表紙
市場調査レポート

世界の定置型燃料電池市場:市場シェア・市場戦略・市場予測

Stationary Fuel Cells: Market Shares, Strategies, and Forecasts, Worldwide, 2014 to 2020

発行 WinterGreen Research, Inc. 商品コード 291088
出版日 ページ情報 英文 603 Pages
即納可能
価格
本日の銀行送金レート: 1USD=102.85円で換算しております。
Back to Top
世界の定置型燃料電池市場:市場シェア・市場戦略・市場予測 Stationary Fuel Cells: Market Shares, Strategies, and Forecasts, Worldwide, 2014 to 2020
出版日: 2014年02月26日 ページ情報: 英文 603 Pages
概要

定置型燃料電池の世界需要は、2013年の12億米ドルから2020年には143億ドルに拡大すると予測されています。この成長は天然ガスを利用した分散型発電の需要に基づくとみられます。

当レポートでは、世界の定置型燃料電池市場の現状と見通しについて調査分析し、燃料電池の市場背景と各種影響因子、燃料電池のタイプ・導入先・地域別の出荷数および出荷額実績・予測、エネルギーコスト分析、主要製品および技術の概要、主要企業の市場シェア、主要企業のプロファイルなどをまとめ、概略以下の構成にてお届けいたします。

定置型燃料電池市場のシェア・市場予測

第1章 定置型燃料電池:市場力学・市場概要

  • 定置型燃料電池市場力学・市場概要
  • 分散型発電
  • 固体酸化物燃料電池(SOFC)
  • ClearEdge Power はHT-PEMFC技術から手を引く
  • 分散型発電
  • 持続可能性および高エネルギー効率性が求められる産業化
  • 輸出市場の電力額
  • 燃料電池の動作
  • 燃料の環境上の課題
  • 電池の概要
  • 燃料電池の機能的特徴
  • 燃料電池システムにおける水
  • 燃料電池のパワー
  • 燃料電池:化学エネルギーを直接電気と熱に変換
  • 水素燃料電池技術
  • 定置型電力のアプリケーション
  • オングリッド・オフグリッドの課題
  • 規制緩和の影響
  • 燃料電池の課題
  • ボイラー
  • 燃料電池の信頼性
  • 燃料電池の供給インフラ
  • 法規制

第2章 定置型燃料電池:市場シェア・市場予測

  • 定置型燃料電池:市場成長牽引因子
  • 定置型燃料電池:市場シェア
  • 定置型燃料電池:市場予測
  • SOFC燃料電池:予測
  • PEM定置型燃料電池:予測
  • MCFC(溶融炭酸塩型燃料電池)定置型燃料電池
  • UTC PAFCプラチナコスト
  • SOFC・PEM・MCFC・MCFC 定置型燃料電池の分散型キャンパス環境
  • エネルギー市場予測
  • PEM膜/電極
  • エネルギーコスト
  • PEM・SOFC・MCFC・PAFC定置型燃料電池のアプリケーション・利用
  • MCFC・SOFC・PEMFCの長期コスト予測
  • 定置型燃料電池:強み・弱み
  • 定置型燃料電池価格
  • 地域分析

第3章 定置型燃料電池:製品概要

  • 燃料電池
  • SOFC
  • Bloom EnergyのSOFC
  • Ceramic Fuel CellsのSOFC
  • LG
  • SKKG Cultural and Historical Foundation / Hexis SOFC
  • Viessmann Group
  • Ceres の燃料電池
  • Acumentrics
  • Samsung
  • DelphiのSOFC
  • LGのSOFC
  • Phosphoric Acid Fuel Cell (PAFC)の定置型燃料電池
  • ClearEdgeのプロトン交換膜燃料電池(PEMFC)
  • Molten Carbonate Fuel Cell (MCFC)の発電所
  • FuelCell Energy
  • プロトン交換膜燃料電池(PEMFC)
  • Ballard

第4章 定置型燃料電池:技術

  • 燃料電池排出量プロファイル
  • Verizonは全国の19企業施設に電力を供給する大規模なグリーンエネルギープロジェクトを開始
  • 燃料電池は経済的に説得力のある属性バランスを提供
  • 定置型燃料電池の政府規制
  • 電解質が用いられている燃料電池のタイプ
  • IdaTechの燃料処理技術
  • リン酸型燃料電池(PAFC)
  • 溶融炭酸塩型燃料電池(MCFC)
  • 固体酸化物燃料電池(SOFC)
  • 燃料改質器
  • 燃料電池の概要
  • アルカリ型燃料電池(AFC)
  • ナノテクノロジー:定置型燃料電池のコスト上の障壁を克服
  • 太陽光エネルギー:燃料電池技術を補完
  • DMFC燃料電池:すでに成立可能な市場
  • プラチナ触媒
  • 燃料電池のホウ酸ニッケル触媒
  • MCFC向け
  • PAFC向け
  • PAFCと定置型燃料電池
  • 燃料電池コンポーネント
  • 燃料電池スタック
  • パワーコンディショナー
  • ナノ複合膜
  • Pall:水素のフィルタリング
  • IdaTech

第5章 企業プロファイル

図表

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次
Product Code: SH25881919

Fuel Cells used to provide distributed power for campus environments achieve better technology and economies of scale. They have achieved grid parity in many cases. They improve and lower energy costs. They threaten to erode utility profitability.

Stationary Fuel Cells are on the cusp of becoming commercially viable, creating companies that are profitable and produce electricity at or below parity with the grid giving every user alternatives to the grid. Bloom Energy has solved the SOFC engineering challenges. Breakthroughs in materials science, and revolutionary designs give Bloom SOFC technology a cost effective, all-electric solution.

Vendors have solved the SOFC conundrum, developing new materials that make units affordable and provide energy device economies of scale and support for wind and solar renewable energy sources.

Stationary fuel cells represent the base for distributed power generation worldwide. No more new coal plants, no mare extensions to the grid. Distributed power has become mainstream. Distributed generation (DG) refers to power generation at the point of consumption.

Generating power on-site, rather than centrally, eliminates the cost, complexity, interdependencies, and inefficiencies associated with energy transmission and distribution. Distributed energy is evolving in a manner like distributed PC and laptop computing, cars for transportation, and smart phones. As distributed Internet data and telephony have found a place in the market, so also will distributed energy generation become widespread. Distributed power shifts energy generation control to the consumer much to the consternation of the existing utility companies.

