表紙
市場調査レポート

無人航空機発進システム: 世界市場シェア、市場戦略、および市場予測 - 2015年〜2021年

Drone Launchers: Market Shares, Market Strategies, and Market Forecasts Worldwide, 2015 to 2021

発行 WinterGreen Research, Inc. 商品コード 325285
出版日 ページ情報 英文 393 Pages
即納可能
価格
本日の銀行送金レート: 1USD=101.50円で換算しております。
Back to Top
無人航空機発進システム: 世界市場シェア、市場戦略、および市場予測 - 2015年〜2021年 Drone Launchers: Market Shares, Market Strategies, and Market Forecasts Worldwide, 2015 to 2021
出版日: 2015年03月01日 ページ情報: 英文 393 Pages
概要

無人航空機発進システムの世界市場の規模は、2014年の1億5100万米ドルから大きく拡大し、2021年には12億米ドルに達するものと予測されます。

当レポートは、ドローンおよび無人航空機システム(UAS)発進装置の世界市場を精査しています。この市場の成長促進要因やシステム価格、地域市場についての分析、また陸上移動式装置、潜水艦上発進装置、艦船甲板上装置、およびトラック搭載型装置など、主要各社のさまざまな製品および技術についての分析を行っており、さらに2015年から2021年に至る市場予測を提供しています。

無人航空機発進システム: エグゼクティブ・サマリー

  • 発進システム市場の市場成長促進要因
  • 発進システム市場の市場シェア
  • 発進システム市場の将来予測

第1章 ドローンおよび無人航空機システム(UAS)用発進装置: 市場概要ならびに市場ダイナミクス

  • 戦術的UASの諜報、監視、および偵察アーキテクチャ
    • 無人航空機の発進システム
  • 米国連邦航空局のUASオフィス
    • UASの衝突回避システムの進化
    • UASの運用と安全性とが一般航空機に対して与える影響
    • 米国政府の無人航空機に関するコミットメント
  • 重要戦略拠点における常備型UAS
  • 無人航空機システム(UAS) - 各種活用モード
  • 国際化と技術
    • 通常軍用技術の拡散
    • UASの一般的役割
  • 国境巡視
  • UAS用の軽量でより強力なパワーソースの開発
    • センサーおよびペイロード

第2章 ドローンおよび無人航空機システム(UAS)用発進装置: 市場シェアおよび市場予測

  • 発進システム市場の市場成長促進要因
  • 発進システム市場シェア
  • 発進システム市場予測
  • ドローンおよびUAS発進システム価格
  • ドローン発進システムの地域市場分類

第3章 ドローンおよび無人航空機システム(UAS)用発進装置: 各社製品概要

  • Northrop Grumman
  • Textron/AAI UAV発進システム
  • Lockheed Martin
  • Aries Ingenieriay Sistemas
  • BAE System
  • Boeing Scan Eagle
  • RUAG UAV Launchers
  • Eli Military Simulations 空気圧式UAVカタパルト
  • Aeromao UAV発進システム
  • Robonic UAV発進システム
  • Sea Corp
  • Zodiac Aerospace
  • VTI UAVカタパルトおよび発進装置
  • NASA
  • UAV Factory
  • Arcturus UAV
  • Ilmor Engineering
  • Tasuma
  • CCUVS UAS発進装置
  • Hood Technology Mechanical
  • UAVSI
  • Raytheon
  • ChandlerMay FuryはRobonicsの発進装置を使用
  • BUK地上軍航空防衛システム
  • UAV Solutions
  • Marotta
  • 無線通信
  • フランス艦船の甲板上ドローン発進システム
  • カナダ航空母艦/砕氷船は甲板上ドローン発進システムを使用
  • 中国の航空機発進システム

第4章 ドローンおよび無人航空機システム(UAS)用発進装置: 各社の技術

第5章 ドローンおよび無人航空機システム(UAS)用発進装置: 主要企業プロファイル

目次
Product Code: SH26216917

The designs developed by engineering staff are strong, sturdy, and capable of operating in the most severe environmental conditions. Modular designs create the capacity for interchangeable functions on the same launcher. Modular systems support component replacement instead of complete overhaul.

Launcher use by regular people depends on ease of use. These people may be unfamiliar with how to use the launcher. Units are user-friendly. In-the-field serviceability is a necessity because the unmanned systems may be located anywhere. The value of the systems is that they are flexible and easily sent off in the place where there is trouble, where they are needed. In this instance, quick re-configuration is a necessity.

They provide extensive experience in weight management, RFI problem solving, range maximization and optimization of system performance, and integration of airframe, avionics and payloads. The aim is to design launchers for UAVs/UATs of any geometric configuration and exit velocity.

