表紙
市場調査レポート

リハビリテーション用ロボット市場シェア、市場戦略、市場予測:2016年〜2022年

Rehabilitation Robots: Market Shares, Strategies, and Forecasts, Worldwide, 2016 to 2022

発行 WinterGreen Research, Inc. 商品コード 327370
出版日 ページ情報 英文 773 Pages
即納可能
価格
本日の銀行送金レート: 1USD=101.32円で換算しております。
Back to Top
リハビリテーション用ロボット市場シェア、市場戦略、市場予測:2016年〜2022年 Rehabilitation Robots: Market Shares, Strategies, and Forecasts, Worldwide, 2016 to 2022
出版日: 2016年05月05日 ページ情報: 英文 773 Pages
概要

世界のリハビリテーション用ロボットの市場規模は、2014年の2億330万米ドルから、2021年までに11億米ドルまで拡大すると予測されています。

当レポートでは、世界のリハビリテーション用ロボット市場について調査分析し、市場の定義と市場力学、市場シェアと市場予測、製品の概要、技術、主要企業プロファイルなど、体系的な情報を提供しています。

第1章 リハビリテーション用ロボット市場の定義と市場力学

  • 卒中リハビリテーション
  • 外骨格フルボディの産業応用
  • 卒中後の神経リハビリテーションによる身体機能の回復
  • リハビリテーション理学療法の動向
  • リハビリテーション用ロボット市場の定義
  • 持続受動運動 (CPM) の定義
  • 外骨格ロボットが患者にリハビリテーション達成力を与える
  • ロボティクスの好機を捉える
  • リハビリテーション用ロボットに対する社会の認識
  • 在宅医療向けリハビリテーション用ロボット

第2章 リハビリテーション用ロボット市場シェアと市場予測

  • リハビリテーション用ロボット市場促進要因
  • リハビリテーション用ロボット市場シェア
  • リハビリテーション用ロボット市場予測
  • 状態とリハビリテーション治療の種類:状態別
  • リハビリテーション用ロボットの種類と対象の状態
  • リハビリテーション用ロボットとCPM電動装置
  • 疾患の発症率と有病率の分析
  • サービスロボット
  • リハビリテーション用ロボットの価格
  • リハビリテーション用ロボットの地域別分析

第3章 リハビリテーション用ロボット・アクティブ義肢・外骨格製品

  • 下肢用卒中リハビリテーション装置
  • Hocoma製品
  • Hobart Group/MedInvest Group/Motorika
  • Interactive Motor Technologies Anklebot
  • AlterG
  • 本田技研工業の歩行アシスト
  • Mobility Research
  • 上肢用卒中リハビリテーション装置
  • Tyromotion
  • Myomo
  • Focal Meditech BVの食事時サポート・ストレス軽減
  • Catholic University of AmericaのArm TherapyロボットARMin III
  • Kinova Robotarm Jaco
  • Neurological Training
  • Interaxon
  • アクティブ義肢
  • Orthocare Innovations Prosthesis
  • RSL Steeper Hand Prostheses
  • Pererro - Switch - Access - Control
  • Touch Bionics' i-limb
  • RU Robots、など

第4章 リハビリテーション用ロボット技術

第5章 リハビリテーション用ロボット企業プロファイル

  • AlterG
  • Aretech
  • Berkley Robotics and Human Engineering Laboratory
  • Biodex
  • Bioness
  • Bionik Laboratories/Interactive Motion Technologies (IMT)
  • Bioxtreme
  • Breg
  • Catholic University of America
  • Claflin Rehabilitation Distribution
  • DJO Global
  • Ekso Bionics
  • ファナック
  • Focal Meditech
  • Hobart Group/Motorika
  • Hocoma
  • 本田技研工業
  • Instead Technologies
  • Interaxon
  • iRobot
  • Karman
  • KDM
  • Kinova
  • KLC Services
  • Medi
  • Mobility Research
  • MRISAR
  • Myomo
  • Orthocare Innovations
  • Patterson Companies, Inc.
  • Patterson Medical/Madison Dearborn Partners
  • ProMed Products Xpress
  • Rehab-Robotics Company
  • Reha-Stim
  • Reha Technology
  • ReWalk Robotics
  • Robotdalen
  • RSL Steeper
  • RU Robots
  • Secom
  • Sunrise Medical
  • Touch Bionics
  • Tyromotion GmbH
  • その他のリハビリテーション用ロボット企業

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次
Product Code: SH26751852

Worldwide markets are poised to achieve significant growth as the rehabilitation robots, active prostheses, and exoskeletons are used inside rehabilitation treatment centers and sports facilities providing rehabilitation for all patients with injuries or physical dysfunction.

Relearning of lost functions in a patient depends on stimulation of desire to conquer the disability. The rehabilitation robots can show patients progress and keep the progress occurring, encouraging patients to work on getting healthier. Independent functioning of patients depends on intensity of treatment, task-specific exercises, active initiation of movements and motivation and feedback. Rehabilitation robots can assist with these tasks in multiple ways. Creating a gaming aspect to the rehabilitation process has brought a significant improvement in systems.

As patients get stronger and more coordinated, a therapist can program the robot to let them bear more weight and move more freely in different directions, walking, kicking a ball, or even lunging to the side to catch one. The robot can follow the patient's lead as effortlessly as a ballroom dancer, its presence nearly undetectable until it senses the patient starting to drop and quickly stops a fall. In the later stages of physical therapy, the robot can nudge patients off balance to help them learn to recover.

According to Susan Eustis, principal author of the team that developed the market research study, “Robotic therapy stimulus of upper limbs provides an example of the excellent motor recovery after stroke that can be achieved using rehabilitation robots.” Lower limb systems and exoskeleton systems provide wheelchair bound patients the ability to get out of a wheelchair.

No company dominates the entire rehabilitation robot market sector. The products that work are still emerging as commercial devices. All the products that are now commercially viable are positioned to achieve significant staying power in the market long term, providing those companies that offer them with a possibility for long term leadership position in the market.

The companies you would expect to see as participating in these markets, the leaders in the wheelchair markets re not there with any significant presence. The exoskeletons will challenge the wheel chairs, providing a supplement to the wheelchair, permitting disabled people to have some more mobility than they have now.

Robotic rehabilitation equipment is mostly used in rehabilitation clinical facilities. There is a huge opportunity for launching a homecare equipment market if it is done through sports clubs rather than through clinical facilities. People expect insurance to pay for medical equipment but are willing to spend bundles on sports trainer equipment for the home. Rehabilitation robots can help stroke patients years after an event, so it makes a difference if someone keeps working to improve their functioning.

Vendors will very likely have to develop a strong rehabilitation robotic market presence as these devices evolve a homecare aspect. The expense of nursing home rehabilitation has been very high, limiting the use of rehabilitation to a few weeks or months at the most.

Rehabilitation robots realistically extend the use of automated process for rehabilitation in the home. The availability of affordable devices that improve mobility is not likely to go unnoticed by the sports clubs and the baby boomer generation, now entering the over 65 age group and seeking to maintain lifestyle.

As clinicians realize that more gains can be made by using rehabilitation robots in the home, the pace of acquisitions will likely pick up.

Rehabilitation robot market size at $203.3 million in 2014 is expected grow dramatically to reach $1.1 billion by 2021. Exoskeleton markets will be separate and additive to this market. A separate exoskeleton market will create more growth. Market growth is a result of the effectiveness of robotic treatment of muscle difficulty. The usefulness of the rehabilitation robots is increasing. Doing more sophisticated combinations of exercise have become more feasible as the technology evolves. Patients generally practice 1,000 varied movements per session. With the robots, more sessions are possible.