Renewable energy is intermittent and needs stationary fuel cells for renewables to achieve mainstream adoption as a stable power source. Wind and solar power cannot be stored except by using the energy derived from these sources to make hydrogen that can be stored. Stationary fuel cells are likely to function as a battery in the long term, creating a way to use hydrogen that is manufactured from the renewable energy sources. It is likely that the wind and tide energy will be transported as electricity to a location where the hydrogen can be manufactured. It is far easier to transport electricity than to transport hydrogen. Hydrogen servers as an energy storage mechanism.

Stationary fuel cell markets need government sponsorship. As government funding shifts from huge military obligations, sustainable energy policy becomes a compelling investment model for government.

Stationary fuel cell markets at $1.2 billion in 2013 are projected to increase to $14.3 billion in 2020. Growth is anticipated to be based on demand for distributed power generation that uses natural gas. Systems provide clean energy that is good for the environment. Growth is based on global demand and will shift from simple growth to rapid growth measured as a penetration analysis as markets move beyond the early adopter stage. The big box retailers including many, led by Walmart, the data centers, and companies like Verizon are early adopters.

Eventually hydrogen will be used as fuel in the same stationary fuel cell devices. The hydrogen is manufactured from solar farms. Stationary fuel cells have become more feasible as the industry is able to move beyond platinum catalysts.

Table of Contents

STATIONARY FUEL CELL MARKET SHARES AND MARKET FORECASTS

  • Stationary Fuel Cell Market Driving Forces
    • Platinum Catalysts
  • Stationary Fuel Cell Market Forecasts

1. STATIONARY FUEL CELL MARKET DYNAMICS AND MARKET DESCRIPTION

  • 1.1. Stationary Fuel Cell Market Dynamics and Market Description
    • 1.1.1. Stationary Fuel Cell Ownership Models
  • 1.2. Distributed Power Generation
    • 1.2.1. On-Site Power:
    • 1.2.2. Utility Grid Support:
  • 1.3. Solid Oxide Fuel Cells (SOFC)
    • 1.3.1. Next Generation SOFC
    • 1.3.2. Bloom Energy Solid Oxide Fuel Cells
  • 1.4. ClearEdge Power Moving away from HT-PEMFC Technology
  • 1.5. Distributed Power Generation
    • 1.5.1. Distributed Clean and Continuous Power Generation
    • 1.5.2. Benefits of Bloom Energy
    • 1.5.3. Stationary Fuel Cell Technology
  • 1.6. Industrialization Requires Sustainable, Highly Efficient Energy
    • 1.6.1. Fuel Cell Cogeneration
    • 1.6.2. Stationary Fuel Cells Address Global Energy Challenge
    • 1.6.3. Petroleum
  • 1.7. Value Of Export Market Electricity
  • 1.8. Fuel Cell Operation
    • 1.8.1. Fuel Cells Definition
    • 1.8.2. Fuel Cell Insulating Nature Of The Electrolyte
    • 1.8.3. Inconsistency Of Cell Performance
    • 1.8.4. Fuel Cell Performance Improvements
    • 1.8.5. Transition To Hydrogen
  • 1.9. Fuel Environmental Issues
    • 1.9.1. Environmental Benefits Of Using Fuel Cell Technology
    • 1.9.2. Greenhouse Gas Emissions
  • 1.10. Battery Description
  • 1.11. Fuel Cell Functional Characteristics
  • 1.12. Water In A Fuel Cell System
  • 1.13. Power Of A Fuel Cell
    • 1.13.1. Gas Control
    • 1.13.2. Temperature Control
  • 1.14. Fuel Cell Converts Chemical Energy Directly Into Electricity And Heat
    • 1.14.1. Types Of Fuel Cells
  • 1.15. Hydrogen Fuel Cell Technology
    • 1.15.1. Types Of Fuel Cells
    • 1.15.2. Alkaline Fuel Cells
    • 1.15.3. Phosphoric Acid Fuel Cells
    • 1.15.4. Molten Carbonate Fuel Cells
    • 1.15.5. Solid Oxide Fuel Cells
    • 1.15.6. PEM Technology
    • 1.15.7. Proton Exchange Membrane (PEM) Fuel Cells
    • 1.15.8. PEM Fuel Cells
    • 1.15.9. Proton Exchange Membrane (PEM) Fuel Cell
    • 1.15.10. Proton Exchange Membrane (PEM) Membranes And Catalysts
    • 1.15.11. Common Types Of Fuel Cells
  • 1.16. Stationary Power Applications
    • 1.16.1. Traditional Utility Electricity Generation
  • 1.17. On Grid And Off Grid Issues
    • 1.17.1. Stationary Public Or Commercial Buildings Fuel Cell Market
    • 1.17.2. Distributed Power Generation
    • 2.1.1. Stationary Fuel Cell Company Operating Models
  • 1.18. Impact Of Deregulation
    • 1.18.1. Excess Domestic Capacity
    • 1.18.2. Power Failures
  • 1.19. Fuel Cell Issues
  • 1.19.1. Fuel Cell Workings
  • 1.19.2. Environmental Benefits Of Fuel Cells
  • 1.19.3. Fuel-To-Electricity Efficiency
  • 1.20. Boilers
    • 1.20.1. Domestic Hot Water
    • 1.20.2. Space Heating Loops
    • 1.20.3. Absorption Cooling Thermal Loads
  • 1.21. Fuel Cell Reliability
    • 1.21.1. Power Quality
    • 1.21.2. Licensing Schedules
    • 1.21.3. Modularity
  • 1.22. Fuel Cell Supply Infrastructure
  • 1.23. Laws And Regulations
    • 1.23.1. National Hydrogen Association
    • 1.23.2. Military Solutions

