市場調査レポート
商品コード
1512809

6G通信の概要:材料・ハードウェア市場 (2025-2045年)

6G Communications Grand Overview: Materials, Hardware Markets 2025-2045

出版日: | 発行: Zhar Research | ページ情報: 英文 299 Pages | 納期: 即日から翌営業日

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=157.84円
6G通信の概要:材料・ハードウェア市場 (2025-2045年)
出版日: 2024年07月15日
発行: Zhar Research
ページ情報: 英文 299 Pages
納期: 即日から翌営業日
  • 全表示
  • 概要
  • 目次
概要

当レポートでは、6G通信の材料およびハードウェアの市場を調査し、6Gの定義、展開段階と現況、優先課題、2024年までの何百もの新しい研究論文やイニシアチブの分析、材料およびデバイスに関する取り組み、新しい機会、技術ロードマップ、市場規模の推移・予測、参入企業の分析などをまとめています。

目次

第1章 エグゼクティブサマリー・結論

  • 本レポートの目的・背景
  • 調査手法
  • 29の主な結論
  • 1Gから6Gの展開の進歩:1980~2045年
  • 6Gの2つのフェーズ:概要
  • インフォグラム:陸、水、空での6Gハードウェアの展開計画
  • 6Gハードウェアの将来情勢とメーカーの例
  • インフォグラム:6G基地局ハードウェアの進化
  • 再構成可能なインテリジェントサーフェス:調査分析・SWOT評価
  • 6Gハードウェアの強力なトレンド:コンポーネントインボックスからスマートマテリアルまで
  • 6Gインフラとクライアントデバイス:ゼロエネルギーデバイスZEDへと移行中
  • 6G熱伝導材料とその他の冷却技術の進歩
  • 最近の6G研究の436の例における炭素と化合物の人気
  • 6G材料とハードウェアのロードマップ:2025-2045年
  • 6G材料とハードウェアの市場予測:~2045年

第2章 6Gの定義、展開段階、優先課題、取り組み、ハードウェアサプライヤー

  • 概要
  • 6Gの目標のいくつかは、当初はほとんど達成できない
  • 6Gの非ハードウェア開発のハードウェアへの影響
  • 段階的な6Gの導入ののち、ディスラプティブな非常に困難な第2フェーズへ
  • 新たなニーズ、5Gの不備、4G、5G、6Gの大規模な重複
  • 6Gに最も投資している企業の目的と認識
  • 6Gの成功に不可欠な周波数とハードウェア
  • 6Gの主な無線伝送ツール:周波数別の比較
  • 6Gのハードウェア要件:コンポーネントインボックスからスマートマテリアルへの強力なトレンドが必要

第3章 6G基地局の再発明、6Gドローン、6G衛星通信

  • 概要
  • 6Gシステムの主な目標・主なハードウェア機会
  • 地上6G基地局ハードウェアの進化
  • 6G対応衛星
  • 6G対応UAVドローン
  • 2024年の空中6Gに関する研究:その他の82件の論文
  • 2023年の研究例

第4章 RIS (Reconfigurable Intelligent Surface) とメタマテリアルリフレクトアレイ

  • 6つのインフォグラム別定義、設計、展開
  • 補完的な6G周波数の選択
  • インフォグラム:テラヘルツギャップには、5Gとは異なる6G RISチューニング材料とデバイスが必要
  • RISの設計と展開:2025-2045年
  • RISチューニングのための材料とデバイス
  • 6G RISおよびリフレクトアレイの製造技術
  • RISコスト分析
  • 6G RISのSWOT評価

第5章 不可視性が受容とパフォーマンスの問題を解決:透明パッシブリフレクトアレイとオールラウンドSTAR RIS

  • 概要
  • 6G伝送処理面の透明化の状況:2024-5年
  • 透明または不透明にできる6Gビーム処理面のオプション
  • 透明IRSとRISはほぼどこにでも行ける
  • 透明パッシブインテリジェント反射面IRS:Meta Nanoweb-R Sekisui
  • 光学的に透明で透過性のあるミリ波およびテラヘルツRIS
  • 同時透過・反射型STAR RIS
  • STAR RIS SWOT評価
  • その他の研究論文:~2024年
  • その他の研究論文:~2023年

