表紙
市場調査レポート

エクソスケルトン (外骨格型) ウェアラブルロボットの世界市場:市場シェア・市場戦略・市場予測 (2016-2021年)

Wearable Robots, Exoskeleton: Market Shares, Strategies, and Forecasts, Worldwide, 2016-2021.

発行 WinterGreen Research, Inc. 商品コード 344196
出版日 ページ情報 英文 453 Pages
即納可能
価格
本日の銀行送金レート: 1USD=106.71円で換算しております。
Back to Top
エクソスケルトン (外骨格型) ウェアラブルロボットの世界市場:市場シェア・市場戦略・市場予測 (2016-2021年) Wearable Robots, Exoskeleton: Market Shares, Strategies, and Forecasts, Worldwide, 2016-2021.
出版日: 2016年05月05日 ページ情報: 英文 453 Pages
概要

世界のエクソスケルトン (外骨格型) ウェアラブルロボットの市場は2015年の3650万ドルから、2021年には21億ドルの規模に成長すると予測されています。

当レポートでは、世界のエクソスケルトン (外骨格型) ウェアラブルロボットの市場を調査し、市場および製品の定義、市場成長への影響因子の分析、各種用途とその動向、地域別の動向と関連政策、主要製品の概要、技術動向、出荷台数・出荷額の推移と予測、主要企業のプロファイルなどをまとめています。

エグゼクティブサマリー

第1章 エクソスケルトンウェアラブルロボット:市場概要・市場力学

  • 市場の定義
  • 市場成長促進要因
  • 産業用アクティブ&パッシブウェアラブルエクソスケルトン
  • 人体能力の増強
  • 安全基準
  • リハビリテーション
  • 外傷性脳損傷復帰プログラム
  • 歩行訓練用ロボット市場におけるエクソスケルトン研究
  • 自動化プロセスに基づくリハビリ用ロボットデバイス
  • エクソスケルトンロボットが患者のリハビリ達成度を増強
  • 在宅医療用エクソスケルトン
  • 業界のエクソスケルトン

第2章 市場シェア・将来予測

  • 市場成長促進要因
  • 市場シェア
  • 商用・軍事用エクソスケルトンウェアラブルロボットの市場予測
  • 商用エクソスケルトンウェアラブルロボットの市場区分
    • 米国インフラ:架橋
    • 航空宇宙
    • 法執行
    • 造船
    • 救命・損傷予防
  • 産業市場
  • 医療市場
  • 地域市場
    • 米国
    • 欧州
    • 日本
    • 韓国

第3章 エクソスケルトンウェアラブルロボット製品

  • Ekso
  • Rewalk
  • Berkeley Robotics Laboratory
  • Bionic
  • Reha-Stim Harness
  • CAR設計によるエクソスケルトン
  • Sarcos
  • Cyberdyne
  • Berkley Robotics Laboratory
  • Rex Bionics
  • US Bionics
  • Noonee
  • Hocoma
  • AlterG: PK100 PowerKnee
  • Catholic University of America:腕療法ロボット ARMin III
  • 米国特殊作戦軍のウェアラブルエクソスケルトン
  • Revision Military:キネティック操作スーツ
  • HEXORR:エクソスケルトン手指リハビリテーションロボット
  • 本田技研工業
  • Revision Military:エクソスケルトン統合兵士保護システム
  • Mira Lopes歩行リハビリテーションデバイス
  • China North Industries Group Corporation (NORINCO)
  • ロシア軍:2020年までに戦闘用エクソスケルトンを計画
  • 英国のエクソスケルトン
  • テキサス大 (オースチン) : 上体のリハビリ用エクソスケルトンロボット
  • Daewooが韓国の造船労働者用エクソスケルトンロボットの試験を開始
  • パナソニック

第4章 エクソスケルトン技術

  • エクソスケルトン産業用ロボット技術基準
  • NCMS
  • エクソスケルトンの利用環境
  • エクソスケルトン技術
  • ロボティックアクチュエーターエネルギー
  • ロボットによるリスク低減
  • エクソスケルトンロボットのマルチファクターソリューション
  • 認知科学
  • 人工筋肉
  • 規格
  • 法規制

第5章 エクソスケルトン企業プロファイル

  • AlterG
  • Bionik Laboratories / Interactive Motion Technologies (IMT)
  • Catholic University of America Arm Therapy Robot ARMin III
  • Cyberdyne
  • Ekso Bionics
  • Fanuc
  • Focal Meditech
  • HEXORR: Hand EXOskeleton Rehabilitation Robot
  • 本田技研工業
  • Interaxon
  • KDM
  • Lockheed Martin
  • Lopes Gait Rehabilitation Device
  • MRISAR
  • Myomo
  • Noonee
  • Orthocare Innovations
  • Parker Hannifin
  • Reha Technology
  • Revision Military
  • ReWalk Robotics
  • RexBionics
  • Robotdalen
  • Rostec
  • RU Robots
  • Sarcos
  • Shepherd Center
  • SOCOM
  • Trek Aerospace
  • University of Twente
  • United Instrument Manufacturing Corporation
  • その他