According to Susan Eustis, lead author of the team that prepared the study, "Low-cost, long-endurance autonomous unmanned vehicles represent one aspect of miniature robotic aircraft. Systems integration, communications capability and payload technologies are slated to support market growth going forward. Market growth comes because as the defense budgets of the industrialized nations will fund the technology for launchers in order to create good enough surveillance and strike capacity. These capabilities are core in a world dominated by globally integrated enterprises. "

Markets at $151 million in 2014 are anticipated to reach $1.2 billion by 2021. Launchers frequently are used by someone who is unfamiliar with them, it is important that they be user-friendly. There are a range of different types of launchers, field mobile frame devices, submarine devices, ship deck devices, and truck bed launchers. All these will see growth of varying degree.

Table of Contents

LAUNCHERS FOR DRONES EXECUTIVE SUMMARY

  • Launchers Market Driving Forces
  • Launchers Market Shares
  • Launchers Market Forecasts

1. LAUNCHERS FOR DRONES AND UNMANNED AERIAL SYSTEMS (UAS): MARKET DESCRIPTION AND MARKET DYNAMICS

  • 1.1 Tactical UAS Intelligence, Surveillance And Reconnaissance Architectures
    • 1.1.1 UAV Launch Systems
  • 1.2 UAS Offices at FAA
    • 1.2.1 UAS Sense and Avoid Evolution
    • 1.2.2 UAS Operational and Safety Impacts for General Aviation Aircraft GA Access
    • 1.2.3 US Commitment to Unmanned Aerial Vehicles
  • 1.3 Pre-Position UASs In Key Strategic Locations
    • 1.3.1 Maritime Air Take-Off and Landing:
    • 1.3.2 Unmanned Aerial Systems (UAS) Aerial Refueling
    • 1.3.3 Unmanned Aerial Systems (UAS) Enhanced Strike Capability and Payloads
    • 1.3.4 Unmanned Aerial Systems (UAS) Enhanced Resilience
    • 1.3.5 Increased Use Of Stealth
    • 1.3.6 Small and Micro-UASs
    • 1.3.7 Unmanned Aerial Systems (UAS) Organization, Culture and CONOPS:
  • 1.4 Unmanned Aerial Systems (UAS) Convoy-Following Mode
    • 1.4.1 Unmanned Aerial Systems (UAS) Corridor Mapping
    • 1.4.2 Unmanned Aerial Systems (UAS) Traffic Monitoring
    • 1.4.3 Unmanned Aerial Systems (UAS) Agriculture Mapping
    • 1.4.4 Unmanned Aerial Systems (UAS) Homeland Security
    • 1.4.5 Unmanned Aerial Systems (UAS) for Scientific Research
  • 1.5 Globalization and Technology
    • 1.5.1 Proliferation of Conventional Military Technologies
    • 1.5.2 UASs General Roles
  • 1.6 Border Patrol:
  • 1.7 Development Of Lighter Yet More Powerful Power Sources For UASs
    • 1.7.1 Sensors & Payloads

2. LAUNCHERS FOR DRONES AND UNMANNED AERIAL SYSTEMS (UAS): MARKET SHARES AND MARKET FORECASTS

  • 2.1 Launchers Market Driving Forces
  • 2.2 Launchers Market Shares
    • 2.2.1 Northrop Grumman
    • 2.2.2 Northrop Grumman UAV Capsule Launch
    • 2.2.3 BAE Portable Launchers
    • 2.2.4 Textron Launcher
    • 2.2.5 Lockheed Martin
    • 2.2.6 Aries 81
    • 2.2.7 Robonic UAV Launching Systems
    • 2.2.8 Robonic 3rd Generation Launcher
    • 2.2.9 Sea Corp
    • 2.2.10 Zodiac
    • 2.2.11 Hood Tech Mechanical
    • 2.2.12 Boeing and The Insitu Group
  • 2.3 Launchers Market Forecasts
    • 2.3.1 Drone Submarine Launchers, Market Forecasts
    • 2.3.2 Drone Ship Deck Launchers
    • 2.3.3 Drone Truck Bed Launchers, Market Forecasts
    • 2.3.4 Drone Mobile Ground Frame Launchers
    • 2.3.5 Launchers by Drones by Sector, Submarine, Ship Deck, Truck Bed, Mobile Ground Frame
    • 2.3.6 Drone Innovation: Solar Powered Endurance of 300 Hours
  • 2.4 Launchers for Drones and Unmanned Aerial Systems (UAS) Prices
  • 2.5 Launchers for Drones Regional Market Segments