第6章 6Gインフラと6GクライアントデバイスとしてのZED (ゼロエネルギーデバイス)

  • 概要
  • ZEDのコンテキスト
  • 6Gはゼロエネルギーになり、多くの場合バッテリー不要になる
  • バッテリー不要の6G ZEDを実現する主要候補技術
  • 6G ZEDの具体的な設計アプローチの分析
  • ZEDの「質量ゼロのエネルギー」:サイズや重量を増やさない構造スーパーキャパシタ
  • 周囲後方散乱通信AmBC、群衆検知可能なCD-ZED、SWIPT
  • ストレージを排除する回路とインフラ:SWOT評価
  • さらなる研究:~2024年

第7章 6Gを実現するハードウェア技術:メタマテリアル、透明エレクトロニクス、自己修復、自己洗浄、低損失誘電体、熱材料、多機能構造エレクトロニクス、質量ゼロエネルギー

  • 概要
  • 6G透明エレクトロニクス
  • 6G向けセルフクリーニング素材
  • 6G向け自己修復材料
  • 6G向けメタマテリアル
  • 6Gインフラとデバイス向けソリッドステート冷却の次世代技術
  • 6G低損失材料インフォグラムとSWOT:周波数が増加するにつれて選択肢が狭まる

第8章 6Gデバイス製造技術に携わる中小企業

  • AAALTO HAPS (英国・ドイツ・フランス)
  • Echodyne (米国)
  • Evolv Technology (米国)
  • Fractal Antenna Systems (米国)
  • Greenerwave (フランス)
  • iQLP (米国)
  • Kymeta Corp. (米国)
  • LATYS Intelligence (カナダ)
  • Meta Materials (カナダ)
  • Metacept Systems (米国)
  • Metawave (米国)
  • Pivotal Commware (米国)
  • SensorMetrix (米国)
  • Teraview (米国)
目次

Summary

The situation has changed. Certain 6G objectives are deservedly receiving strong emphasis and others are being quietly shelved making older analyses of your materials and device opportunities misleading. To the rescue comes the new 299-page report, "6G Communications Grand Overview: Materials, Hardware Markets 2025-2045" . Uniquely, it analyses the hundreds of new research reports and initiatives through 2024, constantly updated so you only get the latest. For example, it shows how more of your opportunities will now come from such things as reinvented base stations, active reconfigurable intelligent surfaces, self-powered equipment, transparent electronics and multifunctional smart materials. It profiles new small companies involved. There are drill-down reports available on specifics.

Questions answered include:

  • Critical appraisal?
  • Gaps in the market?
  • Frequencies when, why, what benefits?
  • Analysis of 1000 recent research papers?
  • Which materials and manufacturing, why, when?
  • How have priorities radically changed recently, why?
  • Potential partners and acquisitions and their progress?
  • Which countries, companies and researchers are ahead?
  • 20-year roadmap of decision making, technical capability and adoption?
  • What metasurfaces, tuning, thermal, low-loss, optical materials, devices?

The emphasis is commercial and PhD level analysis presented clearly, including 13 SWOT appraisals, 15 new forecast lines plus roadmaps to 2045, 23 new infograms, 29 key conclusions and over 100 companies mentioned. The 44-page "Executive summary and conclusions" is sufficient in itself, including those roadmaps and forecasts as tables and graphs with explanation.