Table of Contents

Rehabilitation Robot Executive Summary

  • Rehabilitation Robot Market Driving Forces
    • Rehabilitation Robots Assistive Devices
    • Rehabilitation Robots Decrease the Cost of Recovery
    • Rehabilitation Robot Medical Conditions Treated
    • Robotic Modules for Disability Therapy
    • Wearable Robotics for Disability Therapy
    • Rehabilitation Robots Leverage Principles Of Neuroplasticity
  • Rehabilitation Robot Market Shares
  • Rehabilitation Robot Market Forecasts

1. Rehabilitation Robot Market Description and Market Dynamics

  • 1.1. Stroke Rehabilitation
    • 1.1.1. Stroke Protocols
    • 1.1.2. Rehabilitation Medicine: New Therapies in Stroke Rehabilitation
    • 1.1.3. Botulinum Toxin Injections
    • 1.1.4. Constraint Induced Movement Therapy (CIMT)
    • 1.1.5. Dynamic Splinting
    • 1.1.6. Electrical Stimulation
    • 1.1.7. Robotic Therapy Devices
    • 1.1.8. Partial Body Weight-Supported Treadmill
    • 1.1.9. Virtual Reality (including Wii-hab)
    • 1.1.10. Brain Stimulation
    • 1.1.11. Acupuncture
    • 1.1.12. Mental Practice
    • 1.1.13. Mirror Therapy
    • 1.1.14. Hyperbaric Oxygen Therapy
    • 1.1.15. Evidence-Based Treatment Protocols
  • 1.2. Exoskeleton Able-Bodied Industrial Applications
  • 1.3. Restoring Physical Function Through Neuro-Rehabilitation After Stroke
    • 1.3.1. Traumatic Brain Injury Program
    • 1.3.2. Concussion Program
    • 1.3.3. Hospital Stroke Programs Rapid Response to Create Better Outcomes
    • 1.3.4. Stroke Response Process Leverage Protocols that Implement Streamlined Timely Treatment
  • 1.4. Rehabilitation Physical Therapy Trends
    • 1.4.1. Running with Robots
    • 1.4.2. Use Of Video Game Technology In PT
    • 1.4.3. Telemedicine Growing Trend In The Physical Therapy Space
  • 1.5. Rehabilitation Robot Market Definition
    • 1.5.1. Automated Process for Rehabilitation Robots
    • 1.5.2. Why Rehabilitation is Essential
    • 1.5.3. Rehabilitation Involves Relearning of Lost Functions
  • 1.6. Continuous Passive Motion CPM Definition
  • 1.7. Robotic Exoskeletons Empower Patient Rehabilitation Achievements
    • 1.7.1. Rehabilitation Options
    • 1.7.2. Rehabilitation Robots Economies Of Scale
  • 1.8. Seizing the Robotics Opportunity
    • 1.8.1. Modular Self-Reconfiguring Robotic Systems
  • 1.9. Public Awareness of Rehabilitation Robotics
    • 1.9.1. Rehabilitation Robotics Centers Of Excellence
  • 1.10. Home Medical Rehabilitation Robots
    • 1.10.1. US Veterans Administration Telemedicine and Domestic Robots
    • 1.10.2. Rehabilitation Robots Provide Intensive Training For Patients And Physical Relief For Therapists

2. Rehabilitation Robot Market Shares and Market Forecasts

  • 2.1. Rehabilitation Robot Market Driving Forces
    • 2.1.1. Rehabilitation Robots Assistive Devices
    • 2.1.2. Rehabilitation Robots Decrease the Cost of Recovery
    • 2.1.3. Rehabilitation Robot Medical Conditions Treated
    • 2.1.4. Robotic Modules for Disability Therapy
    • 2.1.5. Wearable Robotics for Disability Therapy
    • 2.1.6. Rehabilitation Robots Leverage Principles Of Neuroplasticity
  • 2.2. Rehabilitation Robot Market Shares
    • 2.2.1. AlterG Bionic Leg Customer Base
    • 2.2.2. Myomo
    • 2.2.3. Bionik Laboratories / Interactive Motion Technologies (IMT)
    • 2.2.4. Bionik Laboratories / Interactive Motion Technologies (IMT) InMotion Robots
    • 2.2.5. Hocoma Robotic Rehabilitation
    • 2.2.6. Homoca Helping Patients To Grasp The Initiative And Reach Towards Recovery
    • 2.2.7. Ekso Bionics Robotic Suit Helps Paralyzed Man Walk Again
    • 2.2.8. Rewalk
    • 2.2.9. Karman Xo-202 Standing Wheelchair Power Stand Power Drive
    • 2.2.10. Patterson Medical
    • 2.2.11. Rehabilitation Robot Market Share Unit Analysis
    • 2.2.12. Motorized CPM Stroke Rehabilitation Equipment Market Shares
    • 2.2.13. Medical Rehabilitation Robot Market Analysis
  • 2.3. Rehabilitation Robot Market Forecasts
    • 2.3.1. Rehabilitation Robot Unit Shipments
    • 2.3.2. Rehabilitation Robots Market Segments: Lower Extremities, Upper Extremities, Neurological Training, Exoskeleton, Stroke CPM
    • 2.3.3. Rehabilitation Therapy Robots: Dollars and Units, High End, Mid-Range, and Low End, Shipments
    • 2.3.4. Rehabilitation Robot Market Penetration Forecasts Worldwide, 2014-2020
    • 2.3.5. Market Metrics
  • 2.4. Types of Conditions and Rehabilitation Treatment by Condition
    • 2.4.1. Stroke
    • 2.4.2. Early Rehab After Stroke
    • 2.4.3. Multiple Sclerosis
    • 2.4.4. Knee-Replacement Surgery
    • 2.4.5. Hip
    • 2.4.6. Gait Training
    • 2.4.7. Sports Training
    • 2.4.8. Severe Injury or Amputation
    • 2.4.9. Neurological Disorders
    • 2.4.10. Recovery After Surgery
  • 2.5. Types of Rehabilitation Robots and Conditions Treated
    • 2.5.1. Gait Training Devices / Unweighting Systems
    • 2.5.2. Neuro-Rehabilitation
    • 2.5.3. Prostheses
    • 2.5.4. Motorized Physiotherapy CPM (Continuous Passive Motion), CAM Therapy (Controlled Active Motion) and the Onboard Protocols
    • 2.5.5. Gait Training Devices / Unweighting Systems / Automated Treadmills
    • 2.5.6. Rehabilitation Therapy Robotics Market
    • 2.5.7. Upper Limb Robotic Rehabilitation
    • 2.5.8. Shoulder Biomechanics
    • 2.5.9. Exoskeletons
    • 2.5.10. End-effectors
    • 2.5.11. Exoskeleton-Based Rehabilitation
    • 2.5.12. Mobility Training Level Of Distribution
    • 2.5.13. Rehabilitation Robots Cost-Benefit-Considerations
    • 2.5.14. Rehabilitation Systems
    • 2.5.15. Spinal Cord Injuries
  • 2.6. Rehabilitation Robot And Motorized CPM Equipment
  • 2.7. Disease Incidence and Prevalence Analysis
    • 2.7.1. Robotic Therapeutic Stroke Rehabilitation
    • 2.7.2. Aging Of The Population
    • 2.7.3. Disease Rehabilitation
    • 2.7.1. Rehabilitation of Hip Injuries
  • 2.8. Service Robots
    • 2.8.1. iRobot / InTouch Health
    • 2.8.2. Next Generation Personal And Service Robotics
  • 2.9. Rehabilitation Robotics Prices
    • 2.9.1. Danniflex 480 Lower Limb CPM Unit
    • 2.9.2. Shop for Patterson Kinetec CPM
    • 2.9.3. Chattanooga Atromot
    • 2.9.4. Ekso Bionics
    • 2.9.5. Interaxon Muse
  • 2.10. Rehabilitation Robotics Regional Analysis
    • 2.10.1. Ekso Bionics Regional Presence

