のリプログラミング手法
    • CETの幹細胞の活用
    • 製品
  • Cellusion, Inc.
    • 希少疾病用医薬品指定
    • 水疱性角膜症
  • Century Therapeutics, Inc.
    • 細胞治療プラットフォーム
    • Centuryの製品パイプライン
  • Citius Pharmaceuticals, Inc.
    • 幹細胞プラットフォーム
  • Creative Bioarray
    • 多能性幹細胞
    • iPSC由来細胞
    • サービス
  • Curi Bio
    • 疾患モデルの開発サービス
  • Cynata Therapeutics, Ltd.
    • Cymerusプラットフォーム
    • GVHDの臨床開発
    • 変形性関節症
    • ARDS
    • 糖尿病性創傷
  • Cytovia Therapeutics
    • iPSC由来NK細胞およびCAR-NK細胞
  • DefiniGEN
    • DefiniGENのプラットフォーム
    • 有効性スクリーニングサービス
    • 毒性スクリーニング
    • 疾患モデル
    • iPS細胞製品
  • Editas Medicine
    • SLEEK遺伝子編集
    • iPSC由来NK細胞
  • Editco Bio., Inc.
    • ノックアウトiPS細胞株
    • ノックインiPS細胞株
  • ElevateBio
    • iPS細胞技術
  • Elixirgen Scientific, Inc.
    • 技術
    • サービス内容
    • iPS細胞製品
  • Eterna Therapeutics
    • 遺伝子編集
    • 遺伝子送達
  • Evotec AG
    • iPS細胞治療
    • 創薬サービス
    • 治療領域
  • Eyestem
    • Eyecyte-RPE
    • Eyecyte-PRP
    • Aircyte-AEC
  • Fate Therapeutics
    • iPS細胞プラットフォーム
    • iPS細胞の製造
    • 製品パイプライン
    • Fate Therapeuticsのコラボレーション
  • FUJIFILM Cellular Dynamics, Inc.
    • 製品
    • FUJIFILMのカスタムサービス
    • iPS細胞の疾患モデル
    • 安全性薬理学/毒性学試験
  • Gameto
    • Fertilo
  • Greenstone Biosciences
  • Heartseed, Inc.
    • HS-001:リード製品候補
    • 技術
  • HebeCell
    • プロトNK
    • 網膜光受容体前駆細胞
    • ナノタンパク質
  • Helios K.K.
    • 研究活動
  • Hera BioLabs
    • 独自のSRGラット
    • Cas-CLOVER遺伝子編集プラットフォーム
    • ピギーバックトランスポゾンシステムプラットフォーム
    • 細胞株開発サービス
    • カスタム細胞株エンジニアリングサービス
    • 動物モデルの作成
    • 生体内調査サービス
  • Hopstem Biotechnology
    • パイプライン
  • Implant Therapeutics, Inc.
    • サービス
  • IN8bio
    • DeltExプラットフォーム
    • iPSCガンマデルタT細胞
  • I Peace, Inc.
    • GMP製品
    • カスタム製造サービス
  • IPS HEART
    • IPS HEARTのアプローチ
    • ISX-9
    • GIVI-MPC
  • iPS Portal, Inc.
    • サービス
  • iPSirius
    • iPSiriusのプラットフォーム
  • iXCells Biotechnologies
    • iPS細胞製品
    • 前臨床サービス
  • Kenai Therapeutics, Inc.
  • Khloris Biosciences, Inc.
  • Kytopen
    • 製品
  • Laverock Therapeutics
    • GEiGSとiPS細胞
    • Ex Vivo GEiGS対応細胞療法
  • Lindville Bio, Ltd.
    • サービス
  • Lonza Group, Ltd.
    • iPS細胞の製造の専門知識
    • Nucleofector技術
  • Matricelf
    • 脊髄損傷のソリューション
  • Megakaryon Corporation
    • iPS細胞からの血小板の生産
    • iPS細胞からの巨核球の開発
    • 血小板の安全な生産
    • 研究開発パイプライン
  • Metrion Biosciences, Ltd.
    • イオンチャネルハイスループットスクリーニング
    • ヒトiPS細胞由来の心筋細胞を用いた臨床QTc/QRS予測
  • Mogrify
    • MOGRIFYプラットフォーム
    • epiMOGRIFYプラットフォーム
  • Ncardia Services B.V.
    • Ncyteアストロサイト
    • Ncyte内皮細胞
    • Ncyteニューラルミックス
    • Ncyte平滑筋細胞
    • Ncyte v心筋細胞
    • カスタム疾患モデリングサービス
    • ハイスループットスクリーニングサービス
    • iPS細胞ベースの有効性アッセイサービス
    • iPS細胞ベースの安全性および毒性試験
  • NeuCyte
    • 技術
    • 創薬
  • Neukio Biotherapeutics
    • 同種免疫療法プラットフォーム
  • Newcells Biotech
    • 網膜モデル
    • 網膜オルガノイド
    • 網膜色素上皮 (RPE)
    • 腎臓近位尿細管細胞モデル
    • アッセイ準備完了aProximate
    • 糸球体毒性と疾患モデル
    • 肺気道モデル
    • 疾患モデリングサービス
  • NEXEL, Co., Ltd.
    • 製品
    • Curi Bio Systems
    • サービス
  • Notch Therapeutics
    • 技術
    • 製品開発
  • Orizuru Therapeutics, Inc.
    • iCMプロジェクト
  • Phenocell SAS
    • 加齢黄斑変性症 (AMD) に対するiPSC由来RPE細胞
    • ニキビと脂漏症のR&Dソリューション
    • 皮膚色素沈着調査・検査プラットフォーム
    • 細胞とキット
  • Pluristyx
    • panCELLaプラットフォーム
    • RTD iPS細胞およびGMP細胞バンク
    • 開発サービス
    • カスタム遺伝子編集
    • iPS細胞のGMP製造の専門知識
    • カスタム遺伝子編集
    • フェイルセーフ
    • iACTステルスセル
    • 製品
    • 分化細胞
  • ReNeuron
    • 技術プラットフォーム
  • Repairon GmbH
    • 技術
  • REPROCELL USA, Inc.
    • サービス
    • REPROCELLのiPS細胞製品
  • Res Nova Bio, Inc.
    • 前臨床研究
  • Sartorius CellGenix GmbH
    • 製品
  • Shinobi Therapeutics
  • Shoreline Biosciences
    • iMAC
  • StemSight
    • 技術
  • Stemson Therapeutics
    • 毛包のためのiPS細胞
  • Stemina Biomarker Discovery
    • Cardio quickPREDICT
    • devTOX quickPREDICT
  • Tempo Bioscience, Inc.
    • Tempo-iAstro
    • Tempo-iBMEC
    • Tempo-iCardio
    • Tempo-iCort
    • Tempo-iDopaNer
    • Tempo-iLSEC
    • Tempo-iKupffer
    • Tempo-iHepStellate
    • Tempo-iHep3D
    • Tempo-iKer
    • Tempo-iKidneyPod
    • Tempo-iMel
    • Tempo-iMG
    • Tempo-iMono
    • Tempo-iMotorNer
    • Tempo-iMSC
    • Tempo-iNStem
    • Tempo-iOligo
    • Tempo-iOsteo
    • Tempo-iPeri
    • Tempo-iPhago
    • Tempo-iRPE
    • Tempo-iSchwann
    • Tempo-iSenso
    • Tempo StemBank
  • Uncommon (Higher Steaks)
    • iPS細胞による培養豚肉
  • Universal Cells
    • 技術
  • VCCT, Inc.
    • 網膜色素上皮細胞の再生
  • ViaCyte, Inc.
    • 技術
    • パイプライン
  • Vita Therapeutics
    • 技術
  • XCell Science
    • 制御線
    • 細胞製品
    • サービス
  • Yashraj Biotechnology, Ltd.
    • iPS細胞製品
    • 契約調査サービス

図の索引

表の索引

目次

Since the discovery of induced pluripotent stem cell (iPSC) technology in 2006, significant progress has been made in stem cell biology and regenerative medicine. New pathological mechanisms have been identified and explained, new drugs identified by iPSC screens are in the pipeline, and the first clinical trials employing human iPSC-derived cell types have been initiated. iPSCs can be used to explore the causes of disease onset and progression, create and test new drugs and therapies, and treat previously incurable diseases.