Chapter 2 is a brief 11 pages introducing, "6G definitions, rollout phases, challenges prioritised, initiatives, hardware suppiers". Mostly, that consists of information-packed images. Chapter 3, "6G base stations reinvented, 6G drones, 6G satcoms" covers these interlinked topics all advancing rapidly. Does the telecom tower become an invisible capability on a high-rise building, self-powered despite escalating power needs? Can a solar drone aloft for five years replace hundreds of terrestrial base stations as proponents claim? The 33 pages are detailed, including a close look at frequency choices and latest range improvements. An example is, " 3.6 Research in 2024 related to aerial 6G: 82 other papers" which highlights certain important new hardware opportunities emerging.

The 37-page Chapter 4, "Reconfigurable intelligent surfaces RIS and metamaterial reflect-arrays" concerns shows how these are becoming more important and changing in form. The primitive reflect-arrays will be useful as smart windows but 6G proliferates attack vectors and RIS enhances security, not just range and reach of the signal beams. Learn how low-cost, semi-passive RIS taking almost no power remain important for 6G, particularly as they abandon discrete components, but active RIS are now coming center stage for a stream of reasons including further improving range, reach and functionality by amplifying and focussing beams, incorporating sensing, overcoming multiplicative fading, operating unpowered client devices, some without batteries, and much more. Objectives now include self-powered, self-adaptive, self-healing, multifunctional smart material. How? What materials? See the future metasurfaces for you to make, RIS cost analysis, feature sizes, manufacturing technologies.

Reflecting another new emphasis and opportunity, Chapter 5 is "Invisibility solves acceptance and performance problems: Transparent passive reflect-arrays and all-round STAR RIS". In 33 pages you learn how this makes them acceptable on the sides of building, as windows and even giving 360-degree beam manipulation reducing the numbers needed to realistic levels. Useful for 6G UM-MIMO base stations? Activities of several large companies are here with latest research breakthroughs and STAR-RIS SWOT appraisal.

Another horizontally-applicable 6G technology is brings new materials and device opportunities. It is the subject of Chapter 6, "Zero energy devices ZED in 6G infrastructure and as 6G client devices". Energy independence across most 6G infrastructure and client devices is now seen to solve many challenges including installation, maintenance, quality of service, size and weight. Benchmarking of success elsewhere shows how the ambition now realistically extends to battery-free devices. How? The chapter therefore embraces a large number of forms of on-board energy harvesting for devices up to base stations, non-battery storage options emerging and use of simultaneous wireless information and power transfer SWIPT, ambient backscatter AmBC, crowd-detectable ZED, and more. See many 2024 research advances and SWOT appraisals in 45 pages.

In the recent pivoting of 6G attitudes it is realised that 0.3-1THz versions may be a bridge too far outdoors, but wireless optical transmission can be very impactful. We can also apply far more advanced material technologies. The actual materials science you may supply rather that the applications are the focus of 46-page Chapter 7, "6G enabling hardware technologies: metamaterials, transparent electronics, self-healing, self-cleaning, low-loss dielectrics, thermal materials, multifunctional structural electronics, massless energy". For example, massless energy is when energy storage and harvesting are performed by smart materials replacing windows and load-bearing structures without penalty in weight or size. Cooling is a huge issue nowadays and smart 6G designers will make 6G windows that also cool the building without moving parts. Eight SWOT appraisals assess these and other options.

The report then closes with the 30 pages of Chapter 8 critically appraising 14 small companies making exciting progress in this space and worth considering as your suppliers, partners or acquisitions.