2. STATIONARY FUEL CELL MARKET SHARES AND MARKET FORECASTS

  • 2.1. Stationary Fuel Cell Market Driving Forces
  • 2.2. Stationary Fuel Cell Market Shares
    • 2.2.1. Bloom Energy (SOFC) Fuel Cell Comprised Of Many Flat Solid Ceramic Squares
    • 2.2.2. FuelCell Energy (MCFC)
    • 2.2.3. ClearEdge
    • 2.2.4. ClearEdge / UTC Phosphoric Acid Fuel Cells (PAFCs)
    • 2.2.5. Ballard and IdaTech PEM
    • 2.2.6. Acumentrics
  • 2.3. Stationary Fuel Cell Market Forecasts
    • 2.3.1. Stationary Fuel Cell Units Market Forecasts
    • 2.3.2. Vision For The New Electrical Grid
    • 2.3.3. Fuel Cell Clean Air Permitting
  • 2.4. SOFC Fuel Cell Market Shares and Market Forecasts
    • 2.4.1. SOFC Stationary Fuel Cell Forecasts: Unit Shipment and Installed Base Market Penetration Analysis 161
    • 2.4.2. SOFC ROI Models
    • 2.4.3. SOFC Fuel Cell Markets
    • 2.4.4. SOFC Specialized Ceramics
    • 2.4.5. SOFC Stationary Fuel Cell Market Description
    • 2.4.6. Bloom Energy SOFC
    • 2.4.7. SOFC Methanol Fuel Cells, On The Anode Side, A Catalyst Breaks Methanol
  • 2.5. PEM Stationary Fuel Cell Forecasts
    • 2.5.1. PEM Telecom Fuel Cell Back Up Power Systems
    • 2.5.2. PEM Fuel Cell: High Temperature
    • 2.5.3. PEMFC Efficiency
    • 2.5.4. Challenges for PEMFC Systems
    • 2.5.5. Operating Pressure
    • 2.5.6. Long Term Operation
    • 2.5.7. Proton Exchange Membrane Fuel Cell (PEM) Residential Market
  • 2.6. Molten Carbonate Fuel Cell (MCFC)
    • 2.6.1. MCFC Molten Carbonate Uses Nickel and Stainless Steel as Core Technology
    • 2.6.2. MCFC Stationary Fuel Cell Market Analysis
    • 2.6.3. Molten Carbonate Fuel Cell (MCFC) Fuel Cell Technology 95% Combustion Efficiency
  • 2.7. UTC PAFC Platinum Costs
    • 2.7.1. PAFC
    • 2.7.2. Phosphoric Acid Fuel Cell (PAFC) Technology
  • 2.8. Distributed Campus Environments For SOFC, PEM, MCFC, and MCFC Stationary Fuel Cells
    • 2.8.1. Government Support for Fuel Cell Technology
    • 2.8.2. Competition For Distributed Generation Of Electricity
    • 2.8.3. Stationary Fuel Cell Applications
  • 2.9. Energy Market Forecasts
    • 2.9.1. FuelCell Energy Fuel Cell Stack Module MCFC Costs
    • 2.9.2. FuelCell Energy Cost Breakdown
    • 2.9.3. FuelCell Energy Fuel Cell Stack Module
    • 2.9.4. FuelCell Energy Materials Cost Reduction via Increased Power Density
    • 2.9.5. Fuel Cell Energy Achieving Higher MCFC Power Density
    • 2.9.6. SOFC Unfavorable Fuel Cell Market Characteristics
    • 2.9.7. Phosphoric Acid Fuel Cells (PAFCs)
  • 2.10. PEM Membrane, Or Electrolyte
    • 2.10.1. PEM Proton-Conducting Polymer Membrane, (The Electrolyte)
  • 2.11. Delivered Energy Costs
    • 2.11.1. Nanotechnology Platinum Surface Layer on Tungsten Substrate For Fuel Cell Catalyst
    • 2.11.2. SOFC Fuel Cell Prices
  • 2.12. PEM, SOFC, MCFC, and PAFC Stationary Fuel Cell Applications and Uses:
  • 2.13. MCFC, SOFC, PEMFC Projected Cost Long Term
  • 2.14. Stationary Fuel Cells Strengths and Weaknesses
  • 2.15. Fuel Cell Return On Investment Analysis
    • 2.15.1. Addressable Market
  • 2.16. Stationary Fuel Cell Prices
    • 2.16.1. Solid-Oxide Fuel Cell Stack Prices
    • 2.16.2. MCFC Stationary Fuel Cell Prices
  • 2.17. Stationary Fuel Cell Market Regional Analysis
    • 2.17.1. Stationary Fuel Cells U.S.
    • 2.17.2. Fuel Cells California
    • 2.17.3. Regional Stationary Fuel Cell Competition
    • 2.17.4. CPUC Recently Approved 6 Utility Owned Fuel Cell Projects
    • 2.17.5. Stationary Fuel Cell Installations in California
    • 2.17.6. California Fuel Cell Installations
    • 2.17.7. Campus Fuel Cell Food Processing Agricultural Applications / Gills Onions Stationary Fuel Cells 248
    • 2.17.8. Oxnard DFC Installations
    • 2.17.9. Europe and Japan
    • 2.17.10. Korea
    • 2.17.11. European Photovoltaic Industry Association and Greenpeace Global Investments In Solar Photovoltaic Projects
    • 2.17.12. German Stationary Fuel Cells
    • 2.17.13. Japanese Sales Prospects
    • 2.17.14. New Sunshine Project (Japan)
    • 2.17.15. Fuel Cell Development in Japan
    • 2.17.16. Fuel Cell Cogeneration in Japan
    • 2.17.17. Softbank / Bloom: Bloom Energy Japan
    • 2.17.18. Japanese Government Subsidies
    • 2.17.19. Fuel Cell Cogeneration In Japan
    • 2.17.20. Establishing Codes And Standards Are Very Important For Advancing Fuel Cell Systems In Japan 274
    • 2.17.21. FuelCell Energy Geographic Market Participation
    • 2.17.22. FuelCell Energy within Korea
    • 2.17.23. FuelCell Energy Korean Market Partner POSCO Energy
    • 2.17.24. FuelCell Energy Within the United States
    • 2.17.25. FuelCell Energy Bridgeport Project
    • 2.17.26. FuelCell Energy in Canada
    • 2.17.27. FuelCell Energy in Europe
    • 2.17.28. FuelCell Energy European Market Developments