Today, methods of commercializing induced pluripotent stem cells (iPSCs) include:

  • Cellular Therapy: iPSCs are being explored in a diverse range of cell therapy applications for the purpose of reversing injury or disease.
  • Disease Modelling: By generating iPSCs from patients with disorders of interest and differentiating them into disease-specific cells, iPSCs can effectively create disease models "in a dish".
  • Drug Development and Discovery: iPSCs have the potential to transform drug discovery by providing physiologically relevant cells for compound identification, target validation, compound screening, and tool discovery.
  • Personalized Medicine: The use of techniques such as CRISPR enable precise, directed creation of knock-outs and knock-ins (including single base changes) in many cell types. Pairing iPSCs with genome editing technologies is adding a new dimension to personalized medicine.
  • Toxicology Testing: iPSCs can be used for toxicology screening, which is the use of iPSCs or their derivatives (tissue-specific cells) to assess the safety of compounds or drugs within living cells.
  • Tissue Engineering: iPSCs can be seeded onto scaffolds made from biocompatible materials. These scaffolds mimic the structure and properties of the target tissue and can provide a supportive environment for cell growth and differentiation.
  • Organoid Production: iPS cells can be coaxed to self-organize into 3D structures called organoids, which mimic the structure and function of organs. Organoids can be used for studying organ development, modeling diseases, and testing drugs.
  • Gene Editing: iPS cells can be genetically modified using techniques like CRISPR-Cas9 to correct disease-causing mutations or introduce specific genetic changes. These edited iPS cells can then be differentiated into the desired cell type for transplantation or disease modeling.
  • Research Tools: iPSCs and iPSC-derived cell types are being widely used within a diverse range of basic and applied research applications.
  • Stem Cell Banking: iPSC repositories provide researchers with the opportunity to investigate a diverse range of conditions using iPSC-derived cell types produced from both healthy and diseased donors.
  • Cultured Meat Production: iPSCs are being utilized in clean meaat production by serving as the cellular foundation for the creation of lab-grown meat.
  • 3D Bioprinting: iPSCs can be directed to differentiate into cell types of interest, such as skin, heart, or liver cells, which are then incorporated into bioinks.
  • Wildlife Conservation and De-extinction Projects: iPSCs are being used in wildlife conservation and de-extinction projects. For example, Colossal Biosciences is using iPSC technology in an effort to achieve woolly mammoth de-extinction.

iPSC Market Dynamics

Since the discovery of iPSCs in 2006, it took only seven years for the first iPSC-derived cell product to be transplanted into a human patient in 2013. Since then, iPSC-derived cells have been used within a rapidly growing number of preclinical studies, physician-led studies, and clinical trials worldwide.

The discovery of iPSC has not only favorably transformed the field of drug discovery, toxicity testing and in-a-dish disease modeling, but also powerfully impacted the field of cell and gene therapy. The ability of iPSCs to multiply in vitro and then get differentiated into specialized cells makes iPSCs an ideal source of cells of different types for curative clinical cell replacement therapies and disease modeling.

Of course, 2013 was a landmark year because it saw the first cellular therapy involving the transplant of iPSCs into humans initiated at the RIKEN Center in Kobe, Japan. Led by Dr. Masayo Takahashi, it investigated the safety of iPSC-derived cell sheets in patients with macular degeneration. In another world first, Cynata Therapeutics received approval in 2016 to launch the first formal clinical trial of an allogeneic iPSC-derived cell product (CYP-001) for the treatment of GvHD. CYP-001 is an iPSC-derived MSC product. In this historic trial, CYP-001 met its clinical endpoints and produced positive safety and efficacy data for the treatment of steroid-resistant acute GvHD.

Today, at least 155 ongoing clinical trials are using iPSC-derived specialized cells to address various indications. iPSC-derived MSCs are being tested in the treatment of steroid-resistant acute graft versus host disease (GvHD). iPSC-derived dopaminergic progenitors are being evaluated in the treatment of Parkinson's disease. iNK cell-based cancer immunotherapy is being studied in the treatment of metastatic solid tumors. iPSC-derived retinal pigment epithelial cells have shown positive results in the treatment of age-related macular degeneration (AMD). Furthermore, iPSC derived insulin secreting beta cells are being tested for the treatment of Type 1 diabetes.

Although iPSCs have the potential to be used in both allogeneic and autologous applications, the development of allogeneic therapies using iPSC-derived products is outpacing the development of autologous therapies. Several allogeneic therapies utilizing iPSC-derived cells derived from healthy donors are being used to address diabetes, Parkinson's disease, and AMD, and these therapies are quickly progressing into early phase clinical trials.

Market competitors are also commercializing iPSC-derived products for use in drug development and discovery, disease modeling, and toxicology testing. Across the broader iPSC sector, FUJIFILM CDI (FCDI) is one of the largest and most dominant players. Cellular Dynamics International (CDI) was founded in 2004 by Dr. James Thomson at the University of Wisconsin-Madison, who in 2007 derived iPSC lines from human somatic cells for the first time. The feat was accomplished simultaneously by Dr. Shinya Yamanaka's lab in Japan. FUJIFILM acquired CDI in April 2015 for $307 million. Today, the combined company (FCDI) is the world's largest manufacturer of human cells created from iPSCs for use in research, drug discovery and regenerative medicine applications.

Another iPSC specialist is ReproCELL, a company that was established as a venture company originating from the University of Tokyo and Kyoto University in 2009. It became the first company worldwide to make iPSC products commercially available when it launched its ReproCardio product, which are human iPSC-derived cardiomyocytes. Within the European market, the dominant competitors are Evotec, Ncardia, and Axol Bioscience. Headquartered in Hamburg, Germany, Evotec is a drug discovery alliance and development partnership company. It is developing an iPSC platform with the goal to industrialize iPSC-based drug screening as it relates to throughput, reproducibility, and robustness. Today, Evotec's infrastructure represents one of the largest and most advanced iPSC platforms globally.

Ncardia was formed through the merger of Axiogenesis and Pluriomics in 2017. Its predecessor, Axiogenesis, was founded in 2011 with an initial focus on mouse embryonic stem cell-derived cells and assays. When Yamanaka's iPSC technology became available, Axiogenesis became the first European company to license it in 2010. Today, the combined company (Ncardia) is a global authority in cardiac and neural applications of human iPSCs. Founded in 2012, Axol Bioscience is a smaller but noteworthy competitor that specializes in iPSC-derived products. Headquartered in Cambridge, UK, it specializes in human cell culture, providing iPSC-derived cells and iPSC-specific cell culture products.

Of course, the world's largest research supply companies are also commercializing a diverse range of iPSC-derived products and services. Examples of these companies include Lonza, BD Biosciences, Thermo Fisher Scientific, Merck, Takara Bio, and countless others. In total, at least 90 market competitors now offer a diverse range of iPSC products, services, technologies, and therapeutics.

This global strategic report reveals all major market competitors worldwide, including their core technologies, strategic partnerships, and products under development. It covers the current status of iPSC research, biomedical applications, manufacturing technologies, patents, and funding events, as well as all known trials for the development of iPSC-derived cell therapeutics worldwide. Importantly, it profiles leading market competitors worldwide and presents a comprehensive market size breakdown for iPSCs by Application, Technology, Cell Type, and Geography (North America, Europe, Asia/Pacific, and Rest of World). It also presents total market size figures with projected growth rates through 2030.