Table of Contents

1. Executive summary and conclusions

  • 1.1. Purpose of this report and background
  • 1.2. Methodology of this analysis
  • 1.3. 29 Primary conclusions
    • 1.3.1. General
    • 1.3.2. 6G Phase One materials and hardware opportunities
    • 1.3.3. 6G Phase Two materials and hardware opportunities
  • 1.4. Progress from 1G-6G rollouts 1980-2045
  • 1.5. Summary of the two 6G phases
  • 1.6. Infograms: Planned 6G hardware deployment by land, water, air
  • 1.7. Likely 6G hardware landscape with examples of manufacturers
  • 1.8. Infograms: Evolution of 6G base station hardware
  • 1.9. Reconfigurable Intelligent Surfaces: research analysis, SWOT appraisals
  • 1.10. 6G hardware strong trend from components-in-a-box to smart materials
  • 1.11. 6G infrastructure and client devices trending to zero energy devices ZED
  • 1.12. Progress to 6G thermal interface materials and other cooling
  • 1.13. Popularity of carbons and compounds in 436 examples of recent 6G research
  • 1.14. Roadmaps of 6G materials and hardware 2025-2045
  • 1.15. Market forecasts for 6G materials and hardware to 2045 in 15 lines and graphs
    • 1.15.1. Market for 6G vs 5G base stations units millions yearly 2024-2045
    • 1.15.2. Market for 6G base stations market value $bn if successful 2025-2045
    • 1.15.3. 6G RIS value market $ billion: active and three semi-passive categories 2029-2045: table, graphs
    • 1.15.4. 6G fully passive metamaterial reflect-array market $ billion 2029-2045
    • 1.15.5. 6G added value materials value market by segment: Thermal, Low Loss, Other 2028-2045
    • 1.15.6. Smartphone billion units sold globally 2023-2045 if 6G is successful

2. 6G definitions, rollout phases, challenges prioritised, initiatives, hardware suppiers

  • 2.1. Overview
  • 2.2. Some objectives of 6G mostly not achievable at start
  • 2.3. Hardware impact of 6G non-hardware developments
  • 2.4. Incremental 6G launch then a disruptive, very difficult second phase
  • 2.5. New needs, 5G inadequacies, massive overlap 4G, 5G, 6G
  • 2.6. Objectives and perceptions of those most heavily investing in 6G
  • 2.7. Essential frequencies for 6G success and some hardware resulting
  • 2.8. Primary wireless transmission tools of 6G compared by frequency
  • 2.9. 6G hardware requirements can only be met with a strong trend from components-in-a-box to smart materials

3. 6G base stations reinvented, 6G drones, 6G satcoms

  • 3.1. Overview
  • 3.2. Primary 6G systems objectives with major hardware opportunities starred
  • 3.3. Terrestrial 6G base station hardware evolution
    • 3.3.1. 6G needs UM-MIMO to meet its promises
    • 3.3.2. The escalating power problem
    • 3.3.3. Infogram: Evolution of 6G base station hardware
    • 3.3.4. RIS-enabled, self-sufficient ultra-massive 6G UM-MIMO base station design
    • 3.3.5. Semiconductors needed
    • 3.3.6. RIS as small cell base station
    • 3.3.7. RIS-enabled massive MIMO
    • 3.3.8. Other MIMO large area RIS advances
    • 3.3.9. RIS for massive MIMO base station: Tsinghua University, Emerson
    • 3.3.10. Planned ELAA
  • 3.4. Satellites serving 6G
    • 3.4.1. Introduction
    • 3.4.2. RIS-empowered LEO satellite networks for 6G
  • 3.5. UAV drones serving 6G
    • 3.5.1. 6G aiding drone services and drones as part of 6G
    • 3.5.2. Large stratospheric HAPS as part of 6G
    • 3.5.3. Aerial 6G base station research
  • 3.6. Research in 2024 related to aerial 6G: 82 other papers
  • 3.7. 2023 research examples