図表

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次
Product Code: SH26731914

Wearable Robots, Exoskeletons leverage better technology, they support high quality, lightweight materials and long life batteries. Wearable robots, industrial exoskeletons are used for permitting workers to lift 250 pounds and not get hurt while lifting, this is as close to superhuman powers as the comic books have imagined. The industrial exoskeletons are used to assist with weight lifting for workers while being as easy to use as getting dressed in the morning: Designs with multiple useful features are available. The study has 454 pages and 164 tables and figures.

Industrial workers and warfighters can perform at a higher level when wearing an exoskeleton. Exoskeletons can enable aerospace workers to work more efficiently when building or repairing airplanes. Industrial robots are very effective for ship building where heavy lifting can injure workers.

Exoskeleton devices have the potential to be adapted further for expanded use in every aspect of industry. Workers benefit from powered human augmentation technology because they can offload some of the dangerous part of lifting and supporting heavy tools. Robots assist wearers with lifting activities, improving the way that a job is performed and decreasing the quantity of disability. For this reason it is anticipated that industrial exoskeleton robots will have very rapid adoption once they are fully tested and proven to work effectively for a particular task.

Exoskeletons are being developed in the U.S., China, Korea, Japan, and Europe. They are generally intended for logistical and engineering purposes, due to their short range and short battery life. Most exoskeletons can operate independently for several hours. Chinese manufacturers express hope that upgrades to exoskeletons extending the battery life could make them suitable for frontline infantry in difficult environments, including mountainous terrain.

Exoskeletons are capable of transferring the weight of heavy loads to the ground through powered legs without loss of human mobility. This can increase the distance that soldiers can cover in a day, or increase the load that they can carry though difficult terrain. Exoskeletons can significantly reduce operator fatigue and exposure to injury.

Industrial robots help with lifting, walking, and sitting Exoskeletons can be used to access efficiency of movement and improve efficiency.

Industrial workers and warfighters can perform at a higher level when wearing an exoskeleton. Exoskeletons can enable aerospace workers to work more efficiently when building or repairing airplanes. Industrial robots are very effective for ship building where heavy lifting can injure workers. Medical and military uses have driven initial exoskeleton development to date. New market opportunities of building and repair in the infrastructure, aerospace, and shipping industries offer large opportunity for growth of the exoskeleton markets.

Wearable robots, exoskeletons units are evolving additional functionality rapidly. Wearable robots functionality is used to assist to personal mobility via exoskeleton robots. They promote upright walking and relearning of lost functions. Exoskeletons are helping older people move after a stroke. Exoskeleton s deliver higher quality rehabilitation, provide the base for a growth strategy for clinical facilities.

Exoskeletons support occupational heavy lifting. Exoskeletons are poised to play a significant role in warehouse management, ship building, and manufacturing. Usefulness in occupational markets is being established. Emerging markets promise to have dramatic and rapid growth.

Industrial workers and warfighters can perform at a higher level when wearing an exoskeleton. Exoskeletons can enable paraplegics to walk again. Devices have the potential to be adapted further for expanded use in healthcare and industry. Elderly people benefit from powered human augmentation technology. Robots assist wearers with walking and lifting activities, improving the health and quality of life for aging populations.

Exoskeletons are being developed in the U.S., China, Korea, Japan, and Europe. They are useful in medical markets. They are generally intended for logistical and engineering purposes, due to their short range and short battery life. Most exoskeletons can operate independently for several hours. Chinese manufacturers express hope that upgrades to exoskeletons extending the battery life could make them suitable for frontline infantry in difficult environments, including mountainous terrain.

In the able-bodied field, Ekso, Lockheed Martin, Sarcos / Raytheon, BAE Systems, Panasonic, Honda, Daewoo, Noonee, Revision Military, and Cyberdyne are each developing some form of exoskeleton for military and industrial applications. The field of robotic exoskeleton technology remains in its infancy.

Robotics has tremendous ability to support work tasks and reduce disability. Disability treatment with sophisticated exoskeletons is anticipated to providing better outcomes for patients with paralysis due to traumatic injury. With the use of exoskeletons, patient recovery of function is subtle or non existent, but getting patients able to walk and move around is of substantial benefit. People using exoskeleton robots are able to make continued progress in regaining functionality even years after an injury.