3. LAUNCHERS FOR DRONES AND UNMANNED AERIAL SYSTEMS (UAS): PRODUCT DESCRIPTION

  • 3.1 Northrop Grumman
    • 3.1.1 Northrop Grumman Surface Ship Eject Launch Capability Modular Launch System (MLS)
    • 3.1.2 Northrop Grumman Underwater Launch Systems
    • 3.1.3 Northrop Grumman UAV Capsule Launch
    • 3.1.4 Northrop Grumman Department of Defense Contracts
    • 3.1.5 US Navy and Northrop Grumman Launch Unmanned Plane Off The Deck Of An Aircraft Carrier
  • 3.2 Textron / AAI UAV Launchers
    • 3.2.1 Textron Targeting Data For Precision Weapons
    • 3.2.2 Textron / AAI UAV Systems
    • 3.2.3 Textron BattleHawk Launcher and Targets:
  • 3.3 Lockheed Martin
    • 3.3.1 Lockheed Martin MK 41 Vertical Launching System
    • 3.3.2 Lockheed Martin Single Cell Launcher
    • 3.3.3 Lockheed Martin Extensible Launching System
    • 3.3.4 Lockheed Martin Vertical Launch Anti-Submarine Rocket (ASROC)
    • 3.3.5 Lockheed Martin Participates in UCLASS, Unmanned Carrier Launched Airborne Surveillance and Strike System
    • 3.3.6 Lockheed Martin's Samarai Launching With A Flick Of The Wrist
  • 3.4 Aries Ingenieríay Sistemas
    • 3.4.1 Aries BULL EL-01- Bungee UAV Light Launcher
    • 3.4.2 Aries Atlas ME-01- Advanced Tactical UAV/UAT Launcher System
    • 3.4.3 Aries Alppul LP-02- Advanced Low-Pressure Pneumatic UAV Launcher
    • 3.4.4 Aries Hercules AH-01- High-Energy Rail Catapult UAV Launcher Evolved System
    • 3.4.5 Aries LAE - High-Energy Launcher
  • 3.5 BAE System
    • 3.5.1 BAE Portable Launchers
  • 3.6 Boeing Scan Eagle
    • 3.6.1 Boeing and The Insitu Group
    • 3.6.2 Boeing Insitu UAV Launcher
    • 3.6.3 Boeing Insitu Mark 4 Launcher
    • 3.6.4 Insitu Compact Mark 4 Launcher
    • 3.6.5 Boeing Insitu Ship Deck Drone Launch
  • 3.7 RUAG UAV Launchers
    • 3.7.1 RUAG Ariane 5
    • 3.7.2 RUAG Atlas V-500
    • 3.7.3 RUAG Vega
  • 3.8 Eli Military Simulations UAV Pneumatic Catapult
  • 3.9 AeromaoUAV Launcher
  • 3.10 Robonic UAV Launching Systems
    • 3.10.1 Robonic 3rd Generation Launcher
    • 3.10.2 Robonic Launching Tactical UAS
    • 3.10.3 Robonic Launching High Performance Target Drones
    • 3.10.4 Robonic Field Performance
  • 3.11 Sea Corp
    • 3.11.1 Sea Corp Inflator-Based UAV Launchers
    • 3.11.2 Sea Corp Hellshot Launcher
    • 3.11.3 Sea Corp CCLR Launcher
    • 3.11.4 Sea Corp New Developments
  • 3.12 Zodiac Aerospace
    • 3.12.1 Zodiac ESCO UAV Launch & Recovery Systems and HP 2002 Expeditonary Launcher
    • 3.13 VTI 164
  • 3.13.1 VTI UAV Catapults and Launchers
  • 3.14 NASA 164
    • 3.14.1 NASA RF Transparent UAV Launcher
  • 3.15 UAV Factory
    • 3.15.1 UAV Factory Car Top Launcher
    • 3.15.2 UAV Factory 6 kJ Portable Pneumatic Catapult
  • 3.16 Arcturus UAV
    • 3.16.1 Arcturus Catapult Launcher System
    • 3.16.2 Arcturus Pneumatic Capture System
  • 3.17 Ilmor Engineering
    • 3.17.1 Ilmor KJ Series UAV Launcher
  • 3.18 Tasuma 176
    • 3.18.1 Tasuma A3 Observer
    • 3.18.2 Tasuma UAV Launcher LTL 1
    • 3.18.3 Tasuma UAV Launcher TML 2
      • 3.18.4 Tasuma UAV Launcher TML 3
    • 3.18.5 Tasuma UAV Launcher TML 3 (Ultima version)
    • 3.18.6 Tasuma UAV LaunchersTML 4
    • 3.19 Canadian Center for Unmanned Vehicle System
  • 3.19.1 CCUVS UAS Launcher
  • 3.20 Hood Technology Mechanical
    • 3.20.1 Hood Launcher
    • 3.20.2 Hood Superwedge HP
    • 3.20.3 Hood Mark 4
  • 3.21 UAVSI 190
    • 3.21.1 UAVSI Launcher
  • 3.22 Raytheon
    • 3.22.1 Raytheon Submarine Launched UAV
  • 3.23 ChandlerMay Fury Uses Robonics Launcher
  • 3.24 "BUK" Ground Force Air Defense System
    • 3.24.1 BUK / Ukroboronservice, A State-Owned Enterprise In Ukraine
  • 3.25 UAV Solutions
    • 3.25.1 Talon 120
    • 3.25.2 Talon 240
    • 3.25.3 UAV Solutions Phoenix 15
    • 3.25.4 UAV Solutions Phoenix 30
    • 3.25.5 Phoenix 60
    • 3.25.6 UAV Solutions Ground Control Systems
    • UAV Solutions Ground Control
    • 3.25.7 UAV Solutions Ground Support Equipment
    • UAV Solutions
  • 3.26 Marotta 221
    • 3.26.1 Marotta Controls Provides Critical Component Of Launcher
    • 3.26.2 Marotta Controls Contract from Lockheed Martin
    • 3.26.3 Marotta ControlsElectronic Controls for Critical Applications
    • 3.26.4 Marotta Controls Reliable Control Actuation Systems
    • 3.26.5 Marotta Controls Multi-Functionality: Isolate and Regulate with Just One Valve
    • 3.26.6 Marotta Controls Launch Actuation Advanced Piezo Technology
  • 3.27 RF Communications
  • 3.28 French Ship Deck Drone Launcher
  • 3.29 Canadian Carrier / Ice Breaker Use Ship Deck Drone Launchers
    • 3.29.1 Drone Shipboard Launcher Use by Subsidiary of Vale, the Brazilian Mining Giant
  • 3.30 Chinese Aircraft Launchers

