表紙
市場調査レポート

エクソスケルトンの世界市場 - 市場シェア、戦略および予測:2015-2021年

Exoskeletons: Market Shares, Strategies, and Forecasts, Worldwide, 2015 to 2021

発行 WinterGreen Research, Inc. 商品コード 328804
出版日 ページ情報 英文 254 Pages
即納可能
価格
本日の銀行送金レート: 1USD=102.06円で換算しております。
Back to Top
エクソスケルトンの世界市場 - 市場シェア、戦略および予測:2015-2021年 Exoskeletons: Market Shares, Strategies, and Forecasts, Worldwide, 2015 to 2021
出版日: 2015年04月24日 ページ情報: 英文 254 Pages
概要

対麻痺 (下半身不随) 患者や歩行訓練を必要とする人々向けにリハビリ治療センター内や家庭でエクソスケルトン (パワードスーツ) が実用化されたことで、世界中の市場が一大成長を達成する構えに転じました。車椅子に代わるウェアラブルロボットともいうべきエクソスケルトンは、最終的に身体に深刻な怪我や機能障害を負ったあらゆる患者に向けて使用され、外科治療に多大な役割を担うことになるでしょう。

当レポートでは、エクソスケルトンの世界市場に注目し、2015-2021年の期間を対象にその市場シェア、戦略および予測データを示すほか、市場の現況、発展への影響要因、代表的製品および技術、有力企業などについての調査・分析情報をまとめています。

エクソスケルトン - エグゼクティブサマリー

  • エクソスケルトン市場の原動力
    • リハビリ支援装置としてのエクソスケルトン
    • 復帰コストを低減するリハビリテーションロボット、エクススケルトン
  • エクソスケルトンの市場シェア
  • 医療用エクソスケルトンの市場予測

第1章 エクソスケルトン市場解説および市場動態

  • エクソスケルトン市場の成長推進要因
  • 脊髄損傷リハビリテーション
  • 外傷性脳損傷プログラム
  • リハビリテーション理学療法のトレンド
  • エクソスケルトン市場の定義
  • 自動プロセス利用のロボット型リハビリ装置
  • 患者にリハビリテーション達成の力を授けるロボット型エクソスケルトン
  • 在宅治療用エクソスケルトン

第2章 エクソスケルトンの市場シェアおよび市場予測

  • エクソスケルトン市場の原動力
  • エクソスケルトンの市場シェア
  • 医療用エクソスケルトンの市場予測
  • リハビリテーションロボットの市場予測
  • 疾病発生および有病率分析
  • エクソスケルトンの価格
  • リハビリテーションロボットの地域別分析

第3章 エクソスケルトン製品

  • Exoskeletons
  • Ekso Bionics
  • Rewalk
  • Rex Bionics
  • Berkley Robotics Laboratory Exoskeletons
  • Hocoma Products
  • AlterG: PK100 PowerKnee
  • Parker Hannifin Indego
  • Catholic University of America Arm Therapy Robot ARMin III
  • Sarcos / Raytheon
  • DARPA Funded Exoskeleton
  • The Springtail/XFV Exo-skeletor Flying Vehicle
  • HEXORR: Hand EXOskeleton Rehabilitation Robot
  • Mira Lopes Gait Rehabilitation Device

第4章 エクソスケルトン技術

  • エクソスケルトン医療技術
  • ロボット用アクチュエーター動力
  • リハビリテーションロボットのリスク軽減
  • エクソスケルトンマルチファクターソリューション
  • 認知科学
  • 人工筋肉
  • 法規制

第5章 エクソスケルトン企業 (機関) プロファイル

  • AlterG
  • Ekso Bionics
  • Hocoma
  • Parker
  • ReWalk Robotics
  • RexBionics
  • Sarcos
  • University of Twente

当社について

  • 調査方法
目次
Product Code: SH26311852

Worldwide markets are poised to achieve significant growth as the exoskeletons are used inside rehabilitation treatment centers and at home to provide stability for paraplegics and people who need gait training. Ultimately exoskeletons will be used for the rehabilitation of all patients with serious physical injuries or physical dysfunction.