Wearable Robots, Exoskeletons at $36.5 million in 2015 are anticipated to reach $2.1 billion by 2021. All the measurable revenue in 2015 is from medical exoskeletons. New technology from a range of vendors provides multiple designs that actually work and will be on the market soon. This bodes well for market development.

Table of Contents

WEARABLE ROBOT EXOSKELETON EXECUTIVE SUMMARY

  • Wearable Robot Exoskeleton Market Driving Forces
  • Exoskeleton Market Driving Forces
  • Industrial Exoskeleton Devices Positioned to Serve Commercial Wearable Purposes
  • Transition from Military Markets to Commercial Exoskeleton Markets
  • Wearable Exoskeleton Market Shares
  • Wearable Robot, Exoskeleton Market Forecasts

1. WEARABLE ROBOT EXOSKELETON MARKET DESCRIPTION AND MARKET DYNAMICS

  • 1.1. Wearable Robot Exoskeleton Market Definition
  • 1.2. Market Growth Drivers For Exoskeletons
  • 1.3. Industrial Active And Passive Wearable Exoskeletons
  • 1.4. Human Augmentation
    • 1.4.1. Exoskeleton Technology
  • 1.5. Safety Standards For Exoskeletons In Industry

2. EXOSKELETON MARKET SHARES AND MARKET FORECASTS

  • 2.1. Exoskeleton Market Driving Forces
    • 2.1.1. Industrial Exoskeleton Devices Positioned to Serve Commercial Wearable Purposes
    • 2.1.2. Military Exoskeleton Markets Shift
  • 2.2. Wearable Exoskeleton Market Shares
    • 2.2.1. Able-Bodied Exoskeletons
    • 2.2.2. UK Armed Police Super-Light Graphene Vests From US Army
    • 2.2.3. Honda Builds Unique Transportation Exoskeleton Device Market
  • 2.3. Wearable Commercial and Military Exoskeleton Market Forecasts
    • 2.3.1. Wearable Commercial Exoskeleton Market Forecasts
  • 2.4. Commercial Exoskeleton Market Segments
    • 2.4.1. US Infrastructure: Bridges
    • 2.4.2. Aerospace
    • 2.4.3. Law Enforcement
    • 2.4.4. Exoskeletons Change The Face Of Shipbuilding
    • 2.4.5. Industrial Wearable Robot Shipyard Exoskeleton
    • 2.4.6. Industrial Wearable Robots, Exoskeleton Robot Market Segments
    • 2.4.7. Save Lives And Prevent Injury
  • 2.5. Robot Industrial Markets
  • 2.6. Medical Wearable Robot Exoskeleton, Paraplegic, Multiple Sclerosis, Stroke, And Cerebral Palsy Market Segments
    • 2.6.1. Ekso Bionics Robotic Suit Helps Paralyzed Man Walk Again
    • 2.6.2. Medical Market for Wearable Robotic Exoskeleton Devices
  • 2.7. Exoskeleton Robots Regional Analysis
    • 2.7.1. US
    • 2.7.2. Europe
    • 2.7.3. Japan
    • 2.7.4. Korea