3. STATIONARY FUEL CELL PRODUCT DESCRIPTION

  • 3.1. Fuel Cells
  • 3.2. Solid Oxide Fuel Cells (SOFC)
    • 3.2.1. Next Generation SOFC
  • 3.3. Bloom Energy Solid Oxide Fuel Cells
    • 3.3.1. Bloom's Energy SOFC Specifications
    • 3.3.2. Bloom Energy Server Architecture
    • 3.3.3. Bloom Energy E-Bay Data Center Installation
  • 3.4. Ceramic Fuel Cells SOFC
    • 3.4.1. Ceramic Fuel Cells BlueGen
    • 3.4.2. Ceramic Fuel Cells Gennex Fuel Cell Module
    • 3.4.3. Ceramic Fuel Cells Engineered Mixed Oxide Powders
  • 3.5. LG
    • 3.5.1. LG Solid Oxide Fuel Cells SOFC Technology
  • 3.6. SKKG Cultural and Historical Foundation / Hexis SOFC
  • 3.7. Viessmann Group
  • 3.8. The Ceres Fuel Cell
    • 3.8.1. Ceres Power Core Technology
  • 3.9. Acumentrics
    • 3.9.1. Acumentrics Fuel Cell Systems Work
    • 3.9.2. The Fuel Reformer
    • 3.9.3. Acumentrics Small Tubes
    • 3.9.4. Acumentrics Specialized Ceramics
    • 3.9.5. Acumentrics Fuel Cell Technologies Ltd Trusted Power Innovations
  • 3.10. Samsung
  • 3.11. Delphi Solid Oxide Fuel Cells
    • 3.11.1. Delphi / Independent Energy Partners (IEP)
    • 3.11.2. Delphi SOFC
    • 3.11.3. Delphi Solid Oxide Fuel Cell Auxiliary Power Unit
  • 3.12. LG Solid Oxide Fuel Cells
  • 3.13. Phosphoric Acid Fuel Cell (PAFC) Stationary Fuel Cells
  • 3.14. ClearEdge Proton Exchange Membrane PEM Fuel Cells
    • 3.14.1. ClearEdge PureCell® Model 5 System
    • 3.14.2. ClearEdge PureCell® Model 400 System
    • 3.14.3. ClearEdge PureCell® Model 400 System
    • 3.14.4. ClearEdge fuel Cell Fleet Surpasses 1 Million Hours Of Operation
    • 3.14.5. Phosphoric Acid Fuel Cells (PAFCs)
    • 3.14.6. ClearEdge UTC Product : The PureCell™ Model 400 Power Solution Features :
    • 3.14.7. ClearEdge UTC PureComfort® Solutions
    • 3.14.8. ClearEdge UTC PureComfort® Power Solutions Save Energy
    • 3.14.9. ClearEdge UTC CO2 Emissions Reduction
    • 3.14.10. ClearEdge UTC PureComfort® Power Solutions
  • 3.15. Molten Carbonate Fuel Cell (MCFC) Power Plants
  • 3.16. FuelCell Energy
    • 3.16.1. FuelCell Energy Power Plants Operating On Natural Gas
    • 3.16.2. FuelCell Energy DFC Power Plant Benefits:
    • 3.16.3. FuelCell Energy DFC Power Plant Benefits:
    • 3.16.4. FuelCell Energy Cost Breakdown
    • 3.16.5. FuelCell Energy Fuel Cell Stack Module
    • 3.16.6. FuelCell Energy Materials Cost Reduction via Increased Power Density
    • 3.16.7. FuelCell Energy Balance-of-Plant Cost Reduction With Volume Production
    • 3.16.8. FuelCell Energy Conditioning, Installation, and Commissioning
    • 3.16.9. FuelCell Energy to Supply 1.4 MW Power Plant to a California Utility
    • 3.16.10. FuelCell Energy Adding Power Generating Capacity At The Point Of Use Avoids Or Reduces Investment In The Transmission And Distribution System
    • 3.16.11. FuelCell Energy DFC1500
    • 3.16.12. FuelCell Energy Fuel Cells Within South Korean Renewable Portfolio
    • 3.16.13. Enbridge and FuelCell Energy Partner
    • 3.16.14. FuelCell Energy Power Plants
  • 3.17. Proton Exchange Membrane PEM Stationary Fuel Cells
  • 3.18. Ballard
    • 3.18.1. Ballard and IdaTech's PEM
    • 3.18.2. Ballard
    • 3.18.3. Ballard / IdaTech
    • 3.18.4. Ballard Power Systems Fuel Cell Stack to Taiwan-Based M-Field Energy Ltd.

4. STATIONARY FUEL CELL TECHNOLOGY

  • 4.1. Fuel Cell Emissions Profile
    • 4.1.1. Direct FuelCell Technology
  • 4.2. Verizon Launches Massive Green Energy Project to Power 19 Company Facilities Across the Country
  • 4.3. Fuel Cells Offer An Economically Compelling Balance Of Attributes
  • 4.4. Stationary Fuel Cell Government Regulation
  • 4.5. Fuel Cell Type Of Electrolyte Used
    • 4.5.1. PEM Fuel Cells
    • 4.5.2. Fuel Cell Stacks
  • 4.6. IdaTech Fuel Processing Technology
  • 4.7. Phosphoric Acid Fuel Cells (PAFC)
    • 4.7.1. PAFC Platinum-Based Catalyst
  • 4.8. Molten Carbonate Fuel Cells (MCFC)
    • 4.8.1. FuelCell Energy Degradation of the Electrolyte Support
    • 4.8.2. MCFC Stack Cost Analysis
    • 4.8.3. Molten Carbonate Fuel Cell Results
  • 4.9. Solid Oxide Fuel Cells (SOFC)
    • 4.9.1. SOFC Fuel Cell/Turbine Hybrids
    • 4.9.2. Acumetrics Tubular SOFC, Solid Oxide Fuel Cell Technology
    • 4.1.3. Chip-Scale Solid Oxide Fuel Cell Arrays
  • 4.10. Fuel Reformer
    • 4.10.1. Specialized Ceramics
    • 4.10.2. Ceramic Fuel Cells
  • 4.11. Fuel Cell Description
  • 4.12. Alkaline Fuel Cells (AFC)
  • 4.13. Nanotechnology Enables Overcoming Stationary Fuel Cell Cost Barriers
    • 4.13.1. DMFC Micro And Portable Fuel Cells Components and Labor Costs
    • 4.13.2. SOFC Fuel Cells Components and Labor Costs:
    • 4.13.3. MCFC Fuel Cells Components and Labor Costs:
    • 4.13.4. PAFC Fuel Cells Components and Labor Costs:
  • 4.14. Solar Energy Complements Fuel Cell Technology
  • 4.15. DMFC Fuel Cell Already Viable Market
    • 4.15.1. DMFC Micro And Portable Fuel Cells Components and Labor Costs
    • 4.15.2. Polymer-Electrolyte Membrane PEM
    • 4.15.3. PEM Nano Metals And Alloys
    • 4.15.4. PEM
  • 4.16. Platinum Catalyst
    • 4.16.1. Nanotechnology Platinum Surface Layer on Tungsten Substrate For Fuel Cell Catalyst
    • 4.16. 2. Nanotechnology Platinum Catalyst Mid Size Stationary Fuel Cells
    • 4.16.2. Water Electrolysis Technology
  • 4.17. Fuel Cell Nickel Borate Catalyst
    • 4.17.1. Fuel Cell High Cost Products
    • 4.17.2. Development of hydrogen technologies critical for the growth of the fuel cell industry
    • 4.17.3. PEM and SOFC For Home Units
  • 4.18. PAFC and Stationary fuel cells
  • 4.19. For MCFC:
  • 4.20. For PAFC:
  • 4.21. Fuel Cell Components
    • 4.21.1. Fuel Processor (Reformer)
  • 4.22. Fuel Cell Stack
  • 4.23. Power Conditioner
  • 4.24. Nano Composite Membranes
  • 4.25. Pall Filtering of Hydrogen
  • 4.26. IdaTech