4. LAUNCHERS FOR DRONES AND UNMANNED AERIAL SYSTEMS (UAS): TECHNOLOGY

  • 4.1 Link Margin (Fly-By) Analysis
    • 4.1.1 Launcher Patterns of Sector Antenna
  • 4.2 UAS Launcher Rapid Technological Advances
  • 4.3 Launcher Silicon Substrate Layering Technology
  • 4.4 Tasuma Epoxy Composites
  • 4.5 Launchers For UAS Sense and Avoid Evolution Avionics Approach
    • 4.5.1 FAA Drones Proposed Rules
    • 4.5.2 UAS Airspace Control LD-CAP Conceptual Architecture
  • 4.6 Northrop Grumman.BAT UAV Open Architecture
  • 4.7 Integrated Dynamics Flight Telecommand & Control Systems
    • 4.7.1 AP 2000
    • 4.7.2 AP 5000
    • 4.7.3 IFCS-6000 (Integrated Autonomous Flight Control System)
    • 4.7.4 IFCS-7000 (Integrated Autonomous Flight Control System)
    • 4.7.5 Portable Telecommand And Control System (P.T.C.S.)
  • 4.8 Integrated Radio Guidance Transmitter (IRGX)
    • 4.8.1 Portable Telecommand And Control System (P.T.C.S.)
  • 4.9 IRGX (Integrated Radio Guidance Transmitter)
    • 4.9.1 Ground Control Stations
    • 4.9.2 GCS 1200
    • 4.9.3 GCS 2000
  • 4.10 Antenna Tracking Systems
    • 4.10.1 ATPS 2000
    • 4.10.2 Gyro Stabilized Payloads
    • 4.10.3 GSP 100
    • 4.10.4 GSP 900
    • 4.10.5 GSP 1200
  • 4.11 Civilian UAV's - Rover Systemstm
  • 4.12 CPI-406 Deployable Emergency Locator Transmitter (ELT)
    • 4.12.1 Deployable Flight Incident Recorder Set (DFIRS)
    • 4.12.2 Airborne Separation Video System (ASVS)
    • 4.12.3 Airborne Separation Video System - Remote Sensor (ASVS - RS)
    • 4.12.4 Airborne Tactical Server (ATS)
  • 4.13 Aurora Very High-Altitude Propulsion System (VHAPS)
    • 4.13.1 Aurora Autonomy & Flight Control
    • 4.13.2 Aurora Guidance Sensors And Control Systems MAV Guidance
    • 4.15.1 United States Navy's Broad Area Maritime Surveillance (BAMS) Unmanned Aircraft System (UAS) program
    • 4.15.2 Navy Unmanned Combat Air System UCAS Program:
    • 4.15.3 Navy Unmanned Combat Air System UCAS: Objectives:
  • 4.16 Search and Rescue (SAR)