Exoskeleton robots support walking for previously wheel chair bound patients: They function as wearable robots that bring new functionality to the rehabilitation markets. Exoskeleton robots promote upright walking and relearning of lost functions in a patient needing physical therapy. Exoskeletons can play a significant role in this medical treatment process. Emerging markets promise to have dramatic and rapid growth. Exoskeletons deliver higher quality rehabilitation, provide growth strategy for clinical facilities.

Relearning of lost functions in a patient depends on stimulation of desire to conquer the disability. The Exoskeleton can show patients progress and keep the progress occurring, encouraging patients to work on getting healthier. Independent functioning of patients depends on intensity of treatment, task-specific exercises, active initiation of movements and motivation and feedback. Exoskeleton can assist with these tasks in multiple ways. Creating a gaming aspect to the rehabilitation process has brought a significant improvement in systems.

As patients get stronger and more coordinated, a therapist can program the exoskeleton robot to let them bear more weight and move more freely in different directions, walking, kicking a ball, or even lunging to the side to catch one. The robot can follow the patient's lead as effortlessly as a ballroom dancer, its presence nearly undetectable until it senses the patient starting to drop and quickly stops a fall. In the later stages of physical therapy, the robot can nudge patients off balance to help them learn to recover.

According to Susan Eustis, principal author of the team that developed the market research study, “Exoskeleton robotic therapy stimulus of upper and lower limbs provides a way for people who cannot walk to be upright and move from a vertical position, a very exciting market development. Examples of the excellent motor recovery after stroke that can be achieved using an exoskeleton.” Lower limb systems and exoskeleton systems provide wheelchair bound patients the ability to get out of a wheelchair

The exoskeleton products that work are still emerging as commercial devices. All the products that are now commercially viable are positioned to achieve significant staying power in the market long term, providing those companies that offer them with a possibility for long term leadership position in the market.

Rehabilitation robotic technologies developed in the areas of stroke rehabilitation and SCI represent therapeutic interventions with utility at varying points of the continuum of care. Exoskeletons are a related technology, but provide dramatic support for walking for people who simply cannot walk.

Robotics has tremendous ability to reduce disability and lead to better outcomes for patients with paralysis due to traumatic injury. With the use of exoskeletons, patient recovery of function is subtle or non existent, but getting patients able to walk and move around is of substantial benefit, People using exoskeleton robots are able to make continued progress in regaining functionality even years after an injury.

It is a question of cost. The insurance will only pay for a small amount of exoskeleton rehabilitation. More marketing will have a tremendous effect in convincing people that they can achieve improvements even after years of effort.

Rehabilitation robotics includes development of devices for assisting performance of sensorimotor functions. Devices help arm, hand, leg rehabilitation by supporting repetitive motion that builds neurological pathways to support use of the muscles. Development of different schemes for assisting therapeutic training is innovative. Assessment with sensorimotor performance helps patients move parts of the body that have been damaged.

Table of Contents

EXOSKELETON EXECUTIVE SUMMARY

  • Exoskeleton Market Driving Forces
    • Exoskeletons as Rehabilitation Assistive Devices
    • Exoskeleton Rehabilitation Robots Decrease the Cost of Recovery
  • Exoskeleton Market Shares
  • Medical Exoskeleton Market Forecasts

1. EXOSKELETON MARKET DESCRIPTION AND MARKET DYNAMICS

  • 1.1. Market Growth Drivers For Exoskeletons
  • 1.2. Spinal Cord Injury Rehabilitation
    • 1.2.1. Ekso Pulse System
    • 1.2.2. Electrical Stimulation
    • 1.2.3. Robotic Therapy Devices
    • 1.2.4. Partial Body Weight-Supported Treadmill
    • 1.2.5. Virtual Reality (including Wii-hab)
    • 1.2.6. Brain Stimulation
    • 1.2.7. Acupuncture
    • 1.2.8. Mental Practice
    • 1.2.9. Mirror Therapy
    • 1.2.10. Evidence-Based Treatment Protocols
  • 1.3. Traumatic Brain Injury Program
    • 1.3.1. Concussion Program
  • 1.4. Rehabilitation Physical Therapy Trends
    • 1.4.1. Robotic Exoskeleton Team Research Studies
    • 1.4.2. Exoskeleton Research in the Market For Use In Gait Training
    • 1.4.3. Running with Robots
    • 1.4.4. Use Of Video Game Technology In PT
    • 1.4.5. Telemedicine Growing Trend In The Physical Therapy Space
  • 1.5. Exoskeleton Market Definition
  • 1.6. Robotic Rehabilitation Devices Based On Automated Process
    • 1.6.1. Automated Process for Rehabilitation Robots
    • 1.6.2. Why Rehabilitation is Essential
    • 1.6.3. Rehabilitation Involves Relearning of Lost Functions
  • 1.7. Robotic Exoskeletons Empower Patient Rehabilitation Achievements
    • 1.7.1. Seizing the Robotics Opportunity
    • 1.7.2. Modular Self-Reconfiguring Robotic Systems
  • 1.8. Home Medical Exoskeletons
    • 1.8.1. Telemedicine and Domestic Robots
    • 1.8.2. Rehabilitation Robots Provide Intensive Training For Patients And Physical Relief For Therapists 63