5. STATIONARY FUEL CELL COMPANY PROFILES

  • 5.1. Stationary Fuel Cell Acquisitions
    • 5.1.1. 2013: ClearEdge Power Acquires UTC Power
    • 5.1.2. BASF Exits High-Temperature Proton Exchange Membrane Fuel Cell Business
    • 5.1.3. GE
    • 5.1.4. Air Liquide Invests in Plug Power
    • 5.1.5. Ballard Buys IdaTech
    • 5.1.6. Viessmann Group Acquires 50 Percent Share in Hexis AG
    • 5.1.7. Acumentrics Acquired Fuel Cell Technologies Ltd
    • 5.1.8. FuelCell Energy / Versa Power Systems Acquisition
    • 5.1.9. Rolls Royce Sells Its Stationary Fuel Cell Operations Interests to LG
    • 5.1.10. Other Transactions and Consolidation of Stationary Fuel Cell Market
  • 5.2. Acumentrics
    • 5.2.1. Acumentrics Technologies Ltd Rugged UPS™
    • 5.2.2. Acumentrics UPS Products
    • 5.2.3. Acumentrics / Fuel Cell Technologies Ltd Trusted Power Innovations
    • 5.2.4. Acumentrics / Fuel Cell Technologies
  • 5.3. Advent Technologies
    • 5.3.1. Advent Technologies Investors
    • 5.3.2. Advent Technologies Target Markets For HT-PEMFC
    • 5.3.3. Advent Target Markets
  • 5.4. AFC Energy
  • 5.5. Altergy
    • 5.5.1. Altergy Mass Production And Commercial Deployment Of Rugged, Low Cost Fuel Cells
    • 5.5.2. Altergy Global Leader In Telecom/Critical Infrastructure
  • 5.6. Ansaldo Fuel Cells
  • 5.7. Ballard Power Systems
    • 5.7.1. Ballard Power Systems / IdaTech LLC / ACME Group (Gurgaon, Haryana)
    • 5.7.2. Ballard Expanded Single Fuel Cell
    • 5.7.3. Ballard Hydrogen
    • 5.7.4. Ballard Buys IdaTech
    • 5.7.5. IdaTech acquires Plug Power's LPG Off-Grid, Backup Power Stationary Product Lines
    • 5.7.6. IdaTech Applications
    • 5.7.7. IdaTech Wireline Communications Networks
    • 5.7.8. Ballard Third Quarter 2013 Revenue
    • Ballard Third Quarter 2013 Highlights
  • 5.8. BASF
  • 5.9. Blasch Precision Ceramics
  • 5.10. Bloom Energy
    • 5.10.1. Bloom Energy Fuel Cells Customer Adobe
    • 5.10.2. Bloom Energy / University Of Arizona NASA Mars Space Program
    • 5.10.3. SoftBank & Bloom Energy Form Joint Venture
  • 5.11. ClearEdge Power / UTC Power
    • 5.11.1. ClearEdge / United Technologies
  • 5.12. Ceramic Fuel Cells
  • 5.13. Delphi
    • 5.13.1. Delphi Automotive LLP Revenue
    • 5.13.2. Delphi Solid Oxide Fuel Cell Auxiliary Power Unit
  • 5.14. Doosan Corporation
  • 5.15. Elcore
  • 5.16. Electro Power Systems
  • 5.17. Enbridge
  • 5.18. FuelCell Energy
    • 5.18.1. FuelCell Energy Production Capacity
    • 5.18.2. FuelCell Energy POSCO 121.8 MW Order
    • 5.18.3. FuelCell Energy / Versa
    • 5.18.4. FuelCell Energy Leading Integrated Fuel Cell Company
    • 5.18.5. FuelCell Energy Revenue 2012, 2013
    • 5.18.6. FuelCell Energy / Versa Power Systems, Inc. Acquisition
    • 5.18.7. FuelCell Energy Market Activity
    • 5.18.8. Stationary Fuel Cell ROI
    • 5.18.9. FuelCell Energy Versa Power Systems Solid Oxide Fuel Cell Development:
    • 5.18.10. FuelCell Energy / Versa Systems Solid Oxide Fuel Cells
    • 5.18.11. FuelCell Energy DFC 3000 Cost Savings
    • 5.18.12. FuelCell Energy Production and Delivery Capabilities
    • 5.18.13. FuelCell Energy Food & Beverage Processing
    • 5.18.14. FuelCell Energy Strategic Alliances and Market Development Agreements
    • 5.18.15. FuelCell Energy Service Company Partners
    • 5.18.16. FuelCell Energy Business Strategy
  • 5.19. Fuji Electric
  • 5.20. GE
    • 5.20.1. GE Unmanned Aircraft
    • 5.20.2
    • GE HPGS
  • 5.21. HydroGen LLC
  • 5.22. Hydrogenics
    • 5.22.1. Hydrogenics Revenue
  • 5.23. ITN Lithium Technology
    • 5.23.1. ITN's Lithium EC sub-Division Focused On Development And Commercialization of EC
    • 5.23.2. ITN's SSLB Division Thin-Film Battery Technology
    • 5.23.3. ITN Lithium Air Battery
    • 5.23.4. ITN Fuel Cell
    • 5.23.5. ITN Thin-film Deposition Systems
    • 5.23.6. ITN Real Time Process Control
    • 5.23.7. ITN Plasmonics
  • 5.24. LG Electronics
    • 5.24.1. LG Business Divisions and Main Products
    • 5.24.2. LG Telemonitoring Smartcare System
    • 5.24.3. Rolls Royce Sells Its Stationary Fuel Cell Operations Interests to LG
  • 5.25. Nuvera
  • 5.26. Plug Power
    • 5.26.1. Plug Power Revenue by Quarters
  • 5.27. POSCO Power
  • 5.28. Rolls Royce
  • 5.29. SafeHydrogen LLC
  • 5.30. Samsung Everland
    • 5.30.1. Samsung
    • 5.30.2. Samsung Finds Talent And Adapts Technology To Create Products
    • 5.30.3. Samsung Adapts to Change, Samsung Embraces Integrity
    • 5.30.4. Samsung Telecom Equipment Group
    • 5.30.5. Samsung Electronics Q2 2013 Revenue
    • 5.30.6. Samsung Memory Over Logic
  • 5.31. Serenergy
  • 5.32. Siemens AG
  • 5.33. SoftBank
  • 5.34. Southern California Edison
  • 5.35. Truma