3. Rehabilitation Robots, Active Prostheses, and Exoskeleton Products

  • 3.1. Lower limb Stroke Rehabilitation Devices
  • 3.2. Hocoma Products
    • 3.2.1. Hocoma Andago
    • 3.2.2. Hocoma Supports Clinicians And Patients In Neurorehabilitation
    • 3.2.3. Hocoma's Lokomat Gait Orthosis Automates Locomotion Therapy On A Treadmill
    • 3.2.4. Hocoma Lokomat Intensive Locomotion Therapy
    • 3.2.5. Hocoma Lokomat Training
    • 3.2.6. Hocoma Lokomat Robotic Gait-Training Device Aims To Change The Part Of The Brain That
  • Controls Motor Function
    • 3.2.7. Hocoma Lokomat Functional Electrical Stimulation
    • 3.2.8. Hocoma Lokomat Advanced Motion Analysis
    • 3.2.9. Hocoma Rehabilitation Robotics
    • 3.2.10. Hocoma ArmeoSpring for Stroke Victims
    • 3.2.11. Hocoma ArmeoSpring Based On An Ergonomic Arm Exoskeleton
    • 3.2.12. Hocoma ArmeoRSpring Clinical Success
    • 3.2.13. Hocoma Armeo Functional Therapy Of The Upper Extremities
    • 3.2.14. Hocoma ArmeoRSpring - Functional Arm and Hand Therapy
    • 3.2.15. Hocoma Valedo Functional Movement Therapy For Low Back Pain Treatment
    • 3.2.16. Hocoma Sensor-Based Back Training For ValedoRMotion
    • 3.2.17. Hocoma Erigo Early Rehabilitation And Patient Mobilization
    • 3.2.18. Hocoma Early Rehabilitation with Robotic Mobilization and Functional Electrical Stimulation
  • 3.3. Hobart Group / MedInvest Group / Motorika
    • 3.3.1. Motorika ReoGo
    • 3.3.2. Hobart Motorik ReoGo Portable Platform Shoulder, Elbow, And Forearm - Improvements Maintained Over Time
    • 3.3.3. Motorika ReoAmbulator Innovative Robotic Gait Training System
    • 3.3.4. Motorika
  • 3.4. Interactive Motor Technologies Anklebot
    • 3.4.1. IMT Anklebot Evidence-Based Neurorehabilitation Technology
    • 3.4.2. Interactive Motion Technologies (IMT) InMotion Robots Stroke Recovery
    • 3.4.3. Biomarkers Of Motor Recovery
    • 3.4.4. Robotic Tools For Neuro-Rehabilitation
    • 3.4.5. Interactive Motion Technologies (IMT) Stroke - Upper Extremity Rehabilitation
    • 3.4.6. Interactive Motion Technologies (IMT) Robot Provides Long Lasting Rehabilitation Improvements
    • 3.4.7. InMotion Robot Medical Conditions Treated
    • 3.4.8. InMotion HAND. Robot
    • 3.4.9. InMotion ARM.: Clinical Version Of The MIT-Manus
    • 3.4.10. Interactive Motion Technologies (IMT) InMotion ARM. Software
    • 3.4.11. Interactive Motion Technologies (IMT) InMotion EVAL.
    • 3.4.12. Interactive Motion Technologies (IMT) Maximum Shoulder Force
    • 3.4.13. Interactive Motion Technologies (IMT) Long Lasting Improvements
    • 3.4.14. MIT-MANUS
  • 3.5. AlterG
    • 3.5.1. AltgerG M320 Anti-Gravity Treadmill
    • 3.5.2. AlterGR Anti-Gravity Treadmill in Action
    • 3.5.3. AlterG: PK100 PowerKnee
    • 3.5.4. AlterG Bionic Leg
    • 3.5.5. Alterg / Tibion Bionic Leg
    • 3.5.6. AlterG Bionic Leg Customer Base
    • 3.5.7. AlterG M300
    • 3.5.8. AlterG M300 Robotic Rehabilitation Treadmill
    • 3.6. Biodex Unweighting Systems
    • 3.6.1. Biodex Objective Data
    • 3.6.2. Biodex BioStepR 2 Semi-Recumbent Elliptical
    • 3.6.3. Biodex BioStep 2 Helps Patients and Their Therapists Achieve Multiple Rehabilitation Objectives
    • 3.6.4. Older Adults / Preambulation
    • 3.6.5. Cardiac Rehabilitation
    • 3.6.6. Biodex System 4 Pro
    • 3.6.7. Biodex Balance System. SD
    • 3.6.8. Pneumex Unweighting Systems from Biodex
  • 3.7. Honda Gait Training
    • 3.7.1. Honda Motor ASIMO Humanoid Robot
  • 3.8. Mobility Research
    • 3.8.1. Mobility Research HugN-Go
    • 3.8.2. Mobility Research HugN-Go 350
    • 3.8.3. Mobility Research HugN-Go 250
    • 3.8.4. Mobility Research HugN-Go 100
    • 3.8.5. Mobility Research LiteGait
  • 3.9. Upper Limb Stroke Rehabilitation Devices
  • 3.10. Tyromotion
    • 3.10.1. Tyromotion Diego - Robotic-assisted arm-rehabilitation
    • 3.10.2. Tyromotion Therapy for Arms and Shoulders
    • 3.10.3. Tyromotion Evaluation and Therapy
    • 3.10.4. Tyromotion Pablo - Hand-Arm Rehabilitation
    • 3.10.5. Tyromotion TYMO - Therapy Board
    • 3.10.6. Tyromotion AMADEOR -For Individual Fingers or the Entire Hand Neurological Rehabilitation
    • 3.10.7. AmadoR Finger-Hand Rehabilitation
    • 3.10.8. Tyromotion AmadeoR System Premier Mechatronic Finger Rehabilitation Device
  • 3.11. Myomo
    • 3.11.1. Myomo MyoPro Motion G - Elbow-Wrist-Hand Orthosis
    • 3.11.2. MyoPro Myoelectric Orthotics And Prosthetics
    • 3.11.3. Myomo Neuro-Robotic Myoelectric Arm Orthosis System
    • 3.11.4. Myomo Brace For Medical Professionals Permits A Paralyzed Individual To Perform Activities Of Daily Living
    • 3.11.5. Myomo EMG
    • 3.11.6. Myomo mPower 1000 Indications For Use
    • 3.11.7. Myomo mPower 1000 Warnings
  • 3.12. Focal Meditech BV Mealtime Support and Stress Reduction: Hand Function
    • 3.12.1. Focal Meditech BV Personal Robot Jaco
    • 3.12.2. Focal Meditech BV Dynamic Rehabilitation Robotic Arm Supports
    • 3.12.3. Focal Meditech BV Innovative Assistive Technology
  • 3.13. Catholic University of America Arm Therapy Robot ARMin III
    • 3.13.1. Catholic University of America Armin Iii Project Description:
    • 3.13.2. Catholic University of America HandSOME Hand Spring Operated Movement Enhancer
  • 3.14. Kinova Robotarm Jaco
    • 3.14.1. Invacare / Kinova
  • 3.15. Neurological Training
    • 3.15.1. Neuro-Rehabilitation
  • 3.16. Interaxon
    • 3.16.1. Interaxon Muse: Brainwave Category Biometrics
    • 3.16.2. InteraXon Motivates Change Of Brain
    • 3.16.3. Interaxon Muse Improves Response To Stress, Lowers Blood Pressure
    • 3.16.4. Interaxon Muse Gives Self-Control
    • 3.16.5. Interaxon Muse Can Improve Emotional State
    • 3.16.6. Interaxon Muse Extended Use Lasting Results
    • 3.16.7. Interaxon Muse Types of Feedback
  • 3.17. Active Prostheses
    • 3.17.1. Neuronal-Device Interfaces
  • 3.18. Orthocare Innovations Prosthesis
    • 3.18.1. Orthocare Innovations Edison. Adaptive Vacuum Suspension System
    • 3.18.2. Orthocare Innovations Edison Adaptive Prosthesis
    • 3.18.3. Orthocare Innovations Intelligent Adaptive Prosthesis
    • 3.18.4. Orthocare Innovations Edison Leg and Ankle
    • 3.18.5. Orthocare Innovations Europa
    • 3.18.6. Orthocare Innovations Galileo Connector Technology
  • 3.19. RSL Steeper Hand Prostheses
    • 3.19.1. RSL Steeper Electronic Assistive Technology Devices for the Home
  • 3.20. Pererro - Switch - Access - Control
    • 3.20.1. Pererro+
    • 3.20.2. RSL Steeper V3 Myoelectric Hand
  • 3.21. Touch Bionics' i-limb
    • 3.21.1. Touch Bionics i-limb Muscle Triggers
    • 3.21.2. Touch Bionics I-Limb Methods For Switching Modes
    • 3.21.3. Touch Bionics Prostheses
    • 3.21.4. Touch Bionics Active Prostheses
  • 3.22. RU Robots
    • 3.22.1. RU Robots Sunflower Robot
    • 3.22.2. RU Robots Sophisticated Interactions
    • 3.22.3. RU Robots Care-o-bot
  • 3.23. Instead Technologies
    • 3.23.1. Instead Technologies RoboTherapist3D and 2D
    • 3.23.2. Instead Technologies RoboTherapist3D
    • 3.23.3. Instead Technologies Ultrasound Breast Volumes BreastExplorer
    • 3.23.4. Instead Technologies Technology-Based Company
    • 3.23.5. Instead Technologies Services:
  • 3.24. Humanware In-Home Rehabilitation
  • 3.25. Exoskeletons
    • 3.25.1. Muscle Memory
  • 3.26. Ekso Bionics
    • 3.26.1. Ekso Bionics Wearable Bionic Suit
    • 3.26.2. Ekso Gait Training Exoskeleton Uses
    • 3.26.3. Ekso Bionics Rehabilitation
    • 3.26.4. Ekso Bionics Robotic Suit Helps Paralyzed Man Walk Again
  • 3.27. Rewalk
  • 3.28. Permobil F5 Corpus VS Stand Sequence
  • 3.29. Karman Xo-202 Standing Wheelchair Power Stand Power Drive
  • 3.30. Berkeley Robotics Laboratory Exoskeletons
    • 3.30.1. Berkeley Robotics Austin
    • 3.30.2. Berkley Robotics and Human Engineering Laboratory ExoHiker
    • 3.30.3. Berkley Robotics and Human Engineering Laboratory ExoClimber
    • 3.30.4. Berkeley Lower Extremity Exoskeleton (BLEEX)
    • 3.30.5. Berkley Robotics and Human Engineering Laboratory Exoskeleton
  • 3.31. Reha-Stim Gait Trainer GT I
    • 3.31.1. Reha-Stim Gait Trainer Target Market
    • 3.31.2. Reha-Stim Bi-Manu-Track
    • 3.31.3. Reha-Stim Bi-Manu-Track Hand and Wrist
  • 3.32. Exoskeleton Designed by CAR
  • 3.33. CAREX Upper Limb Robotic Exoskeleton
  • 3.34. Egto Tech
    • 3.34.1. Egto Tech Luna Dynamic Resistance
    • 3.34.2. Egto Tech Luna Objective Diagnostics
  • 3.35. Motorized Physiotherapy CPM (Continuous Passive Motion), CAM Therapy (Controlled Active Motion) and the Onboard Protocols
    • 3.35.1. Movement Of Synovial Fluid To Allow For Better Diffusion Of Nutrients Into Damaged Cartilage
  • 3.36. Chattanooga Active-K CPM (Continuous Passive Motion)
    • 3.36.1. Chattanooga OptiFlexR 3 Knee Continuous Passive Motion (CPM)
    • 3.36.2. Continuous Passive Motion Machines (CPM)
    • 3.36.3. Chattanooga OptiFlex Ankle Continuous Passive Motion (CPM)
    • 3.36.4. Chattanooga OptiFlex S Shoulder Continuous Passive Motion (CPM)
    • 3.36.5. Chattanooga OptiFlex Elbow Continuous Passive Motion (CPM)
    • 3.36.6. Chattanooga OptiFlex S Shoulder Continuous Passive Motion (CPM)
  • 3.37. Paterson Kinetec CPM
    • 3.37.1. Paterson / Kinetec Spectra Knee CPM
  • 3.38. Global Medical
  • 3.39. Furniss Corporation
    • 3.39.1. Furniss Corporation Continuous Passive Motion DC2480 Knee CPM
  • 3.40. Danniflex
    • 3.40.1. Danniflex 480 Lower Limb CPM Unit
  • 3.41. Rehab-Robotics Company
    • 3.41.1. Rehab-Robotics Hand of Hope
    • 3.41.2. Rehab-Robotics Hand & Arm Training
  • 3.42. Bioxtreme
  • 3.43. Corbys
    • 3.43.1. Corbys System Overview
  • 3.44. Swtotek Motion Maker