4. Reconfigurable intelligent surfaces RIS and metamaterial reflect-arrays

  • 4.1. Definition, design, deployment with six infograms
    • 4.1.1. Definition and basics
    • 4.1.2. Six formats of communications metamaterial with examples
    • 4.1.3. Infogram: 6G RIS and other metamaterial in action: the dream
    • 4.1.4. Infogram: Ubiquitous 6G and complementary systems using RIS with references to recent research
    • 4.1.5. Ultimate objectives: self-powered, self-adaptive, invisible, all-round coverage, multifunctional smart material
    • 4.1.6. Too few hardware experiments for 6G RIS. 5G RIS design largely irrelevant
  • 4.2. Choosing complementary 6G frequencies
    • 4.2.1. Frequency choices and range achievements
    • 4.2.2. How attenuation in air by frequency and type 0.1THz to visible is complementary
  • 4.3. Infogram: The Terahertz Gap demands 6G RIS tuning materials and devices different from 5G
  • 4.4. RIS design and deployment 2025-2045
    • 4.4.1. Overview
    • 4.4.2. Key issues, operational principles, control by total RIS panel, tiles or elements
    • 4.4.3. Active intelligent RIS and their integration with passive RIS
    • 4.4.4. RIS-enabled SWIPT, STIIPT, AmBC, STAR-RIS
  • 4.5. Materials and devices for RIS tuning
    • 4.5.1. Infogram: RIS specificity, tuning criteria, physical principles, activation options
    • 4.5.2. 6G RIS tuning material benefits and challenges compared
    • 4.5.3. Analysis of 225 recent research papers and company activity
    • 4.5.4. Comparison of RIS tuning materials winning in 6G RIS-related research
  • 4.6. Manufacturing technology for 6G RIS and reflect-arrays
    • 4.6.1. Manufacture overview
    • 4.6.2. Resolution requirements and printing options for required metamaterials and their tuning materials
    • 4.6.3. Near-infrared and visible light ORIS and allied device design and manufacture
  • 4.7. RIS cost analysis
    • 4.7.1. Outdoor semi-passive and active RIS cost analysis at high areas of deployment
    • 4.7.2. Indoor semi-passive RIS cost analysis at volume
  • 4.8. 6G RIS SWOT appraisal

5. Invisibility solves acceptance and performance problems: Transparent passive reflect-arrays and all-round STAR RIS

  • 5.1. Overview
  • 5.2. Situation with transparent 6G transmission-handling surfaces in 2024-5
  • 5.3. Options for 6G beam-handling surfaces that can be visually transparent or opaque
  • 5.4. Transparent IRS and RIS can go almost anywhere
  • 5.5. Transparent passive intelligent reflecting surface IRS: Meta Nanoweb-R Sekisui
  • 5.6. Optically transparent and transmissive mmWave and THz RIS
    • 5.6.1. Overview
    • 5.6.2. NTT DOCOMO transparent RIS
    • 5.6.3. Cornell University RIS prototype and later work elsewhere
  • 5.7. Simultaneous transmissive and reflective STAR RIS
    • 5.7.1. Overview
    • 5.7.2. STAR-RIS optimisation
    • 5.7.3. STAR-RIS-ISAC integrated sensing and communication system
    • 5.7.4. TAIS Transparent Amplifying Intelligent Surface and SWIPT active STAR-RIS
    • 5.7.5. STAR-RIS with energy harvesting and adaptive power
    • 5.7.6. Potential STAR-RIS applications including MIMO and security
  • 5.8. STAR RIS SWOT appraisal
  • 5.9. Other research papers analysed from 2024
  • 5.10. Other research papers analysed from 2023