3. WEARABLE ROBOT EXOSKELETON PRODUCTS

  • 3.1. Ekso
    • 3.1.1. Ekso Exoskeletons and Body Armor for U.S. Special Operations Command (SOCOM)
    • 3.1.2. Ekso TALOS Suit
    • 3.1.3. Ekso SOCOM Collaborative Design Of The Project
    • 3.1.4. Ekso Quiet Power Sources
    • 3.1.5. Esko Technology
    • 3.1.6. Ekso Bionics
    • 3.1.7. Esko Exoskeletons
    • 3.1.8. Ekso Builds Muscle Memory
    • 3.1.9. Ekso Bionics Wearable Bionic Suit
    • 3.1.10. Ekso Gait Training Exoskeleton Uses
    • 3.1.11. Ekso Bionics Rehabilitation
    • 3.1.12. Ekso Bionics Robotic Suit Helps Paralyzed Man Walk Again
  • 3.2. Rewalk
    • 3.2.1. Rewalk-Robotics-Personal Support
    • 3.3. Lockheed Martin Exoskeleton Design
    • 3.3.1. Lockheed Martin HULC® with Lift Assist Device Exoskeletons
    • 3.3.2. Lockheed Martin Military Exoskeleton Human Universal Load Carrier HULC) with Lift Assist Device
    • 3.3.3. Lockheed Martin Fortis
    • 3.3.4. Collaboration Between National Center for Manufacturing Sciences, Lockheed Martin, and BAE Systems
    • 3.3.5. Lockheed Martin FORTIS Exoskeleton
  • 3.4. Berkeley Robotics Laboratory Exoskeletons
    • 3.4.1. Berkeley Robotics Austin
    • 3.4.2. Berkley Robotics and Human Engineering Laboratory ExoHiker
    • 3.4.3. Berkley Robotics and Human Engineering Laboratory ExoClimber
    • 3.4.4. Berkeley Lower Extremity Exoskeleton (BLEEX)
    • 3.4.5. Berkley Robotics and Human Engineering Laboratory Exoskeleton
    • 3.4.6. Berkley Robotics and Human Engineering Laboratory
  • 3.5. Bionic
  • 3.6. Reha-Stim Harness
    • 3.6.1. Reha-Stim Bi-Manu-Track Hand and Wrist
  • 3.7. Exoskeleton Designed by CAR
  • 3.8. Sarcos
    • 3.8.1. Sarcos Guardian XO
    • 3.8.2. Sarcos Robot-as-a-Service (RaaS) Model
    • 3.8.3. Sarcos Raytheon XOS 2: Second Generation Exoskeleton
  • 3.9. Cyberdyne
    • 3.9.1. Cyberdyne HAL
    • 3.9.2. Applications of Cyberdyne HAL
  • 3.10. Berkley Robotics Laboratory Exoskeletons
    • 3.10.1. Berkley Robotics and Human Engineering Laboratory ExoHiker
    • 3.10.2. Berkley Robotics and Human Engineering Laboratory ExoClimber
    • 3.10.3. Berkeley Lower Extremity Exoskeleton (BLEEX)
    • 3.10.4. Berkley Robotics and Human Engineering Laboratory Exoskeleton
  • 3.11. Rex Bionics
  • 3.12. US Bionics
  • 3.13. Noonee
    • 3.13.1. Noonee Exoskeletons Chairless Chair
  • 3.14. Hocoma
  • 3.15. AlterG: PK100 PowerKnee
    • 3.15.1. AlterG Bionic Leg
    • 3.15.2. Alterg / Tibion Bionic Leg
    • 3.15.3. AlterG M300
  • 3.16. Catholic University of America Arm Therapy Robot ARMin III
  • 3.17. U.S. Special Operations Command SOCOM Wearable Exoskeleton
    • 3.17.1. DARPA Funded Exoskeleton
    • 3.17.2. Darpa Secure, Smartphone Device
    • 3.17.3. Trek Aerospace Springtail/XFV Exo-skeletor Flying Vehicle
  • 3.18. Revision Military Kinetic Operations Suit
  • 3.19. HEXORR: Hand EXOskeleton Rehabilitation Robot
  • 3.20. Honda
    • 3.20.1. Honda Walk Assist
    • 3.20.2. Honda Prototype Stride Management Motorized Assist Device
    • 3.20.3. Honda Builds Unique Transportation Exoskeleton Device Market
  • 3.21. Revision Military - Exoskeleton Integrated Soldier Protection System
    • 3.21.1. Revision Military Armored Exoskeleton
  • 3.22. Mira Lopes Gait Rehabilitation Device
    • 3.22.1. Prototype of University of Twente LOPES with 8 Actuated Degrees of Freedom 201
  • 3.23. China North Industries Group Corporation (NORINCO)
    • 3.23.1. Chinese Exoskeletons for Combat
  • 3.24. Russian Army: Combat Exoskeletons By 2020
  • 3.25. UK Exoskeleton
    • 3.25.1. UK Exoskeleton Law Enforcement
    • 3.25.2. UK Armed Police Super-Light Graphene Vests
    • 3.25.3. Brain-Machine Interface (BMI) Based Robotic Exoskeleton
  • 3.26. University of Texas in Austin: Robotic Upper-Body Rehab Exoskeleton
  • 3.27. Daewoo Begins Testing Robotic Exoskeletons for Shipyard Workers in South Korea
    • 3.27.1. Daewoo Robotic Suit Gives Shipyard Workers Super Strength
    • 3.27.2. Daewoo Shipbuilding & Marine Engineering
    • 3.27.3. Daewoo Shipbuilding & Marine Engineering (DSME) Wearable Robot Tank Insulation Boxes of LNG Carriers
    • 3.27.4. Daewoo
  • 3.28. Panasonic
    • 3.28.1. Panasonic Activelink