5. LAUNCHERS FOR DRONES AND UNMANNED AERIAL SYSTEMS (UAS): COMPANY PROFILES

  • 5.1 Aeromao
  • 5.2 Arcturus UAV
    • 5.2.1 Arcturus UAV, sub-contractor to CSC, Award from U.S. Navy, NAVAIR
  • 5.3 Aries Ingenieria y Sistemas
    • 5.3.1 Aries Ingeniería y Sistemas Continues Growing Globally
  • 5.4 BAE Systems
    • 5.4.1 BAE Systems Organization
    • 5.4.2 BAE Systems Performance
    • 5.4.3 BAE Systems Key Facts
    • 5.4.4 BAE Systems Strategy
    • 5.4.5 BAE Systems Operational Framework
    • 5.4.6 Key Performance Indicators (KPIs)
    • 5.4.7 BAE Systems Risk Management
    • 5.4.8 BAE Systems Received $313 Million Contract for Continued Research and Development of PIM
    • 5.4.9 BAE Systems' Paladin Integrated Management
  • 5.5 Boeing
    • 5.5.1 Boeing 787 Dreamliner
    • 5.5.2 Boeing 787 Dreamliner Performance
    • 5.5.3 Boeing Advanced Technology
    • 5.5.4 Boeing Participation In Commercial Jet Aircraft Market
    • 5.5.5 Boeing Participation In Defense Industry Jet Aircraft Market
    • 5.5.6 Boeing Defense, Space & Security
    • 5.5.7 Boeing Advanced Military Aircraft:
    • 5.5.8 Boeing Military Aircraft
    • 5.5.9 Boeing-iRobot SUGV for US Army
    • 5.5.10 Boeing / Insitu
    • 5.5.11 Insitu Deployed Operations
    • 5.5.12 Insitu Integrated Logistics Support
    • 5.5.13 InsituTechnology
    • 5.5.14 Insitu Innovation
    • 5.5.15 Insitu Small Tactical Unmanned Air System/Tier II Contract
    • 5.5.16 Insitu's ScanEagle Unmanned Aircraft System Selected by U.S. Air Force Academy to Train Cadets
    • 5.5.17 Insitu / FAA Unmanned Aircraft Systems National Airspace Integration Research
  • 5.6 Canadian Centre for Unmanned Vehicle Systems
    • 5.3.1 Canadian Centre for Unmanned Vehicle Systems (CCUVS)
    • 5.3.2 CCUVS Knowledge, Awareness, Learning & Skills
    • 5.7 Cobham Antenna Systems
    • 5.7.1 Cobham Antenna Systems Unmanned Vehicle Antennas (UAVs, UGVs, Robotics)
    • 5.7.2 Cobham Antenna Systems Omni - Rugged Dipole Antennas
    • 5.7.3 Cobham Antenna Systems Omni - Slim Flexible Dipole Antennas
    • 5.7.4 Cobham Blade - Omni Directional Antennas
    • 5.7.5 Cobham Blade - Directional Antennas
    • 5.7.6 Cobham Ground Control Station Antennas
      • 5.7.7 Cobham Antenna Systems Sector Antennas
    • 5.7.8 Cobham Antenna Systems Multi Sector Antennas
    • 5.7.9 Cobham Antenna Systems Omni-Directional Antennas
  • 5.8 Eli Military Simulations
  • 5.9 Hood Tech Mechanical
  • 5.10 Ilmor Engineering
  • 5.11 Lockheed Martin
    • 5.11.1 Lockheed Martin SYMPHONY Improvised Explosive Device Jammer Systems
    • 5.11.2 Lockheed Martin Electronic Systems
  • 5.12 Marotta Controls
    • 5.12.1 Marotta Controls Electronic Components
    • 5.12.2 Award-Winning Power Conversion
  • 5.13 NASA 343
    • 5.13.1 NASA's Future
    • 5.13.2 NASA Exploration
    • 5.13.3 NASA International Space Station
    • 5.13.4 NASA Aeronautics
    • 5.13.5 NASA Science
  • 5.14 Northrop Grumman
    • 5.14.1 Northrop Grumman Business Sectors
    • 5.14.2 Northrop Grumman Electronic Systems
    • 5.14.3 Northrop Grumman Information Systems
    • 5.14.4 Northrop Grumman Technical Services
    • 5.14.5 Northrop Grumman
    • 5.14.6 Northrop Grumman Supplies Marine Navigation Equipment
    • 5.14.7 Northrop Grumman Recognized by UK Ministry of Defense for Role in Supporting Sentry AWACS Aircraft During Military Operations in Libya
    • 5.14.8 Northrop Grumman Corporation subsidiary Remotec Inc. upgrade the U.S. Air Force fleet of Andros HD-1
    • 5.14.9 Northrop Grumman NAV CANADA Supplier