TABLE OF CONTENTS

1. REPORT OVERVIEW

  • 1.1. Statement of the Report
  • 1.2. Executive Summary

2. INTRODUCTION

3. . CURRENT STATUS OF IPSC INDUSTRY

  • 3.1. Progress made in Autologous Cell Therapy using iPSCs
    • 3.1.1. Examples of Autologous iPSC-derived Cell Therapies in Development
    • 3.1.2. Manufacturing Timeline for Autologous iPSC-derived Cell Products
    • 3.1.3. Cost of iPSC Production
    • 3.1.4. Automation in iPSC Production
  • 3.2. Allogeneic iPSC-based Cell Therapies
  • 3.3. Share of iPSC-based Research within the Overall Stem Cell Industry
  • 3.4. Major Focus Areas of iPSC Companies
  • 3.5. Commercially Available iPSC-derived Cell Types
  • 3.6. Relative use of iPSC-derived Cell Types in Toxicology Testing Assays
  • 3.7. iPSC-derived Cell Types used in Clinical Trials
  • 3.8. Currently Available iPSC Technologies
    • 3.8.1. Brief Descriptions of some iPSC-related Technologies
      • 3.8.1.1. Nucleofector Technology
      • 3.8.1.2. Opti-ox Technology
      • 3.8.1.3. MOGRIFY Technology
      • 3.8.1.4. Transcription Factor-based iPSC Differentiation Technology
      • 3.8.1.5. Flowfect Technology
      • 3.8.1.6. Technology for Mass Production of Platelets
      • 3.8.1.7. SynFire Technology

4. HISTORY OF INDUCED PLURIPOTENT STEM CELLS (IPSCS)

  • 4.1. First iPSC Generation from Mouse Fibroblasts, 2006
  • 4.2. First Human iPSC Generation, 2007
  • 4.3. Creation of CiRA, 2010
  • 4.4. First High-Throughput Screening using iPSCs, 2012
  • 4.5. First iPSC Clinical Trial Approved in Japan, 2013
  • 4.6. First iPSC-RPE Cell Sheet Transplantation for AMD, 2014
  • 4.7. EBiSC Founded, 2014
  • 4.8. First Clinical Trial using Allogeneic iPSCs for AMD, 2017
  • 4.9. Clinical Trial for Parkinson's Disease using Allogeneic iPSCs, 2018
  • 4.10. Commercial iPSC Plant SMaRT Established, 2018
  • 4.11. First iPSC Therapy Center in Japan, 2019
  • 4.12. First U.S.-based NIH-Sponsored Clinical Trial using iPSCs, 2019
  • 4.13. Cynata Therapeutics' World's Largest Phase III Clinical Trial, 2020
  • 4.14. Tools and Know-how to Manufacture iPSCs in Clinical Trials, 2021
  • 4.15. Production of in-house iPSCs using Peripheral Blood Cells, 2022

5. RESEARCH PUBLICATIONS ON IPSCS

  • 5.1. Rapid Growth in iPSC Publications
    • 5.1.1. PubMd Publications on Pathophysiological Research using iPSCs
    • 5.1.2. PubMed Papers on Reprogramming
    • 5.1.3. PubMed Papers on iPSC Differentiation
    • 5.1.4. PubMed Papers on the use of iPSCs in Drug Discovery
    • 5.1.5. PubMed Papers on iPSC-based Cell Therapy
      • 5.1.5.1. Percent Share of Published Articles by Disease Type
      • 5.1.5.2. Percent Share of Articles by Country

6. IPSC: PATENT LANDSCAPE ANALYSIS

  • 6.1. iPSC Patent Applications by Jurisdiction
  • 6.2. iPSC Patent Applicants
  • 6.3. Inventors of iPSC Patents
  • 6.4. iPSC Patent Owners
  • 6.5. Legal Status of iPSC Patents

7. IPSC: CLINICAL TRIAL LANDSCAPE

  • 7.1. Number of iPSC Clinical Trials
  • 7.1. Recruitment Status of iPSC Clinical Trials
  • 7.3. iPSC Clinical Trials Stydy Designs
  • 7.4. Therapeutic & Non-Therapeutic iPSC Clinical Trials
    • 7.4.1. Non-Therapeutic Clinical Studies by Use
    • 7.4.2. Diseases Targeted by Therapeutic Studies
      • 7.4.2.1. Therapeutic Clinical Studies by Autologous & Allogeneic Sources of iPSCs
    • 7.4.3. Examples of iPSC-based Therapeutic Studies
  • 7.5. iPSC-based Trials by Phase of Study
  • 7.6. iPSC Clinical Trials by Funder Type
  • 7.7. Geographic Distribution of iPSC-based Clinical Trials
  • 7.8. Promising iPSC Product Candidates
    • 7.8.1. CYP-001, CYP-004 & CYP-006 from Cynata Therapeutics
    • 7.8.2. BioVAT-HF from Repairon GmbH
    • 7.8.3. HS-001 from Heartseed
    • 7.8.4. CNTY-101 from Century Therapeutics
    • 7.8.5. FT-576 & FT-819 from Fate Therapeutics
    • 7.8.6. RPE from National Eye Institute
    • 7.8.7. QN-019a from Qihan Biotech
    • 7.8.8. iPSC-CL from Heartworks, Inc.
  • 7.9. Companies having Preclinical iPSC Assets
    • 7.9.1. Aspen Neuroscience
    • 7.9.2. Ryne Biotech
    • 7.9.2. Bluerock Therapeutics
    • 7.9.4. Vita Therapeutics
    • 7.9.5. Hopstem Biotechnology
    • 7.9.6. Res Nova Bio, Inc.
    • 7.9.7. Cytovia Therapeutics
    • 7.9.8. Hebecell Corporation
    • 7.9.9. Sana Biotechnology
    • 7.9.10. SCG Cell Therapy Pte
    • 7.9.11. Cytomed
    • 7.9.12. Shoreline Biosciences
    • 7.9.13. Neukio Biotherapeutics
    • 7.9.14. Exacis Biotherapeutics
    • 7.9.15. CellOrigin Biotech

8. M&A, COLLABORATIONS & FUNDING ACTIVITIES IN IPSC SECTOR

  • 8.1. Mergers and Acquisitions (M&A) Sector
    • 8.1.1. Century Therapeutics & Clade Therapeutics
    • 8.1.2. Evotech & Rigenerand
    • 8.1.3. Fujifilm Corporation & Atara Biotherapeutics
    • 8.1.4. Catalent & RheinCell Therapeutics
    • 8.1.5. Axol Biosciences & Censo Biotechnologies
    • 8.1.6. Bayer AG & Bluerock Therapeutics
    • 8.1.7. Pluriomix & Axiogenesis
  • 8.2. Partnership/Collaboration & Licensing Deals in iPSC Sector
    • 8.2.1. Shinobi Therapeutics & Panasonic
    • 8.2.2. SCG Cell Therapy and A*STAR
    • 8.2.3. Charles River Laboratories & Pluristyx, Inc.
    • 8.2.4. Pluristyx, Inc. & National Resilience, Inc.
    • 8.2.5. University of Texas & GeneCure
    • 8.2.6. Heartseed, Inc. & Undisclosed Biotech
    • 8.2.7. Bluerock Therapeutics & Bit.bio
    • 8.2.8. Applied Stem Cell, Inc. & CIRM
    • 8.2.9. Resolution Therapeutics & OmniaBio, Inc.
    • 8.2.10. REPROCELL, Inc. & CIRM
    • 8.2.11. REPROCELL, Inc. & BioBridge Global
    • 8.2.12. Elevate Bio & CIRM
    • 8.2.13. Evotec & Sernova
    • 8.2.14. Evotec & Almiral
    • 8.2.15. Quell Therapeutics & Cellistic
    • 8.2.16. MDimmune & YiPSCELL
    • 8.2.17. Edigene & Neukio Biotherapeutics
    • 8.2.18. Matricelf & Ramot
    • 8.2.19. Evotec & Boehringer Ingelheim
    • 8.2.20. Pluristyx, Pancella & Implant Therapeutics
    • 8.2.21. Century Therapeutics & Bristol Myers Squibb
    • 8.2.22. Fujifilm Cellular Dynamics & Pheno Vista Biosciences
    • 8.2.23. Metrion Biosciences & Bioqube Ventures
    • 8.2.24. Cytovia Therapeutics & Cellectis
    • 8.2.25. Exacis Biotherapeutics & CCRM
    • 8.2.26. Cynata Therapeutics & Fujifilm Corporation
    • 8.2.27. Bone Therapeutics & Implant Therapeutics
    • 8.2.28. REPROCELL & TEXCELL
    • 8.2.29. Jacobio & Herbecell
    • 8.2.30. NeuCyte & KIF1A.ORG
    • 8.2.31. Kite & Shoreline Biosciences
    • 8.2.32. Neuropath Therapeutics & Hopstem Biotechnology
    • 8.2.33. Allele Biotech & Cellatoz
    • 8.2.34. Bluerock Therapeutics, Fujifilm Cellular Dynamics & Opsis Therapeutics
    • 8.2.35. Newcells & Takeda
    • 8.2.36. Biocentriq & Kytopen
    • 8.2.37. Fujifilm Cellular Dynamics & Sana Biotechnology
    • 8.2.38. Evotec & Medical Center Hamburg-Eppdorf (UKE)
    • 8.2.39. NeuCyte & Seaver Autism Center for Research and Treatment
    • 8.2.40. Cytovia Therapeutics & National Cancer Institute
    • 8.2.41. Mogrify & MRC Laboratory of Molecular Biology
  • 8.3. Venture Capital Funding in iPSC Sector
    • 8.3.1. Asgard Therapeutics
    • 8.3.2. Kenai Therapeutics
    • 8.3.3. Pluristyx
    • 8.3.4. Fujifilm Cellular Dynamics
    • 8.3.5. Mogrify Ltd.
    • 8.3.6. Heartseed, Inc.
    • 8.3.7. Elevate Bio
    • 8.3.9. Aspen Neurosciences
    • 8.3.10. Axol Biosciences
    • 8.3.11. Thyas, Co. Ltd
    • 8.3.12. Synthego
    • 8.3.13. Cellino Biotech, Inc
    • 8.3.14. Curi Bio
    • 8.3.15. Ncardia
    • 8.3.16. Evotec SE
    • 8.3.17. bit.bio
    • 8.3.18. Clade Therapeutics
    • 8.3.19. Shoreline Biosciences
    • 8.3.20. Kytopen
    • 8.3.21. Cytovia Therapeutics & CytoLynx
    • 8.3.22. TreeFrog Therapeutics
    • 8.3.23. HebeCell Corporation
    • 8.3.24. Neukio Biotherapeutics
    • 8.3.25. Stemson Therapeutics
    • 8.3.26. Vita Therapeutics
    • 8.3.27. Century Therapeutics
    • 8.3.28. Heartseed
    • 8.3.29. Mogrify
    • 8.3.30. Metrion Biosciences
    • 8.3.31. Elevate Bio
    • 8.3.32. Vita Therapeutics