6. Zero energy devices ZED in 6G infrastructure and as 6G client devices

  • 6.1. Overview
    • 6.1.1. Scope
    • 6.1.2. Key enabling technologies of ZED communication devices
  • 6.2. Context of ZED
    • 6.2.1. Overlapping and adjacent technologies and examples of long-life energy independence
    • 6.2.2. Reasons for the trend to ZED
    • 6.2.3. Electrical autonomy examples that last for the life of their host equipment
    • 6.2.4. Examples of ZED successes 1980-2035
  • 6.3. 6G becoming zero-energy, often battery-free
    • 6.3.1. Situation with primary 6G infrastructure and client devices
    • 6.3.2. Eight options that can be combined for 6G ZED
    • 6.3.3. Increasing electricity consumption of electronics and 6G ZED harvesting strategies
    • 6.3.4. The place of ZED in 6G investment focus
  • 6.4. Primary candidate enabling technologies for battery-free 6G ZED
    • 6.4.1. 13 on-board harvesting technologies compared and prioritised for 6G ZED
    • 6.4.2. Infogram: Maturity of primary ZED enabling technologies in 2025
    • 6.4.3. 6G ZED enabling materials research ranking
  • 6.5. Analysis of specific 6G ZED design approaches
    • 6.5.1. Targets and prioritisation
    • 6.5.2. Device architecture
    • 6.5.3. Energy harvesting system improvement strategies
    • 6.5.4. Device battery-free storage: supercapacitors, LIC, massless energy
    • 6.5.5. Example: IOT ZED enabled by LIC hybrid supercapacitor
  • 6.5.6."Massless energy" for ZED: structural supercapacitors without increase in size or weight
    • 6.5.7. SWOT appraisal of battery-less storage technologies for ZED
  • 6.6. Ambient backscatter communications AmBC, crowd detectable CD-ZED, SWIPT
  • 6.7. SWOT appraisal of circuits and infrastructure that eliminate storage
  • 6.8. Further research from 2024

7. 6G enabling hardware technologies: metamaterials, transparent electronics, self-healing, self-cleaning, low-loss dielectrics, thermal materials, multifunctional structural electronics, massless energy

  • 7.1. Overview
    • 7.1.1. 6G needs incremental then disruptive change in devices and materials
    • 7.1.2. Infogram 6G electronics megatrend: components-in-a-box to thin film technology to smart materials
  • 7.2 6G transparent electronics
    • 7.2.1. Manufacture and applications of transparent electronics generally
    • 7.2.2. Electrically-functionalised transparent glass for 6G Communications OTA, TIRS
  • 7.3. Self-cleaning materials for 6G
  • 7.4. Self-healing materials for 6G
  • 7.5. Metamaterials for 6G
    • 7.5.1. Overview and potential uses
    • 7.5.2. The place of metamaterials in 5G and 6G
    • 7.5.3. Hypersurfaces, bifunctional metasurfaces including RIS windows that cool
    • 7.5.4. Commercial, operational, theoretical, structural options compared 4G to 6G
    • 7.5.5. The meta-atom and patterning options
    • 7.5.6. Tunable metamaterials for 6G going beyond RIS
    • 7.5.8. SWOT appraisal for metamaterials and metasurfaces
  • 7.6. Next technologies for solid-state cooling 6G infrastructure and devices
    • 7.6.1. Overview
    • 7.6.2. Progress to 6G thermal interface materials and other cooling by thermal conduction
    • 7.6.3. SWOT appraisal for silicone thermal conduction materials if used for 6G
    • 7.6.4. 2024 research announcing new multifunctional composites providing cooling potentially 6G
    • 7.6.5. Infograms: The cooling toolkit
    • 7.6.6. Research pipeline of solid-state cooling by topic vs technology readiness level
    • 7.6.7. The most needed compounds for future solid-state cooling from 211 recent researches
    • 7.6.8. Eight SWOT appraisals: solid-state cooling in general and seven emerging versions
  • 7.7. 6G low loss materials infograms and SWOT: choices narrow as frequency increases

8. Some small companies involved in 6G device manufacturing technologies

  • 8.1. AALTO HAPS UK, Germany, France
  • 8.2. Echodyne USA
  • 8.3. Evolv Technology USA
  • 8.4. Fractal Antenna Systems USA
  • 8.5. Greenerwave France
  • 8.6. iQLP USA
  • 8.7. Kymeta Corp. USA
  • 8.8. LATYS Intelligence Canada
  • 8.9. Meta Materials Canada
  • 8.10. Metacept Systems USA
  • 8.11. Metawave USA
  • 8.12. Pivotal Commware USA
  • 8.13. SensorMetrix USA
  • 8.14. Teraview USA