List of Tables and Figures

  • Table ES-1: Stationary Fuel Cell Market Driving Forces
  • Table ES-2: Stationary Fuel Cell Market Growth Drivers Worldwide
  • Table ES-3: Worldwide Stationary Fuel Cell Market Campus Segments
  • Figure ES-4: Stationary Fuel Cell Market Shares, Dollars, 2013
  • Figure ES-5: Stationary Fuel Cell Shipment Market Forecasts, Dollars, Worldwide, 2014-2020
  • Figure 1-1: Traditional Power Distribution Network vs. Fuel Cell Solution
  • Table 1-2: Methods Of Producing Energy
  • Table 1-3: Key Aspects Of Fuel Cell Stack Costs
  • Figure 1-4: Fuel Cell Operation
  • Table 1-5: Fuel Cell Operation
  • Figure 1-6: Stationary Fuel Cell Distributed Power Generation
  • Figure 1-7: Conventional Power System with Central Generation
  • Figure 1-8: Utility Power Systems with Distributed 1MW Fuel Cell System
  • Table 1-9: Fuel Cell Characteristics
  • Table 1-10: Fuel Cell Description
  • Table 1-11: Fuel Cell Categories
  • Table 1-12: Fuel Cell Performance Improvements
  • Table 1-13: Environmental Concerns Relating To Energy
  • Table 1-14: Environmental Benefits Of Using Fuel Cell Technology
  • Table 1-15: Fuel Cell Advantages Compared To Internal Combustion Engine
  • Table 1-15 (Continued): Fuel Cell Advantages Compared To Internal Combustion Engine
  • Table 1-16: Low-carbon production systems
  • Table 1-17: Fuel Cell Functional Characteristics
  • Table 1-17 (Continued): Fuel Cell Functional Characteristics
  • Table 1-18: Characteristics Of Water In Fuel Cells
  • Figure 1-19: Stationary Fuel Cell Growth Opportunities
  • Table 1-20: Types Of Fuel Cells
  • Table 1-21: Classes Of Fuel Cells
  • Table 1-22: Fuel Cell Applications
  • Table 1-23: Types Of Fuel Cells
  • Table 1-24: Classes Of Fuel Cells
  • Table 1-25: Fuel Cell Applications
  • Table 1-26: Alkaline Fuel Cell Features
  • Table 1-27: Phosphoric acid fuel cells applications
  • Table 1-28: Phosphoric Acid Fuel Cell Features
  • Table 1-29: Molten Carbonate Fuel Cells
  • Table 1-30: Solid Oxide Fuel Cell Features
  • Table 1-31: Proton Exchange Membrane (PEM) Fuel Cell Functions
  • Table 1-31 (Continued): Proton Exchange Membrane (PEM) Fuel Cell Functions
  • Figure 1-32: Stationary Fuel Cell Company Operating Models
  • Table 1-33: Fuel Cell Issues
  • Table 1-34: Fuel Cell System
  • Table 1-35: Operation of a Fuel Cell.
  • Table 1-36: Fuel Cell System Relative Efficiencies
  • Table 1-37: Fuel Cell Reliability Research And Development Issues
  • Table 2-1: Stationary Fuel Cell Market Driving Forces
  • Table 2-2: Stationary Fuel Cell Market Growth Drivers Worldwide
  • Table 2-3: Worldwide Stationary Fuel Cell Market Campus Segments
  • Figure 2-4: Stationary Fuel Cell Market Shares, Dollars, 2013
  • Table 2-5: Stationary Fuel Cell Market Shares, Dollars, 2013
  • Figure 2-6: Bloom Energy Server
  • Figure 2-7: FuelCell Energy Electrochemical Device
  • Figure 2-8: Stationary Fuel Cell Shipment Market Forecasts, Dollars, orldwide, 2014-2020
  • Table 2-9: Stationary Fuel Cell Shipment Market Forecasts Dollars, Worldwide, 2014-2020
  • Figure 2-10: Stationary Fuel Cell Shipment Market Forecasts, Units, Worldwide, 2014-2020
  • Table 2-11: Stationary Fuel Cell Shipment Market Forecasts Units, Worldwide, 2014-2020
  • Table 2-12: Stationary Fuel Cell Market Forces
  • Figure 2-13: SOFC Market Shares, Dollars, Worldwide, 2013
  • Table 2-14: SOFC Stationary Fuel Cell Market Shares, Dollars, Worldwide, 2013
  • Figure 2-15: Stationary SOFC Fuel Cell Market Forecasts, Dollars, Worldwide, 2014-2020
  • Figure 2-16: Stationary Fuel Cell SOFC Market Forecasts, Number Shipped, Worldwide, 2014-2020
  • Table 2-17: Solid Oxide Fuel Cells (SOFC) Stationary Fuel Cell Shipment Market Forecasts, Units and Dollars, Worldwide, 2014-2020
  • Table 2-18: Solid Oxide Fuel Cells (SOFC) Stationary Fuel Cell Shipment Installed Base and Market Penetration Forecasts Units, Worldwide, 2014-2020
  • Figure 2-19: Reducing Hydrogen Crossover Using Nanotechnology
  • Table 2-20: Ceramic Fuel Cells Advantages
  • Figure 2-21: Stationary Fuel Cell PEM, Market Forecasts, Dollars, Worldwide, 2014-2020
  • Table 2-22: Proton Exchange Membrane Fuel Cell PEM Stationary Fuel Cell Shipment Market Forecasts, Units and Dollars, Worldwide, 2014-2020
  • Figure 2-23: Stationary Fuel Cell Proton Exchange Membrane (PEM) Market Forecasts, Units, Worldwide, 2014-2020
  • Table 2-24: PEMFC Efficiency
  • Table 2-25: Stationary Fuel Cell Long-Term Operation
  • Table 2-26: MCFC Technology Development Functions
  • Table 2-27: MCFC Near-zero NOX, SOX and low CO2 emissions
  • Figure 2-28: FuelCell Energy 2.4 MW Fuel Cell Power Plant Inchon, South Korea
  • Table 2-29: MCFC Stationary Fuel Cell Technology
  • Table 2-30: Stationary Fuel Cell Distributed Campus Environments Target Markets Worldwide, 2013
  • Table 2-31: Stationary Fuel Cell Shipment SOFC, PEM, MCFC, and MCFC Market Forecasts, Dollars, Worldwide, 2014-2020
  • Table 2-32: Stationary Fuel Cell Shipment SOFC, PEM, MCFC, and MCFC Market Forecasts, Units, Worldwide, 2014-2020
  • Figure 2-33: Stationary Fuel Cell Applications
  • Figure 2-34: Global Demand For Electric Power
  • Figure 2-35: Cost of Electricity Grid and Stationary Fuel Cell