4. Rehabilitation Robots Technology

  • 4.1. Robotic Actuator Energy
    • 4.1.1. Elastic Actuators
    • 4.1.2. InMotion Robots Technology
  • 4.2. Human Motor Error Enhancement Technology
    • 4.2.1. Enhancing a Motor Error Improves Motor Skills
    • 4.2.2. Adaptation to Error Enhancing Forces
    • 4.2.3. Bioxtreme's Error Enhancement Technology Potential Applications
  • 4.3. Rehabilitation Robotic Risk Mitigation
  • 4.4. Rehabilitation Robot Multi-Factor Solutions
    • 4.4.1. Biometallic Materials Titanium (Ti) and its Alloys
  • 4.5. Berkley Robotics and Human Engineering Laboratory
  • 4.6. Rehabilitation Robot Automated Technique
    • 4.6.1. InMotion Robots Technology
  • 4.7. HEXORR: Hand EXOskeleton Rehabilitation Robot
  • 4.8. ARMin: Upper Extremity Robotic Therapy
  • 4.9. HandSOME: Hand Spring Operated Movement Enhancer
  • 4.10. Cognitive Science
  • 4.11. Lopes Gait Rehabilitation Device
  • 4.12. Artificial Muscle
  • 4.13. ReWalk. Exoskeleton Suit