4. EXOSKELETON TECHNOLOGY

  • 4.1. Industrial Robot Exoskeleton Standards
  • 4.2. NCMS
  • 4.3. Exoskeleton Standards Use Environment
    • 4.3.1. Sarcos Guardian XOS Industrial Applications
    • 4.3.2. UK Armed Police Super-Light Graphene Vests From US Army
    • 4.3.3. Daewoo Wearable Robot Is Made Of Carbon, Aluminum Alloy And Steel
    • 4.3.4. Cyberdyne HAL for Labor Support and HAL for Care Support Meet ISO 13482 Standard
  • 4.4. Exoskeleton Technology
  • 4.5. Robotic Actuator Energy
    • 4.5.1. Elastic Actuators
    • 4.5.2. General Atomics Hybrid-Electric Power Unit
  • 4.6. Robotic Risk Mitigation
  • 4.7. Exoskeleton Multi-Factor Solutions
    • 4.7.1. Biometallic Materials Titanium (Ti) and its Alloys
  • 4.8. Cognitive Science
  • 4.9. Artificial Muscle
  • 4.10. Standards
  • 4.11. Regulations

5. EXOSKELETON COMPANY PROFILES

  • 5.1. AlterG
    • 5.1.1. AlterG: PK100 PowerKnee
    • 5.1.2. AlterG Bionic Leg
    • 5.1.3. AlterG M300 Customers
    • 5.1.4. AlterG M300
    • 5.1.5. AlterG™ Acquires Tibion Bionic Leg
  • 5.2. Bionik Laboratories / Interactive Motion Technologies (IMT)
    • 5.2.1. Bionik Laboratories Acquires Interactive Motion Technologies, Inc. (IMT) 273
    • 5.2.2. BioNik / InMotion Robots for NHS study in the UK
    • 5.2.3. Bionik / Interactive Motion Technologies (IMT) InMotion Robots
    • 5.2.4. IMT Anklebot Evidence-Based Neurorehabilitation Technology
  • 5.3. Catholic University of America Arm Therapy Robot ARMin III
    • 5.3.1. Catholic University of America Armin Iii Project Description:
    • 5.3.2. Catholic University of America HandSOME Hand Spring Operated Movement Enhancer
  • 5.4. China North Industries Group Corporation (NORINCO)
    • 5.4.1. China North Industries Corporation (NORINCO) Revenue
  • 5.5. Cyberdyne
    • 5.5.1. Cyberdyne Wants to Offer Robot Suit HAL in the U.S.
    • 5.5.2. Robot Exoskeletons At Japan's Airports
    • 5.5.3. To Offset Aging Workforce, Japan Turns to Robot-Worked Airports
  • 5.6. Ekso Bionics
    • 5.6.1. Esko Employees
    • 5.6.2. Ekso Rehabilitation Robotics
    • 5.6.3. Ekso GT
    • 5.6.4. Ekso Fourth Quarter And Full Year 2015 Financial Results
    • 5.6.5. Ekso Bionics Seeks To Lead The Technological Revolutions
    • 5.6.6. Ekso Bionics Regional Presence
    • 5.6.7. Ekso Bionics Customers
    • 5.6.8. Ekso Able-Bodied Industrial Applications
    • 5.6.9. Ekso Rehabilitation Robotics
  • 5.7. Fanuc
    • 5.7.1. Fanuc Revenue
    • 5.7.2. Fanuc - Industrial Robot Automation Systems and Robodrill Machine Centers 322
  • 5.8. Focal Meditech
    • 5.8.1. Focal Meditech BV Collaborating Partners:
  • 5.9. HEXORR: Hand EXOskeleton Rehabilitation Robot
  • 5.10. Honda Motor
    • 5.10.1. Honda Motor Revenue
    • 5.10.2. Honda Automobile Business
    • 5.10.3. Honda Walk Assist
    • 5.10.4. Honda Prototype Stride Management Motorized Assist Device
    • 5.10.5. Honda Builds Unique Transportation Exoskeleton Device Market
  • 5.11. Interaxon
  • 5.12. KDM
  • 5.13. Lockheed Martin
    • 5.13.1. Lockheed Martin First Quarter 2016 and 2015 Revenue
  • 5.14. Lopes Gait Rehabilitation Device
  • 5.15. MRISAR
  • 5.16. Myomo
    • 5.16.1. Myomo mPower 1000
  • 5.17. Noonee
  • 5.18. Orthocare Innovations
    • 5.18.1. Orthocare Innovations Adaptive Systems™ For Advanced O&P Solutions. 349
    • 5.18.2. Orthocare Innovations Company Highlights
  • 5.19. Parker Hannifin
    • 5.19.1. Parker Revenue for Fiscal 2016 and 2015 thrid Quarter Sales
    • 5.19.2. Parker Hannifin Segment Results Fiscal 2015 Second Quarter
    • 5.19.3. Parker and Freedom Innovations' Partnership
    • 5.19.4. Parker Hannifin Indego License
  • 5.20. Reha Technology
  • 5.21. Revision Military
  • 5.22. ReWalk Robotics
    • 5.22.1. ReWalk Revenue
    • 5.22.2. ReWalk First Mover Advantage
    • 5.22.3. ReWalk Strategic Alliance with Yaskawa Electric Corporation
    • 5.22.4. ReWalk Scalable Manufacturing Capability
    • 5.22.5. ReWalk Leverages Core Technology Platforms
  • 5.23. RexBionics
  • 5.24. Robotdalen
  • 5.25. Rostec
    • 5.25.1. Rostec Lines Of Business
    • 5.25.2. Rostec Corporation Objectives
  • 5.26. RU Robots
  • 5.27. Sarcos
    • 5.27.1. Sarcos LC Acquires Raytheon Sarcos Unit
    • 5.27.2. Sarcos LC Acquires Raytheon Sarcos Unit of Raytheon
  • 5.28. Shepherd Center
  • 5.29. Socom (U.S. Special Operations Command)
  • 5.30. Trek Aerospace
  • 5.31. University of Twente
  • 5.32. United Instrument Manufacturing Corporation
  • 5.33. Other Human Muscle Robotic Companies
    • 5.33.1. Additional Rehabilitation Robots
    • 5.33.2. Selected Rehabilitation Equipment Companies
    • 5.33.3. Spinal Cord Treatment Centers in the US