9. GENERATION OF INDUCED PLURIPOTENT STEM CELLS (IPSCS)

  • 9.1. OSKM Cocktail
    • 9.1.1. Octamer-binding Transcription Factor 4 (Oct4)
    • 9.1.2. Sry-related Box (SOX) Factor 2
    • 9.1.3. Kruppel-like Factors (Klf4)
    • 9.1.4. C-Myc
  • 9.2. Pluripotency-Associated Transcription Factors and their Functions
    • 9.2.1. Different Combinations of Factors for Different Cell Sources
  • 9.3. Delivery of Reprogramming Factors
    • 9.3.1. Integrating Systems
      • 9.3.1.1. Retroviral Vectors
      • 9.3.1.2. Lentiviral Vectors
      • 9.3.1.3. piggyBack (PB) Transposon Method
    • 9.3.2. Non-Integrative Delivery Systems
      • 9.3.2.1. Adenoviral Vectors
      • 9.3.2.2. Sendai Viral Vectors
      • 9.3.2.3. Plasmid Vectors
      • 9.3.2.4. Minicircles
      • 9.3.2.5. oriP/Epstein-Barr Nuclear Antigen-1 (EBNA1)-based Episomes
      • 9.3.2.6. RNA Delivery Approach
      • 9.3.2.7. Proteins
    • 9.3.3. Comparison of Delivery Methods
  • 9.4. Genome Editing Technologies in iPSC Generation
    • 9.4.1. CRISPR/Cas9
  • 9.5. Available iPSC Lines and their applications

10. HUMAN IPSC BANKING

  • 10.1. Major Biobanks Storing iPSCs & iPSC Lines
    • 10.1.1. RIKEN
      • 10.1.1.1. Human iPS Cells offered by RIKEN
    • 10.1.2. WiCell
      • 10.1.2.1. WiCell's iPSC Lines
    • 10.1.3. Fujifilm Cellular Dynamics, Inc.
      • 10.1.3.1. iPSC Generation
    • 10.1.4. Sampled
      • 10.1.4.1. Biobanking Services
      • 10.1.4.2. Sampled's iPSC Services
    • 10.1.5. Coriell Institute for Medical Research
      • 10.1.5.1. iPSCs at Coriell
      • 10.1.5.2. Coriell's Biobank
        • 10.1.5.2.1. National Institute of General Medical Sciences (NIGMS)
        • 10.1.5.2.2. National Institute on Aging (NIA)
        • 10.1.5.2.3. Allen Cell Collection
        • 10.1.5.2.4. iPSC Collection from Rett Syndrome Research Trust
        • 10.1.5.2.5. Autism Research Resource
        • 10.1.5.2.6. HD Community BioRepository
        • 10.1.5.2.7. CDC Cell and DNA Repository
        • 10.1.5.2.8. NEI-AREDS Genetic Repository
    • 10.1.6. European Bank for Induced Pluripotent Stem Cells (EBiSC)
      • 10.1.6.1. EBiSC Catalogue
      • 10.1.6.2. EBiSC's iPSC Banking Service
  • 10.2. Cell Sources for iPSC Banks
  • 10.3. Reprogramming Methods in iPSC Banks
  • 10.4. Ownership and Investments made in iPSC Banks

11. BIOMEDICAL APPLICATIONS OF IPSCs

  • 11.1. iPSCs in Basic Research
    • 11.1.1. To Understand Cell Fate Control
    • 11.1.2. To Understand Cell Rejuvenation
    • 11.1.3. To Understand Pluripotency
    • 11.1.4. To Study Tissue & Organ Development
    • 11.1.5. To Produce Human Gametes from iPSCs
    • 11.1.6. Providers of iPSC-Related Services for Researchers
  • 11.2. Applications of iPSCs in Drug Discovery
    • 11.2.1. Drugs Tested for Cardiovascular Diseases using iPSCs
    • 11.2.2. Drugs Tested for Neurological Diseases using iPSC Lines
    • 11.2.3. Drugs Tested for Rare Diseases using iPSC Lines
  • 11.3. Applications of iPSCs in Toxicology Studies
    • 11.3.1. Examples of Drugs Tested for their Toxicity using iPSCs
    • 11.3.2. Relative Use of iPSC-Derived Cell Types used in Toxicity Testing Studies
  • 11.4. Applications of iPSCs in Disease Modeling
    • 11.4.1. Cardiovascular Diseases Modeled with iPSC-Derived Cells
      • 11.4.1.1. Percent Utilization of iPSCs for Cardiovascular Disease Modeling
    • 11.4.2. Modeling Liver Diseases using iPSC-Derived Hepatocytes
    • 11.4.3. iPSCs in Neurodegenerative Disease Modeling
    • 11.4.4. iPSC-derived Organoids for Disease Modeling
    • 11.4.5. Cancer-Derived iPSCs
  • 11.5. Applications of iPSCs in Cell-Based Therapies
    • 11.5.2. Companies Focusing only on iPSC-based Therapies
  • 11.6. Other Novel Applications of iPSCs
    • 11.6.1. Applications of iPSCs in Tissue Engineering
      • 11.6.1.1. 3D Bioprinting Techniques
      • 11.6.1.2. Biomaterials
      • 11.6.1.3. 3D Bioprinting Strategies
      • 11.6.1.4. Bioprinting iPSC-Derived Cells
    • 11.6.2. iPSCs from Farm Animals
      • 11.6.2.1. iPSCs Generated from Cattle
      • 11.6.2.2. iPSCs from Sheep
      • 11.6.2.3. iPSCs from Goat
      • 11.6.2.4. iPSCs Generated from Buffalo
      • 11.6.2.5. iPSC Generation from Avians
    • 11.6.3. iPSC Lines for the Preservation of Endangered Species of Animals
    • 11.6.4. iPSCs in Cultured Meat