5. Rehabilitation Robot Company Profiles

  • 5.1. AlterG
    • 5.1.1. AlterG M300 Customers
    • 5.1.2. AlterG M300
    • 5.1.3. AlterG. Acquires Tibion Bionic Leg
  • 5.2. Aretech
  • 5.3. Berkley Robotics and Human Engineering Laboratory
  • 5.4. Biodex
    • 5.4.1. Biodex Clinical Advantage
  • 5.5. Bioness
  • 5.6. Bionik Laboratories / Interactive Motion Technologies (IMT)
    • 5.6.1. Bionik Laboratories Acquires Interactive Motion Technologies, Inc. (IMT)
    • 5.6.2. InMotion Robots for NHS study in the UK
    • 5.6.3. Interactive Motion Technologies (IMT) InMotion Robots
  • 5.7. Bioxtreme
  • 5.8. Breg
  • 5.9. Catholic University of America HandSOME Hand Spring Operated Movement Enhancer
  • 5.10. Claflin Rehabilitation Distribution
  • 5.11. DJO Global
    • 5.11.1. DJO Global Trademarks, Service Marks And Brand Names
    • 5.11.2. DJO Global Business Activities
    • 5.11.3. DJO / Chattanooga
    • 5.11.4. Chattanooga OptiFlexR Knee Continuous Passive Motion (CPM)
  • 5.12. Ekso Bionics
    • 5.12.1. Ekso Rehabilitation Robotics
    • 5.12.2. Ekso GT
    • 5.12.3. Ekso Fourth Quarter And Full Year 2015 Financial Results
    • 5.12.4. Ekso Bionics Seeks To Lead The Technological Revolutions
    • 5.12.5. Ekso Bionics HULC Technology Licensed to the Lockheed Martin Corporation
    • 5.12.6. Ekso Bionics Regional Presence
    • 5.12.7. Ekso Bionics Customers
    • 5.12.8. Ekso and Lockheed
  • 5.13. Fanuc
    • 5.13.1. Fanuc Revenue
    • 5.13.2. Fanuc - Industrial Robot Automation Systems and Robodrill Machine Centers
  • 5.14. Focal Meditech
    • 5.14.1. Focal Meditech BV Collaborating Partners:
  • 5.15. Hobart Group / Motorika
    • 5.15.1. Motorika
  • 5.16. Hocoma
    • 5.16.1. Hocoma Revenue
    • 5.16.2. Hocoma Partnership With The Slovenian Software Company XLAB
  • 5.17. Honda Motor
    • 5.17.1. Honda Motor Revenue
    • 5.17.2. Honda Automobile Business
    • 5.17.3. Honda Walk Assist
    • 5.17.4. Honda Prototype Stride Management Motorized Assist Device
    • 5.17.5. Honda Builds Unique Transportation Exoskeleton Device Market
  • 5.18. Instead Technologies
    • 5.18.1. Instead Technologies Services:
  • 5.19. Interaxon
  • 5.20. iRobot
    • 5.20.1. iRobot Home Robots
    • 5.20.2. iRobot Defense and Security: Protecting Those In Harm's Way
    • 5.20.3. iRobot Remote Presence: Brings Meaningful Communication
    • 5.20.4. iRobot STEM
    • 5.20.5. iRobot Internet of Things
    • 5.20.6. iRobot / InTouch Health
  • 5.21. Karman
  • 5.22. KDM
  • 5.23. Kinova
    • 5.23.1. Kinova JACO
  • 5.24. KLC Services
  • 5.25. Medi
  • 5.26. Mobility Research
  • 5.27. MRISAR
  • 5.28. Myomo
    • 5.28.1. Myomo mPower 1000
  • 5.29. Orthocare Innovations
    • 5.29.1. Orthocare Innovations Adaptive Systems. For Advanced O&P Solutions.
    • 5.29.2. Orthocare Innovations Company Highlights
  • 5.30. Patterson Companies, Inc.
    • 5.30.1. PMI Acquires Mobilis Healthcare
    • 5.30.2. Patterson Companies Medical (PMI) Business Segments
  • 5.31. Patterson Medical / Madison Dearborn Partners
    • 5.31.1. Patterson Medical Strategy
    • 5.31.2. Patterson Medical Brands
    • 5.31.3. Patterson Medical Rehabilitation Supply
    • 5.31.4. Patterson Medical International Operations
    • 5.31.5. Patterson Medical Consumables
    • 5.31.6. Patterson Medical Equipment and Software
  • 5.32. ProMed Products Xpress
  • 5.33. Rehab-Robotics Company
  • 5.34. Reha-Stim
    • 5.34.1. Reha-Stim Support Patients In Restoring And Improving Gait Function
    • 5.34.2. Reha-Stim Support Patients In Restoring Arm And Hand Function
  • 5.35. Reha Technology
  • 5.36. ReWalk Robotics
  • 5.37. Robotdalen
  • 5.38. RSL Steeper
  • 5.39. RU Robots
  • 5.40. Secom
    • 5.40.1. Secom Co.Ltd MySpoon
    • 5.40.2. Secom Co.Ltd MySpoon Manual Mode
    • 5.40.3. Secom Co.Ltd MySpoon Semi-automatic Mode
    • 5.40.4. Secom Co. Ltd MySpoon Automatic Mode
  • 5.41. Sunrise Medical
    • 5.41.1. Sunrise Medical Quality Policy
    • 5.41.2. Sunrise Medical Whitmyer Biomechanics
  • 5.42. Touch Bionics
  • 5.43. Tyromotion GmbH
    • 5.43.1. Tyromotion GmbH Network
  • 5.44. Other Rehabilitation Robot Companies
    • 5.44.1. Additional Rehabilitation Robots
    • 5.44.2. Selected Rehabilitation Equipment Companies
    • 5.44.3. Spinal Cord Treatment Centers in the US
  • About The Company
  • Research Methodology