2. EXOSKELETON MARKET SHARES AND MARKET FORECASTS

  • 2.1. Exoskeleton Market Driving Forces
    • 2.1.1. Exoskeletons as Rehabilitation Assistive Devices
    • 2.1.2. Exoskeleton Rehabilitation Robots Decrease the Cost of Recovery
  • 2.2. Exoskeleton Market Shares
    • 2.2.1. Medical Exoskeleton Rehabilitation Robot Market Shares, Units
    • 2.2.1. Ekso Exoskeleton Market Share Unit Analysis
    • 2.2.2. Ekso Bionics Robotic Suit Helps Paralyzed Man Walk Again
    • 2.2.3. ReWalk™ Exoskeleton Suit Home Use
    • 2.2.4. AlterG Bionic Leg Customer Base
    • 2.2.5. Hocoma Robotic Rehabilitation
    • 2.2.6. Homoca Helping Patients To Grasp The Initiative And Reach Towards Recovery
    • 2.2.7. Able-Bodied Exoskeletons
  • 2.3. Medical Exoskeleton Market Forecasts
    • 2.3.1. Medical Exoskeleton Robot Market Segments
    • 2.3.2. Medical Extremities, Stroke CPM, And Exoskeleton Robot Market Segments
    • 2.3.3. Market for Limited Mobility Devices
    • 2.3.4. Spinal Cord Injuries
  • 2.4. Rehabilitation Robot Market Forecasts
    • 2.4.1. Rehabilitation Robots Unit Shipments
    • 2.4.2. Rehabilitation Robots Market Penetration Forecasts Worldwide, 2014-2020
    • 2.4.3. Gait Training
    • 2.4.4. Sports Training
    • 2.4.5. Exoskeletons
    • 2.4.6. End-effectors
    • 2.4.7. Exoskeleton-Based Rehabilitation
    • 2.4.8. Mobility Training Level Of Distribution
  • 2.5. Disease Incidence and Prevalence Analysis
    • 2.5.1. Robotic Therapeutic Stroke Rehabilitation
    • 2.5.2. Aging Of The Population
    • 2.5.3. Disease Rehabilitation
    • 2.5.1. Rehabilitation of Hip Injuries
  • 2.6. Exoskeleton Prices
    • 2.6.1. Ekso Bionics
  • 2.7. Rehabilitation Robots Regional Analysis
    • 2.7.1. Ekso Bionics Regional Presence