12. MARKET ANALYSIS

  • 12.1. Global Market for iPSCs by Geography
  • 12.2. Global Market for iPSCs by Technology
  • 12.3. Global Market for iPSCs by Biomedical Application
  • 12.4. Global Market for iPSCs by Derived Cell Type
  • 12.5. Market Drivers
    • 12.5.1. Current Drivers Impacting the iPSC Market Place
  • 12.6. Market Restraints
    • 12.6.1. Economic Issues
    • 12.6.2. Genomic Instability
    • 12.6.3. Immunogenicity
    • 12.6.4. Biobanking

13. COMPANY PROFILES

  • 13.1. AcceGen
    • 13.1.1. ASC-CRISPR iPSC Gene Editing Technology Service
  • 13.2. Acellta, Ltd.
    • 13.2.1. Technology
      • 13.2.1.1. Maxells
      • 13.2.1.2. Singles
      • 13.2.1.3. Differentiation
      • 13.2.1.4. Manufacturing Facility
      • 13.2.1.5. Services
  • 13.3. AddGene, Inc.
    • 13.3.1. Viral Plasmids
  • 13.4. Allele Biotechnology, Inc.
    • 13.4.1. Technologies
      • 13.4.1.1. mRNA Genome Editing
      • 13.4.1.2. Single Cell Cloning
  • 13.5. ALSTEM, Inc.
    • 13.5.1. Cell Line Generation Tools
    • 13.5.2. Cell Immortalization Kits
    • 13.5.3. iPSC Kits
    • 13.5.4. Cell Lines
    • 13.5.5. Gene Editing
    • 13.5.6. iPS Cell Lines
    • 13.5.7. Virus Packaging Tools
  • 13.6. Altos Labs
    • 13.6.1. Altos' Science
  • 13.7. AMS Biotechnology, Ltd. (AMSBIO)
    • 13.7.1. Cell Line Products
      • 13.7.1.1. Disease Models
      • 13.7.1.2. Viral Production Services
  • 13.8. Applied StemCell (ASC)
    • 13.8.1. iPSC-Based Preclinical CRO Services
      • 13.8.1.1. Reprogramming to Differentiation
      • 13.8.1.2. Neurotoxicity Screening
    • 13.8.2. GMP Grade iPSC Services & Products
      • 13.8.2.1. GMP iPSC
      • 13.8.2.2. Knock-In Ready GMP TARGATT iPSCs
    • 13.8.3. GMP TARGATT iPSC-iNK Platform
    • 13.8.4. CRISPR iPSC Genome Editing Service
      • 13.8.4.1. CRISPR Knock-In & Point Matation iPS Cell Generation
      • 13.8.4.2. CRISPR iPSC Gene Knockout
      • 13.8.4.3. TARGATT Knock-In iPS Cells
    • 13.8.5. iPSC Generation Services
    • 13.8.6. iPSC Differentiation Service
    • 13.8.7. Stem Cell Products
  • 13.9. Asgard Therapeutics
  • 13.10. Aspen Neurosciences, Inc.
    • 13.10.1. Aspen's Clinical Pipeline
  • 13.11. Astellas Pharma, Inc.
    • 13.11.1. Allogeneic Cell Therapy
    • 13.11.2. Universal Donor Cell Technology
    • 13.11.3. Astella's Robust Pipeline
  • 13.12. Axol Biosciences, Ltd.
    • 13.12.1. Axol's Genetically Engineered Disease Lines
    • 13.12.2. Custom Human iPSC iPSC Services
    • 13.12.3. Axol's Products
  • 13.13. BioCentriq
    • 13.13.1. LEAP Advanced Therapy Platform
  • 13.14. Bit.bio
    • 13.14.1. Therapeutics
    • 13.14.2. Opti-Ox Reprogramming Technology
      • 13.14.2.1. ioCells
      • 13.14.2.2. ioWild Type Cells
      • 13.14.2.3. ioGlutamatergic Neurons
      • 13.14.2.4. ioSkeletal Myocytes
      • 13.14.2.5. ioGABAergic Neurons
      • 13.14.2.6. ioDisease Models
      • 13.14.2.7. ioGlutamatergic Neurons50CAGWT
  • 13.15. BlueRock Therapeutics LP
    • 13.15.1. BlueRock's Cell Therapy
    • 13.15.2. CELL + GENE Platform
    • 13.15.3. BlueRock's Cell Therapy Programs
  • 13.16. BrainXell
    • 13.16.1. Products
    • 13.16.2. Custom Service Projects
    • 13.16.3. In-House Assay Services
  • 13.17. Cartherics Pty, Ltd.
    • 13.17.1. Allogeneic CAR Immune Cells
  • 13.18. Catalent Biologics
    • 13.18.1. OneBio Integrated Suite
    • 13.18.2. Drug Substance Development
    • 13.18.3. Drug Product Development
    • 13.18.4. Analytical Services
    • 13.18.5. Catalent's iPSC Services
  • 13.19. Cellistic
    • 13.19.1. Pulse Platform
    • 13.19.2. Echo Platform
    • 13.19.3. iPSC-based Allogeneic Approach
      • 13.19.3.1. Model 1
      • 13.19.3.2. Model 2
  • 13.20. CellOrigin Biotech (Hangzhou), Co., Ltd.
  • 13.21. Celogics, Inc.
    • 13.21.1. Celo-Cardiomyocytes
  • 13.22. Cellular Engineering Technologies (CET)
    • 13.22.1. iPS Cell Reprogramming Methods
    • 13.22.2. Applications of CET's Stem Cells
      • 13.22.2.1. Hypoimmune Cell Lines
      • 13.22.2.2. Cell Therapy Development
      • 13.22.2.3. Disease Modeling
      • 13.22.2.4. Drug Development & Discovery
      • 13.22.2.5. Regenerative Medicine
      • 13.22.2.6. Toxicology Studies
    • 13.22.3. Products
  • 13.23. Cellusion, Inc.
    • 13.23.1. Orphan Drug Designation
    • 13.23.2. Bullous Keratopathy
  • 13.24. Century Therapeutics, Inc.
    • 13.24.1. Cell Therapy Platform
    • 13.24.2. Century's Product Pipeline
  • 13.25. Citius Pharmaceuticals, Inc.
    • 13.25.1. Stem Cell Platform
  • 13.26. Creative Bioarray
    • 13.26.1. Pluripotent Stem Cells
    • 13.26.2. iPSC-Derived Cells
    • 13.26.3. Services
  • 13.27. Curi Bio
    • 13.27.1. Disease Model Development Services
  • 13.28. Cynata Therapeutics, Ltd.
    • 13.28.1. Cymerus Platform
    • 13.28.2. Clinical Development for GvHD
    • 13.28.3. Osteoarthritis
    • 13.28.4. ARDS
    • 13.28.5. Diabetic Wounds
  • 13.29. Cytovia Therapeutics
    • 13.29.1. iPSC-derived NK & CAR-NK Cells
  • 13.30. DefiniGEN
    • 13.30.1. DefiniGEN's Platform
    • 13.30.2. Efficacy Screening Services
    • 13.30.3. Toxicology Screening
    • 13.30.4. Disease Models
    • 13.30.5. iPSC Cell Products
  • 13.31. Editas Medicine
    • 13.31.1. SLEEK Gene Editing
    • 13.31.2. iPSC-Derived NK Cells
  • 13.32. Editco Bio., Inc.
    • 13.32.1. Knockout iPS Cell Lines
    • 13.32.2. Knock-in iPS Cell Lines
  • 13.33. ElevateBio
    • 13.33.1. iPSC Technology
  • 13.34. Elixirgen Scientific, Inc.
    • 13.34.1. Technology
    • 13.34.2. Service Offerings
    • 13.34.3. iPSC Products
  • 13.35. Eterna Therapeutics
    • 13.35.1. Gene Editing
    • 13.35.2. Gene Delivery
  • 13.36. Evotec AG
    • 13.36.1. iPS Cell Therapies
    • 13.36.2. Drug Discovery Services
    • 13.36.3. Therapeutic Areas
  • 13.37. Eyestem
    • 13.37.1. Eyecyte-RPE
    • 13.37.2. Eyecyte-PRP
    • 13.37.3. Aircyte-AEC
  • 13.38. Fate Therapeutics
    • 13.38.1. iPSC Platform
    • 13.38.2. iPSC Manufacturing
    • 13.38.3. Product Pipeline
      • 13.38.3.1. FT576
      • 13.38.3.2. FT522
      • 13.38.3.3. FT819
      • 13.38.3.4. FT825
    • 13.38.4. Fate Therapeutics' Collaborations
      • 13.38.4.1. ONO Pharmaceutical, Co., Ltd.
      • 13.38.4.2. Masonic Cancer Center, University of Minnesota
      • 13.38.4.3. Memorial Sloan-Kettering Cancer Center
      • 13.38.4.4. Oslo University Hospital
  • 13.39. FUJIFILM Cellular Dynamics, Inc.
    • 13.39.1. Products
    • 13.39.2. FUJIFILM's Custom Services
    • 13.39.3. iPSC Disease Modeling
    • 13.39.4. Safety Pharmacology/Toxicology Testing
  • 13.40. Gameto
    • 13.40.1. Fertilo
  • 13.41. Greenstone Biosciences
  • 13.42. Heartseed, Inc.
    • 13.42.1. HS-001: The Lead Product Candidate
    • 13.42.2. Technologies
      • 13.42.2.1. Remuscularization
      • 13.42.2.2. Patented iPSC Production
      • 13.42.2.3. Differentiation
      • 13.42.2.4. Purification
      • 13.42.2.5. Spheroid
  • 13.43. HebeCell
    • 13.43.1. ProtoNK
    • 13.43.2. Retinal Photoreceptor Progenitors
    • 13.43.3. Nanoproteins
  • 13.44. Helios K.K.
    • 13.44.1. Research Activities
  • 13.45. Hera BioLabs
    • 13.45.1. Proprietary SRG Rat
    • 13.45.2. Cas-CLOVER Gene Editing Platform
    • 13.45.3. The piggyback Transposon System Platform
    • 13.45.4. Cell Line Development Services
    • 13.45.5. Custom Cell Line Engineering Services
    • 13.45.6. Animal Model Creation
    • 13.45.7. In vivo Research Services