  • Table 2-36: Complete Fuel Cell Power Plant
  • Table 2-37: Opportunity for PAFC Cost Reductions Opportunity Area
  • Table 2-38: PAFC Stack Costs
  • Figure 2-39: Fuel Cell Image
  • Table 2-40: PEM Stack Costs
  • Figure 2-42: Delivered Energy Costs
  • Table 2-43: Stationary Fuel Cell Markets
  • Table 2-45: Stationary Fuel Cells Strengths and Weaknesses
  • Table 2-46: Cost Comparison of Available Technologies for a 5kW Plant
  • Table 2-47: Unsubsidzed Levelized Cost of Energy
  • Table 2-48: MCFC Stack Costs
  • Table 2-49: Stationary Fuel Cell Regional Market Segments, Dollars, 2013
  • Table 2-50: Stationary Fuel Cell Regional Market Segments, 2013
  • Figure 2-51: Stationary Fuel Cell Installations in California
  • Figure 2-51 (Continued): Stationary Fuel Cell Installations in California
  • Figure 2-52: Efficient Pipeline Pressure Reduction
  • Table 2-53: Types Of Campus Fuel Cell Power Plants
  • Figure 2-54: FuelCell Energy 600 KW DFC, Gills Onions Oxnard, CA
  • Figure 2-55: Korea's Energy Mix 2030
  • Figure 2-57: Korea's Energy Application Sectors
  • Figure 2-58: Korean NRE New and Renewable Energy
  • Figure 2-59: Korean Research & Development in NRE
  • Figure 2-60: Korean Local Plan for Promoting NRE
  • Figure 2-61: FuelCell Energy Environmental Tangible Benefits
  • Figure 2-62: Hybrid Electric Vehicles Costs
  • Figure 2-63: US Energy Costs
  • Figure 2-64: Hydrogen Cost From On Site Steam
  • Figure 2-65: German Bonus for Electricity Produced Through CHP Units
  • Table 2-66: Japanese Sales Prospects
  • Figure 2-67: FuelCell Energy Regional Positioning
  • Figure 2-68: FuelCell Energy Regional Business Activity
  • Figure 3-1: Bloom ES-5700 Fuel Cell
  • Figure 3-2: Bloom's Energy SOFC Specifications
  • Table 3-3: Bloom Energy SOCF Fuel Cell Specifications
  • Table 3-3 (Continued): Bloom Energy SOCF Fuel Cell Specifications
  • Figure 3-4: Bloom Energy Server
  • Table 3-5: Bloom Performance Gain From Modular Architecture
  • Figure 3-6: Bloom Energy Data Center Installation
  • Figure 3-7: Ceramic Fuel Cells BlueGen Products
  • Figure 3-8: Ceramic Fuel Cells BlueGen Installation
  • Figure 3-9: Ceramic Fuel Cells BlueGen Efficiency Comparison
  • Figure 3-10: LG 1 MW SOFC System
  • Figure 3-11: LG Fuel Cell Power Generation Used to Power Electronics and Excess Sold to Grid
  • Figure 3-12: LG Integrated Planar Solid Oxide Fuel Cells SOFC
  • Figure 3-13: LG Integrated Planar Solid Oxide Fuel Cells SOFC 60 Cell Technology
  • Figure 3-14: LG Integrated Planar Solid Oxide Fuel Cells SOFC
  • Figure 3-15: Ceres Power SOFC Fuel Cell
  • Figure 3-16: Acumentrics Fuel Cell Systems Functions
  • Figure 3-17: Acumentrics Small Tubes
  • Table 3-18: Acumentrics Tubular Solid Oxide Fuel Cells Functions
  • Figure 3-19: Delphi Solid Oxide Fuel Cells
  • Table 3-20: Delphi Solid Oxide Fuel Cells Benefits
  • Table 3-21: Delphi Solid Oxide Fuel Cells Typical Applications
  • Figure 3-22: Delphi Solid Oxide Fuel Cells Transportation Application
  • Figure 3-23: LG Fuel Cell Process
  • Table 3-24: LG Solid Oxide Fuel Cells Features
  • Table 3-24 (Continued): LG Solid Oxide Fuel Cells Features
  • Figure 3-25: ClearEdge PureCell® Model 5 System Generates 5 kW
  • Figure 3-26: PureCell® Model 5 System Specifications
  • Table 3-27: ClearEdge The Model 5 System Benefits
  • Table 3-28: ClearEdge The Model 5 System Functions
  • Table 3-29: ClearEdge The Model 5 system Functions
  • Figure 3-30: ClearEdge PureCell® Model 400 System
  • Figure 3-31: ClearEdge PureCell® Model 400 System Characteristics
  • Figure 3-32: UTC Power Fuel Cells Also Qualify For LEED® (Leadership in Energy and Environmental Design) Points.
  • Table 3-33: UTC PureCell system Features
  • Figure 3-34: UTC Fuel cell Supplier To NASA For Space Missions For Over 40 Years
  • Table 3-35: UTC Performance Characteristics POWER
  • Figure 3-36: ClearEdge UTC PureCell Solution Emissions
  • Table 3-37: ClearEdge UTC Stationary Fuel Cell Energy Efficiency Positioning
  • Table 3-38: ClearEdge UTC Microturbine Chiller/Heater and System Level Functions
  • Table 3-39: ClearEdge UTC stationary Fuel cell Benefits :
  • Table 3-40: ClearEdge UTC Stationary Fuel Cell Emissions Benefits
  • Table 3-41: ClearEdge UTC Stationary Fuel Cell Emissions CO2 Emissions Reduction Calculations
  • Figure 3-42: ClearEdge UTC Pollutant Emissions Comparisons
  • Table 3-43: ClearEdge UTC PureComfort® Power Solutions
  • Table 3-44: FuelCell Energy Power Plant Advantages:
  • Table 3-45: FuelCell Energy Product Advantages
  • Table 3-46: FuelCell Energy Fuel Cell Power Plant Models
  • Table 3-47: FuelCell Energy DFC Power Plant Benefits:
  • Figure 3-48: Fuel Cell Electrochemical Device
  • Figure 3-49: Direct Fuel Cell (DFC) Power Plants Offer The Highest Efficiency Which Is Key To Customer Value
  • Figure 3-50: FuelCell Energy 1 MW DFC California State University - Northridge
  • Table 3-51: FuelCell Energy Cost Reduction Opportunities for the DFC 1500 Power Plant Operating On Pipeline-Quality Natural Gas
  • Figure 3-52: Enbridge and FuelCell Energy
  • Figure 3-53: Direct Fuel Cell Power Plant
  • Table 3-54: Ballard Power Systems Comprehensive Portfolio Of Fuel Cell Products