List of Tables and Figures

  • Table ES-1: Rehabilitation Robotics Products Market Driving Factors:
  • Table ES-2: Rehabilitation Robot Market Driving Forces
  • Table ES-3: Rehabilitation Robot Medical Conditions Treated
  • Table ES-4: Stroke Rehabilitation Guidelines For Interactive Robotic Therapy
  • Table ES-5: Extremity Rehabilitation Robot Technology
  • Table ES-6: Health Care Conditions Treated With Rehabilitation Wearable Robotics
  • Table ES-7: Robotic Technologies Leverage Principles Of Neuroplasticity
  • Figure ES-8: Rehabilitation Robot Market Shares, Dollars, Worldwide, 2015
  • Figure ES-9: Rehabilitation Robot Market Forecasts Dollars, Worldwide, 2016-2022
  • Table 1-1: Stroke Rehabilitation Technology Modalities
  • Table 1-2: Neuro-Rehabilitation patient Conditions Addressed
  • Table 1-3: Neuro-rehabilitation Services
  • Table 1-4: Stroke Response Process Leverage Protocols Interdisciplinary Teams
  • Table 1-5: Stroke Treatment State-Of-The-Art, Full-Service Stroke Treatment Facilities
  • Table 1-6: Robotic Rehabilitation Devices Automated Process Benefits
  • Table 1-7: Robotic Rehabilitation Devices Emerging Technologies
  • Table 1-8: Robotic Rehabilitation Wearable Devices Benefits
  • Table 1-9: Rehabilitation Involves Relearning Lost Function
  • Table 1-10: Rehabilitation Lost Function Relearning Initiatives
  • Table 1-11: CPM Functions:
  • Table 1-12: CPM Use Indications:
  • Table 2-1: Rehabilitation Robotics Products Market Driving Factors:
  • Table 2-2: Rehabilitation Robot Market Driving Forces
  • Table 2-3: Rehabilitation Robot Medical Conditions Treated
  • Table 2-4: Stroke Rehabilitation Guidelines For Interactive Robotic Therapy
  • Table 2-5: Extremity Rehabilitation Robot Technology
  • Table 2-6: Health Care Conditions Treated With Rehabilitation Wearable Robotics
  • Table 2-7: Robotic Technologies Leverage Principles Of Neuroplasticity
  • Figure 2-8: Rehabilitation Robot Market Shares, Dollars, Worldwide, 2015
  • Table 2-9: Rehabilitation Robot Market Shares, Dollars, Worldwide, 2015
  • Table 2-10: Hocoma Robotic Rehabilitation Used In Rehabilitation Medicine:
  • Figure 2-11: Homoca Continuum of Rehabilitation
  • Figure 2-12: Comparison of the Hocoma Armeo Products
  • Figure 2-13: Karman Xo-202 Standing Wheelchair Power Stand Power Drive
  • Table 2-14: Rehabilitation Therapy Robots Market Shares, Units, Worldwide, 2014
  • Table 2-15: Rehabilitation Therapy Robots Market Shares, Units, Worldwide, 2015
  • Table 2-16: Motorized CPM Stroke Rehabilitation Equipment Market Shares, Unit and Dollars, Worldwide, 2015
  • Figure 2-17: Rehabilitation Robot Market Forecasts Dollars, Worldwide, 2016-2022
  • Table 2-18: Rehabilitation Robots Market Forecasts, Dollars, Shipments, Worldwide, 2016-2022
  • Table 2-19: Rehabilitation Robots: Units Shipments, Worldwide, 2016-2022
  • Table 2-20: Rehabilitation Robot Market Segments, Lower Extremities, Upper Extremities, Neurological Training, Exoskeleton, Stroke CPM, Dollars, Worldwide, 2015-2021
  • Table 2-21: Rehabilitation Robot Market Segments, Lower Extremities, Upper Extremities, Neurological Training, Exoskeleton, Stroke CPM, Percent, Worldwide, 2015-2021
  • Table 2-22: Rehabilitation Robots Market Segments
  • Table 2-23: Rehabilitation Extremity Physical Therapy Robots Market Forecasts: Dollars and Units, High End, Mid-Range, and Low End, Shipments, Worldwide, 2016-2022
  • Figure 2-24: Rehabilitation Robots: Facility Market Penetration Forecasts, Units, Worldwide, 2014-2020
  • Table 2-25: Rehabilitation Facility Robot Market Penetration Forecasts Worldwide, 2016-2022
  • Table 2-26: Rehabilitation Small and Mid-Size Facility Robot Market Penetration Forecasts Worldwide, 2014-2020
  • Figure 2-27: Chattanooga OptiFlexR 3 Knee Continuous Passive Motion (CPM) Device
  • Table 2-28: Rehabilitation Robot Categories
  • Table 2-29: Spinal Cord Injury Causes Worldwide, 2014
  • Table 2-30: Motorized CPM Stroke Rehabilitation Equipment Market Shares, Unit and Dollars, Worldwide, 2015
  • Table 2-31: Rehabilitation Robot CPM Market Segments, Worldwide, 2015-2021
  • Table 2-32: US Stroke Incidence Numbers
  • Table 2-33: Physical Therapy Enhances Recovery After Hip Injury
  • Figure 2-34: iRobot / InTouch Health RP-VITA
  • Figure 2-35: Chattanooga Continuous Passive Motion
  • Figure 2-36: Rehabilitation Robot Regional Market Segments, Dollars, 2015
  • Table 2-37: Rehabilitation Robot Regional Market Segments, 2015
  • Figure 2-38: Ekso Bionics Regional Presence, Source: Ekso Bionics. Lower Limb Stroke Rehabilitation Devices
  • Figure 3-1: Hocoma Andago
  • Figure 3-2: Hocoma Lokomat Pro
  • Table 3-3: Hocoma Patient Rehabilitation Conditions Addressed
  • Table 3-4: Hocoma Robotic Improvements to Rehabilitation
  • Table 3-5: Hocoma Products
  • Table 3-6: Hocoma Rehabilitation Functional Therapy
  • Table 3-7: Robotic Legs Working For Improving Cerebral Palsy
  • Figure 3-8: Hocoma Automates Locomotion Therapy On A Treadmill
  • Figure 3-9: Hocoma Lokomat Lower Extremity Robot
  • Table 3-10: Hocoma Rehabilitation Robot Systems
  • Figure 3-11: Hocoma Armeo Arm Robot Systems
  • Figure 3-12: Hocoma Lokomats Robot
  • Figure 3-13: Hocoma ArmeoSpring for Stroke Victims
  • Figure 3-14: Hocoma ArmeoSpring for Children
  • Figure 3-15: Hocoma Armeo Power Robotic Arm Exoskeleton
  • Figure 3-16: Clinical Example of Patients Using the Hocoma ArmeoRSpring
  • Table 3-17: Hocoma Valedo Functional Lower Back Movement Therapy
  • Table 3-18: Hocoma ValedoRMotion Low Back Pain Therapy Advantages
  • Figure 3-19: Hocoma ErigoR
  • Table 3-20: Hocoma Erigo Advantages of Early Rehabilitation
  • Figure 3-21: Motorika ReoGo
  • Table 3-22: Motorik ReoGo. Therapist Benefits:
  • Table 3-23: Motorik ReoGo. Patient Benefits:
  • Figure 3-24: Motorika ReoAmbulator
  • Figure 3-25: Motorika ReoAmbulator and Gait Training Devices
  • Figure 3-26: Interactive Motor Technologies Anklebot exoskeletal robotic system Design Principals
  • Figure 3-27: Interactive Motor Technologies Anklebot Walking Improvement
  • Figure 3-28: Interactive Motion Technologies (IMT) InMotion Biomarkers Aid Stroke Recovery
  • Table 3-29: Interactive Motion Technologies (IMT) InMotion Robot Medical Conditions Treated
  • Table 3-30: Interactive Motion Technologies (IMT) InMotion Robot Medical Technology
  • Table 3-31: Interactive Motion Technologies (IMT) Clinical Studies Performed With The InMotion ARM.
  • Table 3-32: InMotion Robots Research Positioning
  • Figure 3-33: InMotion HAND.
  • Figure 3-34: InMotion HAND. Robot
  • Table 3-35: Interactive Motion Technologies (IMT) InMotion HAND. Robot Functions
  • Table 3-36: Interactive Motion Technologies (IMT) InMotion HAND. Robot
  • Table 37: Interactive Motion Technologies (IMT) InMotion ARM. Software Functions
  • Figure 3-38: Interactive Motion Technologies (IMT) 2D Gravity Compensated Therapy Is More Effective Than 3D Spatial Therapy
  • Figure 3-39: Measurements Show Interactive Motion Technologies (IMT) 2D Gravity Compensated Therapy Is More Effective Than 3D Spatial Therapy