      • 13.45.7.1. Custom Research Models
      • 13.45.7.2. Metabolic Disease Models
      • 13.45.7.3. Xenograft & PDX Services
      • 13.45.7.4. Pharmacology & Toxicology Services
  • 13.46. Hopstem Biotechnology
    • 13.46.1. Pipeline
  • 13.47. Implant Therapeutics, Inc.
    • 13.47.1. Services
  • 13.48. IN8bio
    • 13.48.1. The DeltEx Platform
    • 13.48.2. iPSC Gamma-Delta T Cells
  • 13.49. I Peace, Inc.
    • 13.49.1. GMP Products
    • 13.49.2. Custom Manufacturing Services
  • 13.50. IPS HEART
    • 13.50.1. IPS HEART's Approach
    • 13.50.2. ISX-9 CPC
    • 13.50.3. GIVI-MPC
  • 13.51. iPS Portal, Inc.
    • 13.51.1. Services
      • 13.51.1.1. Development Services
      • 13.51.1.2. Business Support Services
  • 13.52. iPSirius
    • 13.52.1. iPSirius' Platform
  • 13.53. iXCells Biotechnologies
    • 13.53.1. iPS Cell Products
    • 13.53.2. Preclinical Services
  • 13.54. Kenai Therapeutics, Inc.
  • 13.55. Khloris Biosciences, Inc.
  • 13.56. Kytopen
    • 13.56.1. Products
      • 13.56.1.1. Flowfect Discover
      • 13.56.1.2. Flowfect TX
      • 13.56.1.3. Flowfect Connect
  • 13.57. Laverock Therapeutics
    • 13.57.1. GEiGS and iPSCs
    • 13.57.2. Ex Vivo GEiGS-Enabled Cell Therapies
  • 13.58. Lindville Bio, Ltd.
    • 13.58.1. Services
  • 13.59. Lonza Group, Ltd.
    • 13.59.1. iPSC Manufacturing Expertise
    • 13.59.2. Nucleofector Technology
  • 13.60. Matricelf
    • 13.60.1. Solution to Spinal Cord Injury
  • 13.61. Megakaryon Corporation
    • 13.61.1. Production of Platelets from iPSCs
    • 13.61.2. Development of Megakaryocytes from iPSCs
    • 13.61.3. Safe Production of Platelets
    • 13.61.4. Research & Development Pipeline
  • 13.62. Metrion Biosciences, Ltd.
    • 13.62.1. Ion Channel High-Throughput Screening
    • 13.62.2. Clinical QTc/QRS Prediction using hiPSC-Derived Cardiomyocytes
  • 13.63. Mogrify
    • 13.63.1. MOGRIFY Platform
    • 13.63.2. epiMOGRIFY Platform
  • 13.64. Ncardia Services B.V.
    • 13.64.1. Ncyte Astrocytes
    • 13.64.2. Ncyte Endothelial Cells
    • 13.64.3. Ncyte Neural Mix
    • 13.64.4. Ncyte Smooth Muscle Cells
    • 13.64.5. Ncyte vCardiomyocytes
    • 13.64.6. Custom Disease Modeling Services
    • 13.64.7. High-Throughput Screening Services
    • 13.64.8. iPSC-Based Efficacy Assay Services
    • 13.64.9. iPSC-Based Safety & Toxicity Assays
  • 13.65. NeuCyte
    • 13.65.1. Technology
    • 13.65.2. Drug Discovery
  • 13.66. Neukio Biotherapeutics
    • 13.66.1. Allogeneic Immunotherapy Platform
  • 13.67. Newcells Biotech
    • 13.67.1. Retina Models
    • 13.67.2. Retinal Organoids
    • 13.67.3. Retinal Pigment Epithelium (RPE)
    • 13.67.4. Kidney Proximal Tubule Cell Model
    • 13.67.5. Assay-Ready aProximate
    • 13.67.6. Glomerular Toxicity and Disease Modeling
    • 13.67.7. Lung Airway Models
    • 13.67.8. Disease Modeling Services
      • 13.67.8.1. In vitro Retinal Disease Modeling for Retinal Therapy
      • 13.67.8.2. in vitro Evaluation of Retinal Toxicity Services
      • 13.67.8.3. Gene Therapy Services
      • 13.67.8.4. Drug Transporter Interactions & DDI Services
      • 13.67.8.5. Cross Species Comparison Services
      • 13.67.8.6. Kidney Toxicity Services
      • 13.67.8.7. Kidney Disease Modeling Services
      • 13.67.8.8. Fibroblast Assay Services
      • 13.67.8.9. Lung Toxicity Study Services
  • 13.68. NEXEL, Co., Ltd.
    • 13.68.1. Products
      • 13.68.1.1. Cardiosight-S
      • 13.68.1.2. Hepatosight-S
      • 13.68.1.3. Neurosight-S
    • 13.68.2. Curi Bio Systems
      • 13.68.2.1. Mantarray
      • 13.68.2.2. Cytostretcher
      • 13.68.2.3. NanoSurface Plates
    • 13.68.3. Services
      • 13.68.3.1. NeXST (Next Xight Screening Test)
      • 13.68.3.2. Curi Engine SVC
  • 13.69. Notch Therapeutics
    • 13.69.1. Technology
    • 13.69.2. Product Development
  • 13.70. Orizuru Therapeutics, Inc.
    • 13.70.1. iCM Project
  • 13.71. Phenocell SAS
    • 13.71.1. iPSC-derived RPE Cells for Age-related Macular Degeneration (AMD)
    • 13.71.2. R&D Solutions for Acne & Hyperseborrhea
    • 13.71.3. Skin Pigmentation Research & Testing Platform
    • 13.71.4. Cells & Kits
  • 13.72. Pluristyx
    • 13.72.1. The panCELLa Platform
    • 13.72.2. RTD iPSC & GMP Cell Banks
    • 13.72.3. Development Services
    • 13.72.4. Custom Gene Editing
    • 13.72.5. iPSC GMP Manufacturing Expertise
    • 13.72.6. Custom Gene Editing
    • 13.72.7. FailSafe
    • 13.72.8. iACT Stealth Cells
    • 13.72.9. Products
      • 13.72.9.1. PluriBank PSCs
      • 13.72.9.2. ESI Pluripotent Stem Cells
      • 13.72.9.3. Wild Type & Disease Affected PSCs
    • 13.72.10. Differentiated Cells
  • 13.73. ReNeuron
    • 13.73.1. Technology Platform
  • 13.74. Repairon GmbH
    • 13.74.1. Technology
      • 13.74.1.1. Engineered Heart Muscle (EHM)
  • 13.75. REPROCELL USA, Inc.
    • 13.75.1. Services
      • 13.75.1.1. Donor Recruitment and Patient-Derived Cells
      • 13.75.1.2. Example Case Study
      • 13.75.1.3. Target Cell Isolation
      • 13.75.1.4. iPSC Reprograming Service
      • 13.75.1.5. iPSC Expansion, Characterization and Banking Services
      • 13.75.1.6. Neuronal Differentiation Services
      • 13.75.1.7. Gene Editing Services
    • 13.75.2. REPROCELL's iPSC Products
      • 13.75.2.1. Stemgent
  • 13.76. Res Nova Bio, Inc.
    • 13.76.1. Preclinical Study
  • 13.77. Sartorius CellGenix GmbH
    • 13.77.1. Products
  • 13.78. Shinobi Therapeutics
  • 13.79. Shoreline Biosciences
    • 13.79.1. iMACs
  • 13.80. StemSight
    • 13.80.1. Technology
  • 13.81. Stemson Therapeutics
    • 13.81.1. iPSCs for Hair Follicles
  • 13.82. Stemina Biomarker Discovery
    • 13.82.1. Cardio quickPREDICT
    • 13.82.2. devTOX quickPREDICT
  • 13.83. Tempo Bioscience, Inc.
    • 13.83.1. Tempo-iAstro
    • 13.83.2. Tempo-iBMEC
    • 13.83.3. Tempo-iCardio
    • 13.83.4. Tempo-iCort
    • 13.83.5. Tempo-iDopaNer
    • 13.83.6. Tempo-iLSEC
    • 13.83.7. Tempo-iKupffer
    • 13.83.8. Tempo-iHepStellate
    • 13.83.9. Tempo-iHep3D
    • 13.83.10. Tempo-iKer
    • 13.83.11. Tempo-iKidneyPod
    • 13.83.12. Tempo-iMel
    • 13.83.13. Tempo-iMG
    • 13.83.14. Tempo-iMono
    • 13.83.15. Tempo-iMotorNer
    • 13.83.16. Tempo-iMSC
    • 13.83.17. Tempo-iNStem
    • 13.83.18. Tempo-iOligo
    • 13.83.19. Tempo-iOsteo
    • 13.83.20. Tempo-iPeri
    • 13.83.21. Tempo-iPhago
    • 13.83.22. Tempo-iRPE
    • 13.83.23. Tempo-iSchwann
    • 13.83.24. Tempo-iSenso
    • 13.83.25. Tempo StemBank
  • 13.84. Uncommon (Higher Steaks)
    • 13.84.1. iPSC-Based Cultured Pork
  • 13.85. Universal Cells
    • 13.85.1. Technologies
      • 13.85.1.1. Recombinant Adeno-Associated Virus
      • 13.85.1.2. PSCs for Every Organ
      • 13.85.1.3. Universal Donor Cells
      • 13.85.1.4. HLA Engineering
  • 13.86. VCCT, Inc.
    • 13.86.1. Regenerating RPE Cells
  • 13.87. ViaCyte, Inc.
    • 13.87.1. Technology
      • 13.87.1.1. Autologous Approach
      • 13.87.1.2. Allogeneic Approach
    • 13.87.2. Pipeline
  • 13.88. Vita Therapeutics
    • 13.88.1. Technology
  • 13.89. XCell Science
    • 13.89.1. Control Lines
      • 13.89.1.1. XCL-1
      • 13.89.1.2. XCL-6
    • 13.89.2. Cell Products
      • 13.89.2.1. Control Lines
      • 13.89.2.2. Knock-out Lines
      • 13.89.2.3. Reporter Lines
    • 13.89.3. Services
  • 13.90. Yashraj Biotechnology, Ltd.
    • 13.90.1. iPSC Products
    • 13.90.2. Contract Research Services