  • Table 3-55: Ballard Power Systems Fuel Cell Products
  • Figure 3-56: Ballard Power Systems Cleargen Mulit-Megawatt Fuel Cell System
  • Figure 3-57: IdaTech Fuel Cell System
  • Table 3-58: Ballard / IdaTech ElectraGen ME System Functions
  • Table 3-59: Ballard / IdaTech ElectraGen ME System Functions
  • Table 4-1: Favorable Emissions Profile Of DFC Power Plants
  • Table 4-2: DFC Technology Advantages
  • Table 4-3: Fuel Cell Types Of Electrical Efficiency, Operating Temperature, Expected Capacity Range, And Byproduct Heat
  • Table 4-4: Fuel Cell Technologies
  • Table 4-5: Fuel Cells By Fuel
  • Figure 4-6: Fuel Cells Offer An Economically Compelling Balance Of Attributes
  • Figure 4-7: Efficiency Differences Among Fuel Cell Technologies
  • Table 4-8: Stationary Fuel Cell Products Regulation
  • Table 4-9: Fuel cell Types By T Electrolyte
  • Figure 4-10: Polymer Electrolyte Membrane (PEM) Fuel Cells
  • Figure 4-11: PEM Fuel Cell Operation
  • Figure 4-12: Fuel Cell Stacks
  • Figure 4-13: Fuel Cell Stack Components
  • Table 4-14: Opportunity for PAFC Cost Reductions Opportunity Area
  • Table 4-15: Molten Carbonate Fuel Cell R&D areas to be addressed
  • Figure 4-16: MCFC Cost Components of Electricity vs. Fuel Cell Capital Cost
  • Figure 4-17: Siemens Westinghouse's 250-Kilowatt Atmospheric Pressure Combined Heat And Power Fuel Cell System
  • Figure 3-18: Chip-Scale Solid Oxide Fuel Cell Arrays
  • Figure 3-19: Use of Vanadium Oxide Anode Allows Energy Storage In Quasi-2d Oxide Fuel Cell Membranes
  • Table 4-20: Ceramic Fuel Cells Advantages
  • Figure 4-21: Bloom Energy Fuel Cell Description
  • Figure 4-22: Bloom Energy Fuel Cell Description (2)
  • Figure 4-23: Bloom Energy Fuel Cell Description (3)
  • Figure 4-24: Bloom Energy Fuel Cell Description
  • Figure 4-25: Bloom Energy Fuel Cell Description (5)
  • Figure 4-26: Fuel Cell Flow Plates
  • Figure -4-27: Home Hydrogen Refueler
  • Figure 4-28: Fuel Cell Components
  • Figure4-29: How A Fuel Cell Works
  • Figure4-30: Stationary Fuel Cell Steam Reformer
  • Figure 4-31: Hydrogen Reformer Components
  • Figure 4-32: 1 Fuel Processor (Reformer); 2 Fuel Cell Stack; 3 Power Conditioner.
  • Figure 4-33: Reducing Hydrogen Crossover Using Nanotechnology
  • Figure 4-34: Comparison of the Performance of Nanocomposite Membranes
  • Figure 4-35: Catalytic Reformer and Refinery Hydrogen System
  • Table 5-1: Acumentrics Technologies Ltd Rugged UPS™
  • Table 5-2: Acumentrics UPS™ Products Target Markets
  • Table 5-3: Acumentrics UPS™ Customers
  • Table 5-4: Acumentrics Rugged-UPS™ Designs
  • Figure 5-5: Acumentrics Fuel Cell Power Generator
  • Table 5-6: Acumentrics Tubular Solid Oxide Fuel Cells Functions
  • Figure 5-7: Acumentrics / Fuel Cell Technologies (FCT) Fuel Cell Test Station QA Testing Area
  • Figure 5-8: Altergy Mass Production Of Rugged, Low Cost Fuel Cells
  • Figure 5-9: Altergy Fuel Cells
  • Figure 5-10: Altergy Freedom PowerFuel Cell, Generator, Unconditioned Batteries and Conditioned Batteries Comparison TCO
  • Table 5-11: Altergy's Market Leading Freedom Power™ Systems
  • Figure 5-12: Ballard® Fuel Cell
  • Table 5-13: Ballard Hydrogen Systems
  • Table 5-14: Bloom Energy Customers
  • Figure 5-15: Bloom Energy Customers
  • Table 5-16: Elcore Stationary Fuel Cell Technical Details
  • Figure 5-17: Enbridge Overview
  • Table 5-18: Enbridge Statistics
  • Figure 5-19: Enbridge Hybrid Fuel Cell
  • Figure 5-20: FuelCell Energy Positioning
  • Table 5-21: FuelCell Energy Positioning
  • Figure 5-22: Fuel Cell Energy Revenue
  • Figure 5-23: FuelCell Quarterly Financial Highlights
  • Table 5-24: FuelCell Energy Leading Customers
  • Figure 5-25: Fuel Cell Energy Product Cost per kW
  • Table 5-26: FuelCell Energy Key Installations
  • Figure 5-27: Versa Systems Solid Oxide Fuel Cells
  • Figure 5-28: Versa Systems Solid Oxide Fuel Cell Technology
  • Figure 5-29: FuelCell Energy DFC 3000 Cost Savings
  • Figure 5-30: FuelCell Energy Production Capabilities
  • Table 5-31: FuelCell Energy Active Project Pipelines
  • Figure 5-32: FuelCell Energy Tangible Environmental Benefits
  • Figure 5-33: FuelCell Energy Efficiency Differences Between Technologies
  • Table 5-34: FuelCell Energy Markets
  • Table 5-35: FuelCell Energy Global Relationships
  • Table 5-36: FuelCell Energy Partner Descriptions
  • Figure 5-37: FuelCell Energy Installation Strategic Execution
  • Figure 5-38: FuelCell Energy Installation Business Activity
  • Figure 5-39: FuelCell Energy Installed Base
  • Table 5-40: ITN Technologies
  • Figure 5-41: ITN Thin Film Battery Technology
  • Figure 5-42: ITN Battery
  • Figure 5-43: ITN Thin-Film Deposition Systems
  • Figure 5-44: ITN's Thin-Film Deposition Systems
  • Table 5-45: ITN Thin-Film Deposition Systems Products and Services Offered
  • Table 5-46: ITN Thin-Film Deposition Systems
  • Figure 5-47: ITNIYN Fuel Cells
  • Figure 5-48: LG Corp Holding Structure
  • Figure 5-49: LG Global Sales
  • Figure 5-50: LG Business Divisions and Main Products
  • Table 5-51: LG Product Offerings
  • Figure 5-52: LG Global Network
  • Figure 5-53: LG Faster and Smarter Technology Innovation
  • Figure 5-54: LG Global Marketing
Back to Top