  • 5.15 QinetiQ North America
    • 5.15.1 QinetiQ North America
    • 5.15.2 QinetiQ Starts Spinoff from United Kingdom Ministry of Defense, Defense Evaluation and Research Agency (DERA)
    • 5.15.3 QinetiQ / Foster Miller
    • 5.15.4 QinetiQ North America Order for 100 Dragon Runner 10Micro Robots:
    • 5.15.5 QinetiQ / Automatika
    • 5.15.6 QinetiQ Customer Base
  • 5.16 Raytheon
  • 5.17 REBEL Space BV
  • 5.17.1 Launch systems
  • 5.18 Robonic UAV Launching Systems
  • 5.19 RUAG 369
    • 5.19.1 RUAG Space wins major Ariane 5 payload fairing contract
  • 5.20 Sea Corp
    • 5.20.1 Sea Corp Growth
    • 5.20.2 Sea CorpSmall Business Partnering
  • 5.21 Tasuma 373
  • 5.22 Textron 374
    • 5.22.1 Textron Cessna Segment
    • 5.22.2 Textron Systems Segment
    • 5.22.3 Textron Unmanned Aircraft Systems
    • 5.22.4 Textron Land and Marine Systems
    • 5.22.5 Textron Weapons and Sensors
    • 5.22.6 Textron Mission Support and Other
    • 5.22.7 Textron Industrial Segment
    • 5.23 UAV Factory
    • 5.23.1 UAV Factory - 54.5 hour nonstop flight - new world endurance record
  • 5.24 UAVSI 380
    • 5.24.1 UAVSI Product Deployment
    • 5.24.2 UAVSI Products
  • 5.25 UAV Solutions
    • UAV Solutions
    • 5.25.1 UAV Solutions Manufacturing Capabilities
  • 5.26 VTI 385
  • 5.27 Zodiac Aerospace
    • 5.27.1 Zodiac Strategy
  • Table ES-1 Launchers for Drones and Unmanned Aerial Systems (UAS) Market Driving Forces
  • Figure ES-2 Launchers for Drones Market Shares, Dollars, Worldwide, 2014
  • Figure ES-3 Drone Launchers, Market Forecasts Dollars, Worldwide, 2015-2021
  • Table 1-1 UAS Operational and Safety Impacts for General Aviation
  • Table 1-2 UAS Sense and Avoid Evolution
  • Figure 1-3 Cooperative Autonomous Sense and Avoid for Unmanned Aircraft Systems
  • Figure 1-4 Key Unmanned Aircraft Integration Challenges
  • Table 1-5 Ability Of UASs To Perform Strike Function
  • Figure 1-6 Mosaic And Footprint Shape Files To Identify Frames
  • Figure 1-7 Increase In Resolution That Is Possible With Georeferenced Imagery
  • Table 1-8 Department of Transportation Applications
  • Table 1-9 Unmanned Aerial Systems (UAS) Homeland Security Sites To Be Monitored
  • Table 2-1 Launchers for Drones and Unmanned Aerial Systems (UAS) Market Driving Forces
  • Figure 2-2 Launchers for Drones Market Shares, Dollars, Worldwide, 2014
  • Figure 2-3 Launchers for Drones and Unmanned Aerial Systems Market Shares, Units and Dollars, Worldwide, 2014
  • Figure 2-4 BAE Portable Launchers
  • Figure 2-5 Textron Shadow 200 Launcher
  • Figure 2-6 Drone Launchers, Market Forecasts Dollars, Worldwide, 2015-2021
  • Table 2-7 Launchers for Drones, Dollars, Worldwide, 2015-2021
  • Figure 2-8 Large, Mid-Size, and Small Launchers for Drones and Unmanned Aerial Systems (UAS), Market Forecasts Dollars, Worldwide, 2015-2021
  • Figure 2-9 Drone Submarine Launchers, Market Forecasts Dollars, Worldwide, 2015-2021
  • Figure 2-10 Drone Ship Deck Launchers, Market Forecasts Dollars, Worldwide, 2015-2021
  • Figure 2-11 Drone Truck Bed Launchers, Market Forecasts Dollars, Worldwide, 2015-2021
  • Figure 2-12 Drone Mobile Ground Frame Launchers, Market Forecasts Dollars, Worldwide, 2015-2021
  • Table 2-13 Launchers by Sector, Submarine, Ship Deck, Truck Bed, Mobile Ground Frame, Dollars, Worldwide, 2015-2021
  • Table 2-14 Launchers by Sector, Submarine, Ship Deck, Truck Bed, Mobile Ground Frame, Percent, Worldwide, 2015-2021
  • Table 2-15 Drone and Unmanned Aerial Vehicle (UAV) Advantages