INDEX OF FIGURES

  • FIGURE 3.1: Development of iPSC-based Autologous Cell Therapy for Canavan Disease
  • FIGURE 3.2: Manufacturing Timeline for Autologous iPSC-derived Cell Products
  • FIGURE 3.3: Cost of iPSC Production
  • FIGURE 3.4: Technical Set Up of the Stem Cell Factory (SCF)
  • FIGURE 3.5: Development of iPSC-based Allogeneic Cell Therapy
  • FIGURE 3.6: Share of iPSC-based Research within the Overall Stem Cell Industry
  • FIGURE 3.7: Major Focus Areas of iPSC Companies
  • FIGURE 3.8: Relative use of iPSC-derived Cell Types in Toxicology Studies
  • FIGURE 3.9: Comparison of Lipofection and Nucleofection Technologies
  • FIGURE 5.1: No. of Research Publications on iPSC in PubMed.gov, 2010-May 29, 2024
  • FIGURE 5.2: Pubmed Publications on Pathophysiological Research using iPSCs
  • FIGURE 5.3: PubMed Publications on Reprogramming Somatic Cells
  • FIGURE 5.4: No. of PubMed Papers on iPSC Differentiation
  • FIGURE 5.5: PubMed Papers on the use of iPSCs in Drug Discovery
  • FIGURE 5.6: PubMed Papers on iPSC-based Cell Therapy
  • FIGURE 5.7: Percent Share of Published Articles by Disease Type
  • FIGURE 5.8: Percent Share of Articles by Country
  • FIGURE 6.1: Number of iPSC Patents Filed by Year, 2000-May 5, 2024
  • FIGURE 7.1: Number of Clinical Trials by Year
  • FIGURE 7.2: iPSC Clinical Trials by Design, May 2024
  • FIGURE 7.3: Therapeutic & Non-Therapeutic iPSC Clinical Trials
  • FIGURE 7.4: Non-Therapeutic Clinical Trials by Use
  • FIGURE 7.5: Percent Share of Diseases Targeted by Therapeutic Studies
  • FIGURE 7.6: Share of Autologous & Allogeneic iPSCs in Clinical Studies
  • FIGURE 7.7: iPSC Clinical Trials by Phase of Study
  • FIGURE 7.8: iPSC Clinical Trials by Funder Type
  • FIGURE 9.1: The Roles of OSKM Factors in the Induction of iPSCs
  • FIGURE 9.2: Delivery Methods for iPSC Induction
  • FIGURE 9.3: Schematic of Retroviral Delivery Method
  • FIGURE 9.4: Schematic of Lentiviral Delivery Method
  • FIGURE 9.5: Schematic of piggyBack Transposon Delivery Method
  • FIGURE 9.6: Shematic of Adenoviral Vector Delivery
  • FIGURE 9.7: oriP/Epstein-Barr Nuclear Antigen-1 (EBNA1)-based Episomes
  • FIGURE 9.8: RNA Delivery Approach
  • FIGURE 9.9: Protein Delivery
  • FIGURE 10.1: PubMed Citations for iPSCs and iPSC Lines registered in hPSCreg
  • FIGURE 10.1: Disease States represented by NIGMS Cell Lines
  • FIGURE 10.2: Subject Age Range in Collections
  • FIGURE 11.1: Biomedical Applications of iPSCs
  • FIGURE 11.1: Advantages of iPSC usage in Drug Discovery
  • FIGURE 11.2: iPSCs and their Potential for Toxicity Testing and Drug Screening
  • FIGURE 11.3: Relative Use of iPSC-Derived Cell Types used in Toxicity Testing Studies
  • FIGURE 11.4: Percent Share Utilization of iPSCs for Cardiovascular Disease Modeling
  • FIGURE 11.5: Techniques used for iPSC Bioprinting
  • FIGURE 12.1: Estimated Global Market for iPSCs by Geography, 2023-2030
  • FIGURE 12.2: Estimated Global Market for iPSCs by Technology, 2023-2030
  • FIGURE 12.3: Estimated Global Market for iPSCs by Biomedical Application, 2023-2030
  • FIGURE 12.4: Global Market for iPSCs by Derived Cell Type, 2023
  • FIGURE 13.1: dCas9-VPR System
  • FIGURE 13.2: Universal Donor Cell Technology
  • FIGURE 13.3: Century's Approach to iPSC Therapy
  • FIGURE 13.4: FT576
  • FIGURE 13.5: FT522
  • FIGURE 13.6: FT819
  • FIGURE 13.7: FT825
  • FIGURE 13.8: Developing iPSC Neurons by SynFire Technology
  • FIGURE 13.9: Mantarray Instrument
  • FIGURE 13.10: Cytostretcher
  • FIGURE 13.11: NanoSurface Plate
  • FIGURE 13.12: Repairon's Engineered Heart Muscle (EHM)
  • FIGURE 13.13: REPROCELL's Example Case Study: Alzheimer's Disese
  • FIGURE 13.14: Cardio quickPREDICT Process
  • FIGURE 13.15: devTOX quickPREDICT Process