ABOUT THE COMPANY

List of Tables and Figures

  • Table ES-1: Industrial Exoskeleton Robot Market Driving Forces
  • Figure ES-2: Wearable Robot Exoskeleton Market Shares, Dollars, Worldwide, 2015
  • Figure ES-3: Wearable Robot, Exoskeleton Robot Market Shipments Forecasts Dollars, Worldwide, 2015-2021
  • Table 1-1: Industrial Wearable Exoskeletons Specific Issues
  • Table 2-1: Industrial Exoskeleton Robot Market Driving Forces
  • Figure 2-2: Wearable Robot Exoskeleton Market Shares, Dollars, Worldwide, 2015
  • Table 2-3: Wearable Robot Exoskeleton Market Shares, Dollars, Worldwide, 2015
  • Figure 2-4: Wearable Robot, Exoskeleton Robot Market Shipments Forecasts Dollars, Worldwide, 2015-2021
  • Table 2-5: Exoskeleton Wearable Robots: Dollars Shipments, Worldwide, 2015-2021
  • Table 2-6: Wearable Robots, Exoskeleton Robot Market Segments, Medical and Industrial, Dollars, Worldwide, 2015-2021
  • Table 2-7: Exoskeleton Robots: Units Shipments, Worldwide, 2015-2021
  • Figure 2-8: Lockheed Martin Exoskeleton Transfers Load Weight
  • Figure 2-9: Lockheed Martin Fortis Aerospace
  • Figure 2-10: Lockheed Martin Fortis Handtools
  • Figure 2-11: Daewoo Robotic Exoskeletons for Shipyard Workers in South Korea
  • Table 2-12: Wearable Robots, Exoskeleton Robot Market Segments, Industrial, Ship Building, Construction, Warehouse, and Manufacturing, Dollars, Worldwide, 2015-2021
  • Figure 2-13:
  • Table 2-14: Robot Market Segments, Industrial, Warehouse Logistics, Cargo Unloading, Military, Surgical, Medical, Rehabilitation, Agricultural, Cleaning, Drones, Market Forecasts 2015 to 2020
  • Table 2-15: Wearable Robots, Exoskeleton Robot Market Segments, Medical, Quadriplegia, Multiple Sclerosis, Stroke and Cerebral Palsy, Dollars, Worldwide, 2015-2021
  • Table 2-16: Spinal Cord Injury Causes, Worldwide, 2014
  • Figure 2-17: Exoskeleton Robot Regional Market Segments, Dollars, 2015
  • Figure 2-18: Japanese Exoskeleton Self-Defense Forces
  • Figure 2-19: Daewoo Robotic Exoskeletons for Shipyard Workers in South Korea
  • Figure 3-1: Ekso Bionics
  • Figure 3-2:
  • Figure 3-3: Esko Technology
  • Figure 3-4: Ekso Bionics Gait Training
  • Figure 3-5: Ekso Bionics Gait Training Functions
  • Table 3-6: Ekso Gait Training Exoskeleton Functions
  • Table 3-7: Ekso Gait Training Exoskeleton Functions
  • Figure 3-8: Ekso Bionics Step Support System
  • Table 3-9: Ekso Bionics Operation Modes
  • Figure 3-10:
  • Figure 3-11: Ekso Bionics Bionic Suit
  • Figure 3-12: Rewalk-Robotics-Personal Support
  • Table 3-13: Lockheed Martin Human Universal Load Carrier (HULC) Features
  • Table 3-14: Lockheed Martin Human Universal Load Carrier (HULC) Specifications
  • Figure 3-15: Lockheed HULC Exoskeleton
  • Figure 3-16: US Navy Lockheed Martin Shipyard Exoskeleton
  • Figure 3-17: Lockheed HULC Lifting Device Exoskeleton
  • Figure 3-18: Lockheed Martin Fortis Exoskeleton Conforms to Different Body Types
  • Figure 3-19: Lockheed Martin Fortis Use in Aerospace Industry
  • Figure 3-20: Lockheed Martin Fortis
  • Figure 3-21: Lockheed Martin Fortis Exoskeleton
  • Figure 3-22: Lockheed Martin FORTIS Exoskeleton Welding
  • Figure 3-23: Lockheed Martin FORTIS Exoskeleton Supporting
  • Figure 3-24: Berkeley Robotics Austin