  • Table 2-16 Drone and Unmanned Aerial Vehicle (UAV) Trends
  • Table 2-17 Drone Functions
  • Table 2-18 Drone Features
  • Table 2-19 Drone Mission Tasks
  • Table 2-20 Drone Benefits
  • Figure 2-21 Launchers for drones Regional Market Segments, Dollars, 2014
  • Table 2-22 Drone Launcher Regional Market Segments, 2014
  • Figure 3-1 Northrop Grumman Surface Ship Eject Launch
  • Figure 3-2 Northrop Grumman Eject Launch Units
  • Figure 3-3 Northrop Grumman Eject Launch Systems and MLS: Flexible And Safe For Surface Ships
  • Figure 3-4 Northrop Grumman UAV Capsule Launch
  • Table 3-5 Northrop Grumman UAV Capsule Launch Features
  • Figure 3-6 Northrop Grumman X-47B
  • Figure 3-7 Northrop Grumman X-47B Aircraft Carrier Launch
  • Figure 3-8 Textron Launching From Inside A Truck
  • Table 3-9 Textron BattleHawk Features:
  • Figure 3-10 Lockheed Martin MK 41 Vertical Launching System
  • Figure 3-11 Lockheed Martin's Samarai Wrist Launcher
  • Figure 3-12 Aries UAV Launcher
  • Figure 3-13 Aries BULL EL-01- Bungee UAV Light Launcher
  • Figure 3-14 Aries ATLAS ME-01- Advanced Tactical UAV/UAT Launcher System
  • Figure 3-15 Aries ALPPUL LP-02- Advanced Low-Pressure Pneumatic UAV Launcher
  • Table 3-16 Aries HERCULES AH-01- High-Energy Rail Catapult UAV Launcher Evolved System
  • Figure 3-17 Aries LAE - High-Energy Launcher
  • Figure 3-18 BAE Portable Launchers
  • Table 3-19 BAE Systems Portable Launcher Features
  • Figure 3-20 Boeing ScanEagle Launched Via A Pneumatic Wedge Catapult Launcher
  • Figure 3-21 Boeing Insitu UAV Pneumatic Wedge Catapult Launcher
  • Figure 3-22 Boeing Insitu Mark 4 Launcher
  • Table 3-23 Insitu Drone Launcher Key Features:
  • Table 3-24 Insitu Drone Launcher System:
  • Table 3-25 Insitu Drone Launcher Dimensions:
  • Table 3-26 Insitu Drone Launcher Transport:
  • Table 3-27 Insitu Compact Mark 4 Launcher Key features: Insitu Compact Mark 4 Launcher's System: Insitu Compact Mark 4 Launcher's Dimensions: Insitu Compact Mark 4 Launcher's Transport:
  • Table 3-28 Aeromapper UAV Launcher Features:
  • Figure 3-29 Robonic Launching Tactical UAS
  • Figure 3-30 Robonic Launching High Performance Target Drones
  • Table 3-31 Sea Corp Inflator-Based UAV Launchers Features
  • Table 3-32 Sea Corp Hellshot Launcher Features
  • Table 3-33 NASA RF Transparent UAV Launcher Key Features:
  • Table 3-34 UAV Factory Car Top LauncherKey Features
  • Figure 3-35 UAV Factory 6 KJ Portable Pneumatic Catapult
  • Table 3-36 UAV Factory 6 kJ Portable Pneumatic Catapult Features
  • Figure 3-37 Arcturus Catapult Launcher System
  • Figure 3-38 Arcturus Pneumatic Capture System
  • Figure 3-39 Ilmor KJ Series UAV Launcher
  • Figure 3-40 Tasuma A3 Observer
  • Figure 3-41 Tasuma UAV Launchers LTL1 Observer
  • Figure 3-42 Tasuma UAV Launcher TML2 Observer
  • Figure 3-43 Tasuma UAV Launcher TML2 Observer
  • Figure 3-44 Tasuma UAV Launcher TML2 Observer
  • Figure 3-45 Tasuma UAV Launcher TML2 Observer
  • Figure 3-46 Canadian Center for Unmanned Vehicle System CCUVS UAS Launcher
  • Figure 3-47 Hood Launcher
  • Figure 3-48 Hood Superwedge HP
  • Figure 3-49 Hood Mark 4
  • Figure 3-50 UAVSI Launcher
  • Figure 3-51 Ratheon UAS Launch Vehicle
  • Figure 3-52 Raytheon Humraam
  • Table 3-53 BUK-M1 System Components:
  • Figure 3-54 BUK-M1 System Launcher
  • Figure 3-55 BUK Launcher
  • Figure 3-56 BUK Truck Launcher
  • Figure 3-57 UAV Solutions Prepares for Launch
  • Figure 3-58 UAV Solutions Talon 120 Platform Launches Easily From The Field