INDEX OF TABLES

  • TABLE 3.1: Examples of Autologous iPSC-derived Cell Therapies in Development
  • TABLE 3.2: Examples of Clinical Trials involving Allogeneic iPSCs
  • TABLE 3.3: Commercially Available iPSC-derived Cell Types
  • TABLE 3.4: iPSC-derived Cell Types used in Clinical Trials
  • TABLE 4.1: Timeline of Important Milestones Reached in iPSC Industry
  • TABLE 5.1: No. of Research Publications on iPSC in PubMed.gov, 2006-June 1, 2024
  • TABLE 6.1: iPSC Patent Applications by Jurisdiction as of May 5, 2024
  • TABLE 6.2: Patent Applicants as of May 5, 2024
  • TABLE 6.3: iPSC Patent Inventors
  • TABLE 6.4: iPSC Patent Owners
  • TABLE 6.5: Legal Status of iPSC Patents
  • TABLE 7.1: Recruitment Status of iPSC Clinical Trials, May 2, 2024
  • TABLE 7.2: Examples of iPSC-based Therapeutic Interventional Studies
  • TABLE 7.3: The Promising iPSC-based Product Candidates Developed across the World
  • TABLE 7.4: Examples of Key iPSC-based Preclinical Studies
  • TABLE 8.1: M&A in iPSC Sector
  • TABLE 8.2: Partnership/Collaboration & Licensing Deals in iPSC Sector, 2021-May 2024
  • TABLE 8.3: Venture Capital Funding in iPSC Sector, 2021-May 2024
  • TABLE 9.1: Pluripotency-Associated Transcription Factors and their Functions
  • TABLE 9.2: Diffewrent Combinations of Factors for Different Cell Sources
  • TABLE 9.3: Comparison of Delivery Methods of Reprogramming Factors
  • TABLE 9.4: iPSC Disease Models Generated by CRISPR/Cas9
  • TABLE 9.5: Available iPSC lines and their Major Applications
  • TABLE 10.1: Major Biobanks Storing iPSCs & iPSC Lines
  • TABLE 10.2: Disease-Specific iPSCs offered by RIKEN
  • TABLE 10.3: Types of iPS Cell Lines available with WiCell - a Sample
  • TABLE 10.4: The Four California Institutions recruiting Tissue Donors
  • TABLE 10.5: iPSC Disease Samples with FCDI
  • TABLE 10.6: Examples of Allen's Fluorescently Tagged hiPSC lines
  • TABLE 10.7: Rett Syndrome Trust's iPSC Collection
  • TABLE 10.8: Cell Sources & Reprogramming Methods for iPSC Banks
  • TABLE 10.9: Ownership of iPSC Banks and the Investments Made
  • TABLE 11.1: Providers of iPSC-Related Services and Products for Researchers
  • TABLE 11.2: Drugs Tested for Cardiovascular Diseases using iPSCs
  • TABLE 11.3: Drugs Tested for Neurological Diseases using iPSC Lines
  • TABLE 11.4: Drugs Tested for Rare Diseases using iPSC Lines
  • TABLE 11.5: Examples of Drugs Tested for their Toxicity using iPSC-Derved Cell Lines
  • TABLE 11.6: Published Human iPSC Models
  • TABLE 11.7: Partial List of Cardiovascular & other Diseases Modeled using iPSCs
  • TABLE 11.8: Liver Diseases Modeled using iPSCs
  • TABLE 11.9: Examples of iPSC-Based Neurodegenerative Diseae Modeling
  • TABLE 11.10: Organoid Types and Diseae Modeling Applications
  • TABLE 11.11: Examples of Cancer-Derived iPSCs
  • TABLE 11.12: Major Sponsors of iPSC-based Cell Therapies
  • TABLE 11.13: Selected Interventional Clinical Trials of iPSC-Based Cell Therapy
  • TABLE 11.14: Companies focusing only on iPSC-based Therapies
  • TABLE 11.15: Features of Different iPSC Bioprinting Techniques
  • TABLE 11.16: Bioprinting of iPSC-Derived Cells
  • TABLE 11.17: iPSCs Generation from Cattle
  • TABLE 11.18: iPSCs Generation from Sheep
  • TABLE 11.19: iPSCs Generation from Goat
  • TABLE 11.20: iPSCs Generation from Buffalo
  • TABLE 11.21: iPSC Generation from Avians
  • TABLE 11.22: Timeline of Development of iPSCs Generated from Domestic & Wild Animals
  • TABLE 12.1: Estimated Global Market for iPSCs by Geography, 2023-2030
  • TABLE 12.2: Estimated Global Market for iPSCs by Technology, 2023-2030
  • TABLE 12.3: Estimated Global Market for iPSCs by Biomedical Application, 2023-2030
  • TABLE 12.4: Global Market for iPSCs by Derived Cell Type, 2023-2030
  • TABLE 13.1: Aspen's Clinical Pipeline
  • TABLE 13.2: Astella's Robust & Competitive Pipeline
  • TABLE 13.3: Bit.bio's Cell Therapy Pipeline
  • TABLE 13.4: BlueRock's Pipeline of Cell Therapy Products
  • TABLE 13.5: Cartheric's R&D Pipeline
  • TABLE 13.6: CellOrigin's R&D Pipeline
  • TABLE 13.7: Cellusion's Pipeline
  • TABLE 13.8: Century's Pipeline Products
  • TABLE 13.9: Cytovia's iPSC-Derived CAR-iNK Product Pipeline
  • TABLE 13.10: Eterna's R&D Pipeline
  • TABLE 13.11: Eyestem's Product Pipeline
  • TABLE 13.12: Fate Therapeutic's Product Pipeline
  • TABLE 13.13: Examples of Greenstone's iPSC Line Collections
  • TABLE 13.14: HebeCell's Product Pipeline
  • TABLE 13.15: Helio's Research & Development Status
  • TABLE 13.16: Hopstem's Product Pipeline
  • TABLE 13.17: IPS HEART's R&D Pipeline
  • TABLE 13.18: iPSirius' R&D Pipeline
  • TABLE 13.19: Kenai Therapeutic's Pipeline
  • TABLE 13.20: Khloris Biosciences' iPSC-Based Clinical Programs
  • TABLE 13.21: Laverock's R&D Pipeline
  • TABLE 13.22: Megakaryon's Research & Development Pipeline
  • TABLE 13.23: NEXEL Pipeline
  • TABLE 13.24: Notch Therapeutic's R&D Pipeline
  • TABLE 13.25: Available Stemgent iPSCs with REPROCELL
  • TABLE 13.26: Shinobi Therapeutics' Product Pipeline
  • TABLE 13.27: ViaCyte's Product Pipeline
  • TABLE 13.28: Vita Therapeutic's R&D Pipeline