  • Table 3-40: Interactive Motion Technologies (IMT) InMotion EVAL Aims
  • Table 3-41: Interactive Motion Technologies (IMT) InMotion EVAL Quantifiable Measures:
  • Figure 3-42: 6 Degree-Of-Freedom Force-Torque Sensor Monolithic Aluminum Device Visualization
  • Figure 3-43: Interactive Motion Technologies (IMT) Performance Feedback Metrics
  • Table 3-44: Interactive Motion Technologies (IMT) InMotion ARM. Specifications Dimensions
  • Figure 3-45: Interactive Motion Technologies (IMT) Sample Circle Plots For A Stroke Patient At Admission
  • Figure 3-46: Interactive Motion Technologies (IMT) Sample Circle Plots For A Stroke Patient At Discharge
  • Figure 3-47: AltgerG M320 Anti-Gravity Treadmill
  • Table 3-48: AlterGR Anti-Gravity Treadmill Functions
  • Table 3-49: AlterG Therapy Functions
  • Figure 3-50: AlterG: PK100 PowerKnee
  • Figure 3-51: AlterG Bionic Neurologic And Orthopedic Therapy Leg
  • Figure 3-52: Tibion Bionic Leg
  • Figure 3-53: AlterG M300 Robotic Rehabilitation Treadmill
  • Figure 3-54: AlterG M300 Robotic Leg, Knee and Thigh Rehabilitation Treadmill
  • Table 3-55: AlterG Anti-Gravity Treadmill Precise Unweighting Technology Patient Rehabilitation Functions
  • Figure 3-56: AlterG Anti-Gravity Treadmill Heals patient Faster
  • Table 3-57: Biodex Dynamometer Target Markets
  • Figure 3-58: Biodex BioStepR 2 Semi-Recumbent Elliptical
  • Figure 3-59: Biodex System 4 Pro
  • Figure 3-60: Biodex Balance System SD
  • Figure 3-61: Biodex Balance System SD Features
  • Figure 3-62: Biodex Pneumex Unweighting Systems
  • Figure 3-63: Honda Walk assist
  • Figure 3-64: Honda Stride Management
  • Figure 3-65: Honda Walk Assist Device Specifications
  • Figure 3-66: Honda ASIMO
  • Figure 3-66: Honda ASIMO Front Position
  • Figure 3-67: Honda ASIMO Dimensions and Weight
  • Figure 3-68: Honda ASIMO Intelligence Features
  • Figure 3-69: Mobility Research HugN-Go 350
  • Table 3-70: Mobility Research HugN-Go 350 Supported Ambulation Device
  • Figure 3-71: Mobility Research HugN-Go 250
  • Figure 3-72: Mobility Research HugN-Go 250 Features
  • Figure 3-73: Mobility Research HugN-Go 100
  • Figure 3-71: Mobility Research HugN-Go 100 Features
  • Figure 3-72: Mobility Research LiteGait Solution for Gait Therapy
  • Table 3-73: Mobility Research LiteGait Advanced Solutions For Gait Therapy
  • Table 3-74: Upper Limb Stroke Rehabilitation Devices
  • Figure 3-75: Tyromotion Diego
  • Table 3-76: Advantages of Rehabilitation Robot Therapy with Tyromotion DIEGO
  • Figure 3-77: Tyromotion Pablo
  • Table 3-78: Tyromotion PABLO Multiball Rehabilitation Robot Functions: Versatility
  • Table 3-79: Tyromotion Pablo Advantages of Hand-Arm-Rehabilitation
  • Figure 3-80: Tyromotion TYMO
  • Table 3-81: Tyromotion TYMO Support Features
  • Figure 3-82: Tyromotion AmadeoR System For Neurological Rehabilitation
  • Table 3-83: AmadoR Individual Fingers Or The Entire Hand Rehabilitation Advantages
  • Figure 3-84: Tyromotion AMADEOR -For Neurological Rehabilitation
  • Table 3-85: Tyromotion AMADEOR -For Neurological Rehabilitation
  • Table 3-86: Tyromotion AmadeoRBenefits
  • Figure 3-87: Myomo MyoPro Motion G - Elbow-Wrist-Hand Orthosi
  • Table 3-88: MyoPro Motion-G Elbow-Wrist-Hand Orthosis Benefits
  • Table 3-89: MyoPro Motion-G Clinical Criteria
  • Table 3-90: Myomo mPower 1000 Indications
  • Table 3-91: Myomo mPower 1000 Contraindications
  • Table 3-92: Focals Meditech BV Models:
  • Table 3-93: Focal Meditech BV Assistive Technology Types
  • Table 3-94: Focal Meditech BV High End Assistive Technology
  • Table 3-95: Focal Meditech Products for Robotic Rehabilitation
  • Figure 3-96: ARMin III Robot For Movement Therapy Following Stroke
  • Figure 3-97: Kinova Robotarm Jaco
  • Figure 3-98: Kinova Jaco Rehabilitation Hand
  • Figure 3-99: Invacare Partnered with Kinova to Facilitate Use of the Jaco
  • Figure 3-100: Invacare Kinova Robotarm Broad Product Line
  • Figure 3-101: InteraXon Muse Headband
  • Figure 3-102: Interaxon Finely Calibrated Brain Wave Sensors
  • Figure 3-103: InteraXon Measuring Brainwaves
  • Figure 3-104: Lower Limb Prosthetic Designed By The Center For Intelligent Mechatronics
  • Figure 3-105: Orthocare Innovations Prosthesis
  • Figure 3-106: Orthocare Innovations Edison Prosthesis Ankle and Foot
  • Figure 3-107: Orthocare Innovations Edison Leg and Ankle
  • Figure 3-108: Orthocare Innovations Prosthetic Foot That Adjusts Automatically
  • Figure 3-109: Orthocare Innovations Proshthetic Foot That Fits
  • Figure 3-110: Orthocare Innovations Proshthetic Foot That Can Be Used for Hiking
  • Figure 3-111: Orthocare Innovations
  • Figure 3-112: RSLSteeper Pererro+
  • Table 3-113: RSLSteeper Pererro+ Key Features:
  • Figure 3-114: RSL Steeper Bebionic's Standard Glove
  • Figure 3-115: RSL Steeper Prosthesis Hand
  • Figure 3-116: Touch Bionics' i-limb Functions
  • Table 3-117: Touch Bionics i-limb Muscle Triggers
  • Figure 3-118: Touch Bionics Quick Grips
  • Figure 3-119: Touch Bionics Prostheses
  • Figure 3-120: Touch Bionics Active Prostheses
  • Figure 3-121: Touch Bionics Active prostheses
  • Table 3-122: Touch Bionics Products
  • Table 3-123: RU Robots Core Technologies And Competencies
  • Figure 3-124: RU Robots Advanced Robotics
  • Figure 3-126: RU Robots Sophisticated Interactions
  • Figure 3-127: RU Robots Care-o-bot Large Service Robot
  • Table 3-128: Instead Technologies Advantages of RoboTherapist3D Therapy:
  • Figure 3-129: Instead Technologies Robotherapist 3D RT3D Arm
  • Figure 3-130: Instead Technologies Robotherapist 3D RT3D Cup
  • Figure 3-131: Instead Technologies RT3D Hand
  • Figure 3-132: Instead Technologies Robotherapist 3D RT3D Ring Structure
  • Figure 3-133: Instead Technologies Ultrasound Breast Volumes. BreastExplorer
  • Figure 3-134: Instead Technologies Ultrasound Breast Volumes BreastExplorer Handheld Device
  • Figure 3-135: Instead Technologies Ultrasound Breast Volumes BreastExplorer Screen Display
  • Table 3-136: Instead Technologies Research:
  • Table 3-137: Instead Technologies Consultancy Services:
  • Figure 3-138: Esko Technology
  • Figure 3-139: Ekso Bionics Gait Training
  • Figure 3-140: Ekso Bionics Gait Training Functions
  • Table 3-141: Ekso Gait Training Exoskeleton Functions
  • Table 3-142: Ekso Gait Training Exoskeleton Functions
  • Figure 3-143: Ekso Bionics Step Support System
  • Table 3-144: Ekso Bionics Operation Modes 3.26.3 Ekso Bionics
  • Figure 3-145:
  • Figure 3-146: Ekso Bionics Bionic Suit
  • Figure 3-147: Rewalk-Robotics-Personal Support
  • Figure 3-148: Permobil F5 Corpus VS Stand Sequence
  • Figure 3-149: Karman Xo-202 Standing Wheelchair Power Stand Power Drive
  • Table 3-150: Karman Xo-202 Standing Wheelchair Power Stand Power Drive Features
  • Figure 3-151: Berkeley Robotics Austin
  • Figure 3-152: Berkley Robotics and Human Engineering Laboratory ExoHiker
  • Figure 3-153: Berkley Robotics and Human Engineering Laboratory ExoClimber
  • Table 3-154: Berkley Robotics and Human Engineering Laboratory Exoskeleton