  • Figure 3-25: Berkley Robotics and Human Engineering Laboratory ExoHiker
  • Figure 3-26: Berkley Robotics and Human Engineering Laboratory ExoClimber
  • Table 3-27: Berkley Robotics and Human Engineering Laboratory Exoskeleton
  • Table 5-28: Berkley Robotics and Human Engineering Laboratory Research Work
  • Table 5-29: Berkley Robotics and Human Engineering Laboratory Research Work
  • Figure 3-30: Reha-Stim Bi-Manu-Track Hand and Wrist Rehabilitation Device
  • Figure 3-31: Reha-Stim Gait Trainer GT I Harness
  • Figure 3-32: Sarcos Exoskeleton Human Support
  • Figure 3-33: Sarcos XOS Exoframe
  • Figure 3-34: Sarcos Guardian XO Capabilities
  • Figure 3-35: Sarcos Guardian XOS
  • Table 3-36: Sarcos Guardian XOS Capabilities
  • Figure 3-37: Sarcos Robot-as-a-Service (RaaS) Model
  • Figure 3-38: Sarcos Exoskeleton Developed by Raytheon
  • Figure 3-39: Sarcos Raytheon XOS Exoskeleton
  • Figure 3-40: Raytheon XOS 2: Second Generation Exoskeleton
  • Figure 3-41: Applications of Cyberdyne HAL
  • Table 3-42: Applications of Cyberdyne HAL
  • Figure 3-43: Berkley Robotics and Human Engineering Laboratory ExoHiker
  • Figure 3-44: Berkley Robotics and Human Engineering Laboratory ExoClimber
  • Table 3-45: Berkley Robotics and Human Engineering Laboratory Exoskeleton
  • Figure 3-46: Rex Bionics Exoskeleton
  • Figure 3-47: Rex Bionics
  • Figure 3-48: Noonee Assembly Line Manufacturing Exoskeleton
  • Figure 3-49: AlterG: PK100 PowerKnee
  • Figure 3-50: AlterG Bionic Neurologic And Orthopedic Therapy Leg
  • Figure 3-51: Tibion Bionic Leg
  • Table 3-52: AlterG Anti-Gravity Treadmill Precise Unweighting Technology Patient Rehabilitation Functions
  • Figure 3-54: ARMin III Robot For Movement Therapy Following Stroke
  • Table 3-55: U.S. Special Operations Command Socom First-Generation TALOS Wearable Exoskeleton Suit
  • Figure 3-56: Trek Aerospace Springtail/XFV Exo-Skeletor Flying Vehicle
  • Table 3-57: HEXORR: Hand EXOskeleton Rehabilitation Robot Technology Benefits
  • Table 3-58: HEXORR: Hand EXOskeleton Rehabilitation Robot Technology Monitoring
  • Table 3-59: HEXORR: Hand EXOskeleton Rehabilitation Robot Treatment Benefits
  • Table 3-60: HEXORR: Hand EXOskeleton Rehabilitation Robot Technology Force and Motion Sensor Benefits
  • Figure 3-61: Honda Walk Assist
  • Figure 3-62: Honda Walk Assist
  • Figure 3-63: Honda Motors Prototype Stride Management Motorized Assist Device
  • Figure 3-64: Revision Military - Exoskeleton Integrated Soldier Protection Vision System
  • Figure 3-65: Revision Military - Exoskeleton Integrated Soldier Protection System
  • Figure 3-66: Prototype of University to Twente in the Netherlands LOPES with 8 actuated Degrees of Freedom by Means Of Series Elastic Actuation
  • Figure 3-67: Prototype of University to Twente in the Netherlands LOPES with 8 actuated Degrees of Freedom by Means Of Series Elastic Actuation
  • Figure 3-68: China North Industries Group Assisted Lifting
  • Figure 3-69: Chinese Future Exoskeleton Warrior
  • Table 3-70: Russian Army: Combat Exoskeleton Features
  • Figure 3-71: Russian Exoskeleton Prototype
  • Figure 3-72: UK Equipping police officers with technology
  • Figure 3-73: UK Police Officer Exoskeleton