3. EXOSKELETON PRODUCTS

  • 3.1. Exoskeletons
    • 3.1.1. Muscle Memory
  • 3.2. Ekso Bionics
    • 3.2.1. Ekso Gait Training Exoskeleton Uses
    • 3.2.2. Ekso Bionics Rehabilitation
    • 3.2.3. Ekso Bionics Robotic Suit Helps Paralyzed Man Walk Again
    • 3.2.4. Ekso Go To Market Strategy
    • 3.2.5. Ekso Exoskeleton To Achieve Rehabilitation In The Home
  • 3.3. Rewalk
    • 3.3.1. ReWalk™ Exoskeleton Suit Home Use
    • 3.3.2. ReWalk™ Personal System
    • 3.3.3. ReWalk™ Rehabilitation
  • 3.4. Rex Bionics
  • 3.5. Berkley Robotics Laboratory Exoskeletons
    • 3.5.1. Berkley Robotics and Human Engineering Laboratory ExoHiker
    • 3.5.2. Berkley Robotics and Human Engineering Laboratory ExoClimber
    • 3.5.3. Berkeley Lower Extremity Exoskeleton (BLEEX)
    • 3.5.4. Berkley Robotics and Human Engineering Laboratory Exoskeleton
  • 3.6. Hocoma Products
    • 3.6.1. Hocoma ArmeoSpring Based On An Ergonomic Arm Exoskeleton
    • 3.6.2. Hocoma Armeo®Spring Clinical Success
    • 3.6.3. Hocoma Armeo Functional Therapy Of The Upper Extremities
    • 3.6.4. Hocoma Armeo®Spring - Functional Arm and Hand Therapy
  • 3.7. AlterG: PK100 PowerKnee
    • 3.7.1. AlterG Bionic Leg
    • 3.7.2. Alterg / Tibion Bionic Leg
    • 3.7.3. AlterG Bionic Leg Customer Base
    • 3.7.4. AlterG M300
    • 3.7.5. AlterG M300 Robotic Rehabilitation Treadmill
  • 3.8. Parker Hannifin Indego
  • 3.9. Catholic University of America Arm Therapy Robot ARMin III
    • 3.9.1. Catholic University of America Armin Iii Project Description:
    • 3.9.2. Catholic University of America HandSOME Hand Spring Operated Movement Enhancer 175
  • 3.10. Sarcos / Raytheon
    • 3.10.1. Raytheon XOS 2: Second Generation Exoskeleton
    • 3.10.2. Sarcos LC Acquires Raytheon Sarcos Unit of Raytheon
  • 3.11. DARPA Funded Exoskeleton
  • 3.12. The Springtail/XFV Exo-skeletor Flying Vehicle
  • 3.13. HEXORR: Hand EXOskeleton Rehabilitation Robot
  • 3.14. Mira Lopes Gait Rehabilitation Device
    • 3.14.1. Prototype of University of Twente LOPES with 8 Actuated Degrees of Freedom

4. EXOSKELETON TECHNOLOGY

  • 4.1. Exoskeleton Medical Technology
  • 4.2. Robotic Actuator Energy
    • 4.2.1. Elastic Actuators
  • 4.3. Rehabilitation Robotic Risk Mitigation
  • 4.4. Exoskeleton Multi-Factor Solutions
    • 4.4.1. Biometallic Materials Titanium (Ti) and its Alloys
  • 4.5. Cognitive Science
  • 4.6. Artificial Muscle
  • 4.7. Regulations

5. EXOSKELETON COMPANY PROFILES

  • 5.1. AlterG
    • 5.1.1. AlterG M300 Customers
    • 5.1.2. AlterG M300
    • 5.1.3. AlterG™ Acquires Tibion Bionic Leg
  • 5.2. Ekso Bionics
    • 5.2.1. Ekso Exoskeletons for Medical and Wellness:
    • 5.2.2. Ekso Able-bodied Exoskeletons
    • 5.2.3. Ekso Bionics Holdings
    • 5.2.4. Ekso Fourth Quarter And Full Year 2014 Financial Results
    • 5.2.5. Ekso Bionics Seeks To Lead The Technological Revolutions
    • 5.2.6. Ekso Bionics HULC Technology Licensed to the Lockheed Martin Corporation
    • 5.2.7. Ekso Bionics Regional Presence
    • 5.2.8. Ekso Bionics Customers
  • 5.3. Hocoma
    • 5.3.1. Hocoma Revenue
  • 5.4. Parker
    • 5.4.1. Parker Revenue for Fiscal 2015 Second Quarter Sales
    • 5.4.2. Parker Hannifin Segment Results Fiscal 2015 Second Quarter
  • 5.5. ReWalk Robotics
    • 5.5.1. ReWalk Revenue
    • 5.5.2. ReWalk Year-End 2014 Financial Highlights
  • 5.6. RexBionics
  • 5.7. Sarcos
    • 5.7.1. Sarcos LC Acquires Raytheon Sarcos Unit
  • 5.8. University of Twente