  • Figure 3-155: Reha-Stim Gait Trainer GT I
  • Figure 3-156: Reha-Stim Gait Trainer Improves The Patient Ability To Walk Through Continuous Practice
  • Figure 3-157: Reha-Stim Bi-Manu-Track Hand and Wrist Rehabilitation Device
  • Figure 3-158: Reha-Stim Gait Trainer GT I Harness
  • Figure 3-159: Motorized Physiotherapy Controlled Mobilization Goals of phase 1 rehabilitation
  • Table 3-160: Continuous Passive Motion (CPM) Device Benefits Following Knee Arthroplasty
  • Figure 3-161: Chattanooga CPM
  • Table 3-162: Chattanooga Active-K Functions
  • Figure 3-163: DJO Chattanooga Active-K
  • Figure 3-164: Chattanooga Active-K Motorized Physiotherapy Unit Integration Benefits
  • Figure 3-165: Chattanooga Active-K Motorized Physiotherapy Controlled Mobilization
  • Figure 3-166: Chattanooga Active-K Motorized Physiotherapy CPM (Continuous Passive Motion
  • Figure 3-167: Chattanooga Active-K Motorized Physiotherapy Controller
  • Figure 3-168: DJO Chattanooga Active-K Features:
  • Table 3-169: Chattanooga Active-K Motorized Physiotherapy Therapeutic Modes
  • Figure 3-170: Chattanooga Active-K Motorized Physiotherapy Therapeutic Benefits
  • Figure 3-171: Chattanooga OptiFlexR 3 Knee Continuous Passive Motion (CPM) Device
  • Table 3-172: Chattanooga Optiflex Knee CPM Unique Features:
  • Table 3-173: Chattanooga Optiflex CPM Use While Resting
  • Table 3-174: Chattanooga Optiflex Knee CPM Standard Functions:
  • Table 3-175: Chattanooga OptiFlexR 3 Knee Continuous Passive Motion (CPM) Specifications:
  • Figure 3-176: Chattanooga OptiFlexR 3 Ankle Continuous Passive Motion (CPM)
  • Table 3-177: Chattanooga Optiflex Ankle CPM Features:
  • Table 3-178: Chattanooga Optiflex Ankle CPM Specifications:
  • Table 3-179: Chattanooga Optiflex Shoulder CPM Features:
  • Figure 3-180: Chattanooga OptiFlexR 3 Elbow Continuous Passive Motion (CPM)
  • Table 3-181: Chattanooga OptiFlex Elbow CPM Features:
  • Figure 3-182: Chattanooga OptiFlexR 3 Elbow Continuous Passive Motion (CPM)
  • Table 3-183: Chattanooga OptiFlexR 3 Elbow Continuous Passive Motion (CPM) Specifications:
  • Figure 3-184: Chattanooga OptiFlexR 3 Elbow Continuous Passive Motion (CPM) Flexion
  • Figure 3-185: Chattanooga OptiFlex S Shoulder Continuous Passive Motion (CPM)
  • Table 3-186: Chattanooga OptiFlex Shoulder CPM Features:
  • Figure 3-187: Paterson Kinetec Knee CPM
  • Table 3-188: Paterson Kinetec Spectra Knee CPM Features:
  • Table 3-189: Paterson Kinetec Spectra Knee CPM Treatment Modes
  • Figure 3-190: Global Medical CPM device
  • Table 3-191: Global Medical CPM device Features
  • Figure 3-192: Global Medical Handheld Controller
  • Figure 3-193: Furniss Corporation Model 1800. Knee CPM
  • Table 3-194: Furniss Corporation CPM 1800 Features
  • Figure 3-195: Furniss Corporation CP
  • Figure 3-196: Furniss Corporation Phoenix Model 1850 Knee CPM
  • Figure 3-197: Furniss Corporation Continuous Passive Motion DC2480 Knee CPM
  • Figure 3-198: Danniflex 480 Lower Limb CPM Unit
  • Table 3-199: Danniflex Lower Limb CPM Features
  • Figure 3-200: Rehab-Robotics Company Hand of Hope Therapeutic Device
  • Figure 3-201: Rehab-Robotics Repetitive Training System
  • Table 3-202: Rehab-Robotics Hand of Hope Movement Control
  • Figure 3-203: Rehab-Robotics Modes Provide Different Levels Of Assistance In Movement Of Patient's Hand
  • Figure 3-204: Rehab-Robotics Different Modes
  • Figure 3-205: Rehab-Robotics Arm Training
  • Table 3-206: Rehab-Robotics Hand of Hope Modes
  • Figure 3-207: Bioxtreme Robotic Rehabilitation System
  • Figure 3-208: Corbys Rehabilitation Robot
  • Figure 3-209: Corbys Rehabilitation System
  • Figure 3-210: Corbys Rehabilitation Orthosis Actuation Test Stand
  • Figure 3-211: Corbys Mobile Robotic Gait Rehabilitation System
  • Figure 3-212: Swtotek Leg Orthosis of Motion Maker
  • Table 4-1: Rehabilitation Robot System Concerns Addressed During System Design
  • Table 4-5: Rehabilitation Robots Software Functions
  • Table 4-6: InMotion Robots Immediate Interactive Response Sets
  • Table 4-7: HEXORR: Hand Exoskeleton Rehabilitation Robot Technology Benefits
  • Table 4-8: HEXORR: Hand Exoskeleton Rehabilitation Robot Technology Monitoring
  • Table 4-9: HEXORR: Hand EXOskeleton Rehabilitation Robot Treatment Benefits
  • Table 4-10: HEXORR: Hand EXOskeleton Rehabilitation Robot Technology Force and Motion Sensor Benefits
  • Figure 4-11: Hand Spring Operated Movement Enhancer
  • Figure 4-12: Hand Spring Robot Operated Movement Enhancer
  • Table 5-1: AlterG Anti-Gravity Treadmills Features Built On Differential Air Pressure Technology
  • Table 5-2: AlterG Anti-Gravity Treadmills Target Markets
  • Table 5-3: AlterG Product Positioning
  • Figure 5-4: Selected US Regional AlterG M300 Customer Clusters
  • Figure 5-5: AlterG / Tibion Bionic Leg
  • Figure 5-6: Afetech ZeroG Gait & Balance
  • Figure 5-7: Aretech Rehabilitation Robot
  • Table 5-8: Berkley Robotics and Human Engineering Laboratory Research Work
  • Table 5-9: Berkley Robotics and Human Engineering Laboratory Research Work
  • Figure 5-10: Bioxtreme Robotics Rehabilitation For Cerebral Stroke Or Traumatic Brain Injuries (TBI) On Error Enhancement Technology
  • Figure 5-11: Breg Home Therapy CPM Continuous Passive Motion Practice Kits
  • Table 5-12: DJO Rehabilitation Product Target Markets
  • Table 5-13: DJO Rehabilitation Product Targets Care Givers
  • Figure 5-14: Ekso Bionics Regional Presence
  • Table 5-15: FOCAL Meditech BV Products:
  • Table 5-16: Focal Meditech BV Collaborating Partners:
  • Table 5-17: Hocoma Robotic Rehabilitation Used In Rehabilitation Medicine:
  • Table 5-18: Hocoma Therapy Solutions Treatments
  • Table 5-19: Honda's Principal Automobile Products
  • Figure 5-20: Honda Walk Assist
  • Figure 5-21: Honda Motors Prototype Stride Management Motorized Assist Device
  • Table 5-22: Instead Technologies Research:
  • Table 5-23: Instead Technologies Consultancy Services:
  • Table 3-24: iRobot / InTouch Health RP-VITA
  • Figure 3-25: iRobot / InTouch Health RP-VITA
  • Table 5-26: Karman DME Internet Authorized Dealers
  • Figure 5-27: Mobility Research LiteGait Device
  • Figure 5-28: Reha G-EO Robotic Rehabilitation Device
  • Table 5-29: Reha Technology G-EO System
  • Table 5-30: RUR Key Market Areas For Robotic Technologies
  • Figure 3-31: Secom Co.Ltd MySpoon Manual Mode
  • Table 3-32: Secom Co.Ltd MySpoon Features in Manual Mode
  • Figure 3-33: Secom Co.Ltd MySpoon Semi-automatic Mode
  • Table 3- 34: Secom Co.Ltd MySpoon Semi-automatic Mode
  • Figure 3-35: Secom Co.Ltd MySpoon Automatic Mode
  • Table 3-36: Secom Co.Ltd MySpoon Automatic Mode
  • Table 5-37: Sunrise Medical Products
  • Figure 3-38: Sunrise Medical Whitmyer Biomechanics Head Support
  • Table 3-39: Sunrise Medical Whitmyer Biomechanics Headrest Features
  • Figure 5-40: Touch Bionics Prosthetic Technologies
  • Figure 5-41: Tyromotion GmbH Employee Group
  • Table 5-42: Tyromotion GmbH PabloRPlus System Strengthens The Upper Extremity Hand, Arm And Wrist Functions
  • Table 5-43: Tyromotion Network
Back to Top