  • Figure 3-74: UK Exoskeleton Provides Compelling Law Enforcement Presence
  • Figure 3-75: University of Texas in Austin Robotic Upper Arm Exoskeleton
  • Figure 3-76: Daewoo Robotic Exoskeletons for Shipyard Workers in South Korea
  • Figure 3-77: Daewoo Exoskeleton 28-Kilogram Frame Weight.
  • Figure 3-78: Daewoo Exoskeleton Lifting
  • Figure 3-79: Daewoo Shipbuilding Wearable Robot Box Carrying Applications
  • Figure 3-80: Daewoo Shipbuilding & Marine Engineering (DSME) Wearable Robot Tank Insulation
  • Figure 3-81: Daewoo Insulation Boxes Used To Line The Tanks of LNG Carriers
  • Figure 3-82: Daewoo Shipbuilding Wearable Robot Applications
  • Figure 3-83: US Navy Lockheed Martin Exoskeleton
  • Figure 3-84: Panasonic Consumer-Grade Robotic Exoskeleton Suit ActiveLink
  • Figure 3-85: Panasonic Activelink Industrial Exoskeleton
  • Table 4-1: Industrial Exoskeleton Standards Benefits
  • Table 4-2: Industrial Exoskeleton Standards Functions
  • Figure 4-3: Industrial Robot Exoskeleton Standards
  • Figure 4-4: Sarcos Guardian XO Capabilities
  • Figure 4-5: Sarcos Guardian XOS Work Augmentation
  • Table 4-6: Exoskeleton System Concerns Addressed During System Design
  • Table 4-7: Rehabilitation Robots Software Functions
  • Table 5-1: AlterG Anti-Gravity Treadmillsr Features Built on differential air pressure technology
  • Figure 5-2: AlterG: PK100 PowerKnee
  • Figure 5-3: AlterG Bionic Neurologic And Orthopedic Therapy Leg
  • Table 5-4: AlterG Anti-Gravity Treadmillsr Target Markets
  • Table 5-5: AlterG Product Positioning
  • Figure 5-6: Selected US Regional AlterG M300 Customer CLusters
  • Figure 5-7: AlterG / Tibion Bionic Leg
  • Figure 5-8: Interactive Motor Technologies Anklebot exoskeletal robotic system Design Principals
  • Figure 5-9: ARMin III Robot For Movement Therapy Following Stroke
  • Table 5-10: China North Industries Corporation (NORINCO) Enterprise Group Product And Capital Operations Activities
  • Figure 5-11: Cyberdyne HAL Lower Back Support
  • Figure 5-12: Ekso Bionics Regional Presence
  • Table 5-13: FOCAL Meditech BV Products:
  • Table 5-14: Focal Meditech BV Collaborating Partners:
  • Table 5-15: HEXORR: Hand Exoskeleton Rehabilitation Robot Technology Benefits
  • Table 5-16: HEXORR: Hand Exoskeleton Rehabilitation Robot Technology Monitoring
  • Table 5-17: Honda's Principal Automobile Products
  • Figure 5-18: Honda Walk Assist
  • Figure 5-19: Honda Motors Prototype Stride Management Motorized Assist Device
  • Figure 5-20: Lockheed Martin Segment Positioning
  • Table 5-21: Lockheed Martin's Operating Units
  • Figure 5-22: Noonee Chairless Chair
  • Figure 5-23: Parker Indego Exoskeleton
  • Figure 5-24: Reha G-EO Robotic Rehabilitation Device
  • Table 5-25: Reha Technology G-EO System
  • Table 5-26: Revision Military On Going Projects
  • Table 5-27: Rostec Lines Of Business
  • Table 5-28: Rostec Corporation Objectives
  • Table 5-29: Principal Functions Of The Corporation
  • Table 5-30: RUR Key Market Areas For Robotic Technologies
  • Figure 5-31: Sarcos Exoskeleton Human Support
  • Figure 5-32: Sarcos Wear Exoskeleton Timeline
  • Figure 5-33: Raytheon Tethered Exoskeleton
  • Figure 5-34: Trek Aerospace Exoskeleton
  • Figure 5-35: Trek Aerospace Exoskeleton Components
Back to Top