  • Table 3-59 UAV Solutions Talon 120 Features
  • Figure 3-60 UAV Solutions Talon 240 Field Launch-Able Long-Endurance UAS
  • Figure 3-61 UAV Solutions Talon 240 Field Launch-Able Long-Endurance Features
  • Figure 3-62 UAV Solutions Phoenix 15 Quad Rotor Unmanned Aerial System with Vertical Takeoff and Landing (VTOL) Capability
  • Figure 3-63 UAV Solutions Phoenix 15
  • Figure 3-64 UAV Solutions Phoenix 30
  • Figure 3-65 UAV Solutions Phoenix 30 Setup Time Of Less than 5 minutes
  • Figure 3-66 Phoenix 60 Payload Adaptable VTOL Surveillance Platform
  • Figure 3-67 UAV Solutions Ground Control Systems
  • Figure 3-68 UAV Solutions Ground Control Systems
  • Table 3-69 UAV Solutions Ground Support Equipment
  • Figure 3-70 Marotta Controls Electronic Controls for Critical Launching Applications
  • Figure 3-71 Marotta Controls Reliable Control Actuation Systems
  • Figure 3-72 Marotta Controls Line Of High Performance Piezo Actuated Valves
  • Figure 3-73 RF Communications Ground Equipment For Unmanned Systems
  • Figure 4-1 Link Margin (fly-by) Analyses
  • Figure 4-2 Typical Elevation Pattern of Sector Antenna used to Calculate Signal Strength
  • Figure 4-3 Link Margin (fly-by) Analyses Calculated Output Showing 40,000ft Altitude Signal Strength vs. Range
  • Table 4-4 Launcher Silicon Substrate Layering Functions
  • Table 4-5 FAA Proposed Drone Rules
  • Figure 4-6 UAS Airspace Control LD-CAP Conceptual Architecture
  • Table 4-7 UAS Automatic Surveillance Sense LD-CAP Experimental Environment
  • Figure 4-8 UAS Sense and Avoid: See and Avoid Requirement Aspects
  • Table 4-9 UAS Avionics Approach
  • Figure 4-10 Northrop Grumman.BAT UAV Features
  • Figure 4-11 Aurora Autonomy & Flight Control
  • Table 4-12 Aurora Development Capabilities
  • Table 4-13 Aurora / NASA Development Of Automated Landing Systems
  • Table 4-14 Aurora / NASA Development Automated Landing System
  • Table 4-15 Aurora / NASA Autopilot Development Issues
  • Table 4-16 Aurora / NASA Flare Planner Development
  • Table 4-17 Roles And Capabilities, Provided By Manned Platforms, With UASs by 2030
  • Figure 4-18 Size, Role, and Platform of Unmanned Aircraft
  • Table 4-19 Aircraft Prime Contractor Missions
  • Table 5-1 BAE Systems Company Positioning
  • Figure 5-2 BAE Systems Strategy
  • Figure 5-3 BAE Systems Contract for PIM
  • Table 5-4 Boeing Military Aircraft Key programs
  • Table 5-5 Boeing Unmanned Airborne Systems:
  • Table 5-6 Boeing Weapons:
  • Figure 5-7 Insitu Small Tactical Unmanned Air System
  • Figure 5-8 Insitu's ScanEagle Unmanned Aircraft System U.S. Air Force Academy Training
  • Table 5-9 Current CCUVS Objectives
  • Figure 5-10 Cobham Antenna Systems Drone Antenna
  • Table 5-11 Cobham Antenna Systems Products & Capabilities
  • Figure 5-12 Hood Aircraft Launchers
  • Figure 5-13 Hood Zip Line Testing
  • Figure 5-14 Wind Tunnel
  • Figure 5-15 Lockheed Martin Segment Positioning
  • Figure 5-16 Lockheed Martin Aeronautics Segment Portfolio
  • Figure 5-17 Lockheed Martin Aeronautics C130 Worldwide Airlift
  • Figure 5-18 Lockheed Martin Aeronautics Falcon Fighter
  • Figure 5-19 Lockheed Martin Electronic Systems Portfolio
  • Figure 5-20 Northrop Grumman Systems Segments
  • Figure 5-21 QinetiQ Dragon Runner Urban Operations Rugged Ultra-Compact, Lightweight And Portable Reconnaissance Robot
  • Table 5-22 QinetiQ Customer Base
  • Figure 5-23 Raytheon Humraam Radar
  • Figure 5-24 REBEL Space BV Launcher
  • Figure 5-25 UAV Solutions Systems
Back to Top