ABOUT THE COMPANY

Research Methodology

List of Tables and Figures

  • Table ES-1: Rehabilitation Robot Market Driving Forces
  • Figure ES-2: Exoskeleton Market Shares, Dollars, Worldwide, 2014
  • Figure ES-3: Medical Exoskeleton Robot Market Shipments Forecasts Dollars, Worldwide, 2015-2021
  • Table 1-1: Robotic Rehabilitation Devices Automated Process Benefits
  • Table 1-2: Robotic Rehabilitation Devices Emerging Technologies
  • Table 1-3: Robotic Rehabilitation Wearable Devices Benefits
  • Table 1-4: Rehabilitation Involves Relearning Lost Function
  • Table 1-5: Rehabilitation Lost Function Relearning Initiatives
  • Table 2-1: Rehabilitation Robot Market Driving Forces
  • Figure 2-2: Exoskeleton Market Shares, Dollars, Worldwide, 2014
  • Table 2-3: Exoskeleton Market Shares, Dollars, Worldwide, 2014
  • Table 2-4: Exoskeleton Rehabilitation Robot Market Shares, Dollars and Units, Worldwide, 2014
  • Table 2-5: Hocoma Robotic Rehabilitation Used In Rehabilitation Medicine:
  • Figure 2-6: Homoca Continuum of Rehabilitation
  • Figure 2-7: Comparison of the Hocoma Armeo Products
  • Figure 2-8: Medical Exoskeleton Robot Market Shipments Forecasts Dollars, Worldwide, 2015-2021
  • Table 2-9: Exoskeleton Robots: Dollars Shipments, Worldwide, 2015-2021
  • Table 2-10: Exoskeleton Robots: Units Shipments, Worldwide, 2015-2021
  • Table 2-11: Medical Exoskeleton Robot Market Segments, High End and Low End, Units and Dollars, Worldwide, 2015-2021
  • Table 2-12: Medical Rehabilitation and Exoskeleton Robot Market Segments: Extremities, Stroke CPM, and Exoskeletons, Dollars, Worldwide, 2015-2021
  • Table 2-13: Medical Rehabilitation Robot, Extremities, Stroke CPM, and Exoskeleton Market Segments, Percent, Worldwide, 2015-2021
  • Table 2-14: Spinal Cord Injury Causes, Worldwide, 2014
  • Figure 2-15: Rehabilitation Robot Market Forecasts Dollars, Worldwide, 2015-2021
  • Table 2-16: Rehabilitation Robots Market Forecasts, Dollars, Shipments, Worldwide, 2015-2021
  • Figure 2-17: Rehabilitation Robots: Units Shipments, Worldwide, 2015-2021
  • Table 2-18: Rehabilitation Robots: Units Shipments, Worldwide, 2015-2021
  • Figure 2-19: Rehabilitation Robots: Facility Market Penetration Forecasts, Units, Worldwide, 2014-2020
  • Table 2-20: Rehabilitation Facility Robot Market Penetration Forecasts Worldwide, 2014-2020
  • Table 2-21: Exoskeleton Market Penetration Forecasts Worldwide, High End Facilities, Small and Mid Size Rehabilitation Facilities, 2014-2020
  • Table 2-22: Exoskeleton Market Segments, Lower Extremities, Upper Extremities, Anti-Gravity High End, Anti-Gravity Low End, and Tools Worldwide, 2014-2020
  • Table 2-23: Rehabilitation Small and Mid-Size Facility Robot Market Penetration Forecasts Worldwide, 2014-2020
  • Table 2-24: Rehabilitation High End Facility Robot Market Penetration Forecasts, Worldwide, 2014-2020
  • Table 2-25: Rehabilitation Robot Categories
  • Table 2-26: US Stroke Incidence Numbers
  • Table 2-27: Physical Therapy Enhances Recovery After Hip Injury
  • Figure 2-28: Rehabilitation Robots Regional Market Segments, Dollars, 2014
  • Table 2-29: Rehabilitation Robots Regional Market Segments, 2014
  • Figure 2-30: Ekso Bionics Regional Presence

                        Source: Ekso Bionics.

  • Figure 3-1: Esko Technology
  • Figure 3-2: Ekso Bionics Gait Training
  • Figure 3-3: Ekso Bionics Gait Training Functions
  • Table 3-4: Ekso Gait Training Exoskeleton Functions
  • Table 3-5: Ekso Gait Training Exoskeleton Functions
  • Figure 3-6: Ekso Bionics Step Support System
  • Table 3-7: Ekso Bionics Operation Modes 3.2.2 Ekso Bionics
  • Figure 3-8:
  • Figure 3-9: Ekso Bionics Bionic Suit
  • Table 3-10: Ekso GT™ Variable Assist to Physical Conditions
  • Figure 3-11: ReWalk Robotics Exoskeleton Technology
  • Figure 3-12: ReWalk Robotics Exoskeleton Wrist Technology
  • Figure 3-13: ReWalk Controls Movement Using Subtle Changes In Center Of Gravity, Mimics The Natural Gait Pattern Of The Legs
  • Figure 3-14: ReWalk Forward Tilt Of The Upper Body Is Sensed By The System, Which Triggers The First Step
  • Figure 3-15: RexBionics Hands-Free, Robotic Walking Device
  • Figure 3-16: Berkley Robotics and Human Engineering Laboratory ExoHiker
  • Figure 3-17: Berkley Robotics and Human Engineering Laboratory ExoClimber
  • Table 3-18: Berkley Robotics and Human Engineering Laboratory Exoskeleton
  • Figure 3-19: Hocoma Lokomat Pro
  • Table 3-20: Hocoma Patient Rehabilitation Conditions Addressed
  • Table 3-21: Hocoma Robotic Improvements to Rehabilitation
  • Table 3-22: Hocoma Products
  • Table 3-23: Hocoma Rehabilitation Functional Therapy
  • Figure 3-24: Hocoma Armeo Power Robotic Arm Exoskeleton
  • Figure 3-25: Clinical Example of Patients Using the Hocoma Armeo®Spring
  • Figure 3-26: AlterG: PK100 PowerKnee
  • Figure 3-27: AlterG Bionic Neurologic And Orthopedic Therapy Leg
  • Figure 3-28: Tibion Bionic Leg
  • Figure 3-29: AlterG M300 Robotic Rehabilitation Treadmill
  • Figure 3-30: AlterG M300 Robotic Leg, Knee and Thigh Rehabilitation Treadmill
  • Table 3-31: AlterG Anti-Gravity Treadmill Precise Unweighting Technology Patient Rehabilitation Functions
  • Figure 3-32: AlterG Anti-Gravity Treadmill Heals patient Faster
  • Figure 3-33: Parket Hannifin Indego Exoskeleton
  • Figure 3-34: ARMin III Robot For Movement Therapy Following Stroke
  • Figure 3-35: Sarcos Exoskeleton Developed by Raytheon
  • Figure 3-36: Raytheon XOS Exoframe
  • Figure 3-37: Raytheon XOS Exoskeleton
  • Figure 3-38: Raytheon XOS 2: Second Generation Exoskeleton
  • Figure 3-39: Sarcos Wear Exoskeleton Timeline
  • Figure 3-40: Raytheon Tethered Exoskeleton
  • Figure 3-41: The Springtail/XFV Exo-skeletor Flying Vehicle
  • Table 3-42: HEXORR: Hand EXOskeleton Rehabilitation Robot Technology Benefits
  • Table 3-43: HEXORR: Hand EXOskeleton Rehabilitation Robot Technology Monitoring
  • Table 3-44: HEXORR: Hand EXOskeleton Rehabilitation Robot Treatment Benefits
  • Table 3-45: HEXORR: Hand EXOskeleton Rehabilitation Robot Technology Force and Motion Sensor Benefits
  • Figure 3-46: Prototype of LOPES with 8 actuated Degrees of Freedom by Means Of Series Elastic Actuation
  • Table 4-1: Exoskeleton System Concerns Addressed During System Design
  • Table 4-5: Rehabilitation Robots Software Functions
  • Table 5-1: AlterG Anti-Gravity Treadmillsr Features Built on differential air pressure technology
  • Table 5-2: AlterG Anti-Gravity Treadmillsr Target Markets
  • Table 5-3: AlterG Product Positioning
  • Figure 5-4: Selected US Regional AlterG M300 Customer CLusters
  • Figure 5-5: AlterG / Tibion Bionic Leg
  • Figure 5-6: Ekso Bionics Regional Presence
  • Table 5-7: Hocoma Robotic Rehabilitation Used In Rehabilitation Medicine:
  • Table 5-8: Hocoma Therapy Solutions Treatments
Back to Top