株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

風力エネルギーの運用・保守 (O&M) に関する調査レポート 2017年

The Wind Energy Operations & Maintenance Report 2017: Data and Independent Analysis to Help You Choose the Most Cost-effective O&M Strategy to Maximize ROI on Your Onshore Wind Power Assets

発行 Wind Energy Update 商品コード 234202
出版日 ページ情報 英文
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=112.16円で換算しております。
Back to Top
風力エネルギーの運用・保守 (O&M) に関する調査レポート 2017年 The Wind Energy Operations & Maintenance Report 2017: Data and Independent Analysis to Help You Choose the Most Cost-effective O&M Strategy to Maximize ROI on Your Onshore Wind Power Assets
出版日: 2017年04月30日 ページ情報: 英文
概要

当レポートでは、風力発電施設の運用・保守の最適化戦略について調査し、風力エネルギー市場の現状、関連参入事業者、各種コスト、各コンポーネントの故障の状況・原因・影響、保守・保全戦略の種類と概要、タービンサイズ・発電容量による最適な保守戦略の選定に関する分析、様々なO&Mサービスと最適なO&Mサービス利用に関する検証などをまとめています。

エグゼクティブサマリー

調査手法

第1章 O&M市場の概要・規模・状況

  • 風力エネルギー市場の展望
    • 世界の設備発電容量
    • 世界市場の展望
  • 主要参入事業者
    • オペレーター
    • タービン製造業者
  • タービンサイズ
  • O&M市場
    • 風力発電所O&M市場の規模
    • 保証ステータス
    • O&M市場の動向

修復・リパワーリング市場

  • 修復
    • ブレード
    • 制御システムのアップグレード
    • パワーエレクトロニクス & 電子システム
    • 延命
  • リパワーリング

主要コンポーネントの故障・RCA (根本原因解析)

  • ブレード
  • ダイレクトドライブドライブトレイン
  • ギアボックスドライブトレイン
  • メインベアリング
  • ブレードベアリング

資産最適化

  • メンテナンス戦略
    • OEM
    • サードパーティー
    • 社内
    • ハイブリッド
    • リアクティブメンテナンス
    • 予防保全 (時間ベース)
    • 予知保全
    • 保守の改善
  • メンテナンススコアカードの測定方法
    • 故障状況
    • モデルパラメーター
  • メンテナンス戦略スコアカード
  • 制限・今後の活動

コンディションモニタリングシステム

結論

付録A

付録B

図表

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次

Real Data And Independent Analysis To Help You Maximize ROI on Your Wind Power Assets

Once a wind farm is operational, adopting a cost-effective operations and maintenance strategy is the main path for operators to maximize ROI on wind energy. The report will deliver concrete data and insight into several related areas of operations and maintenance for wind farms.

Key Questions Answered In This Report Include:

  • What are the failure rates of key components on different turbine types and capacities?
  • When is it more cost effective to carry out O&M in-house rather than working with OEMs or ISPs?
  • How are other companies reducing their O&M costs whilst delivering better wind farm performance?
  • Under which circumstances is it cost-effective to invest in condition monitoring systems, rather than carry out scheduled O&M?
  • What is the O&M market size?
  • What is the re-power market size?
  • What is the retrofit market size?
  • What are the end of warranty options for operators, when should they consider repowering or retrofitting?
  • How can I avoid catastrophic failure of gearboxes, generators or blades through best O&M practice?
  • What are the main causes of turbine failure and how can I prevent them?

Key Deliverables Of The Report Include:

  • Access failure rates and repair time data for key components: Yaw System, control and protection system, generator system, turbine transmission system, rotor system, blade adjustment system and many more.
  • Identify the optimum maintenance strategy for gearboxes, generators and blades: With WEU's proprietary scorecard you can select the optimum maintenance strategy for your assets.
  • Evaluate Retrofitting & Repowering: Explore Repowering, Retrofitting and End-of-Warranty options. Understand the latest condition monitoring capabilities and their impact on asset O&M strategies.
  • Benchmark your wind assets' reliability against your peer's: New insight into failure rates and repair times for key components across Danish, Variable Resistance, DFIM and Direct Drive turbines.

The Report Will Enable You To:

  • Maximize energy yield
  • Identify the failure types that have the biggest impact on your bottom line
  • Quantify the costs and benefits of adopting predictive O&M compared to scheduled and reactive approaches
  • Identify components most at risk of failure and estimate repair times
  • Benchmark against global leaders in Operations and Maintenance
  • Find out whether it is more cost-effective to leave O&M to a turbine manufacturer, outsource it to an independent service provider or bringing O&M in-house
  • Identify the O&M strategy most suitable to each market

Table of Contents

List of Figures

List of Tables

Executive Summary

Methodology

1. O&M Market Overview, Sizing And Status

  • 1.1. Wind Energy Market Outlook
    • 1.1.1. Global Installed Capacity
      • 1.1.1.1. Global Wind Barometer
      • 1.1.1.2. Asia-Pacific
        • China
        • India
      • 1.1.1.3. Regional Markets
        • North America
        • The US
        • Canada
        • Mexico
      • 1.1.1.4. Regional Markets
        • Europe
        • Germany
        • France
        • The UK
        • Turkey
        • Italy
      • 1.1.1.5. Regional Markets
        • Latin America
        • Brazil
        • Argentina
        • Chile
    • 1.1.2. Worldwide Future Prospects
  • 1.2. Major Market Players
    • 1.2.1. Operators
    • 1.2.2. Turbine Manufacturers
  • 1.3. Turbine Size
  • 1.4. O&M Market
    • 1.4.1. Wind Farm O&M Market Size
    • 1.4.2. Warranty Status
    • 1.4.3. O&M Market Trends

Retrofit and Repowering Market

  • 1.5. Retrofitting
    • 1.5.1. Blades
      • 1.5.1.1. Power Curve Upgrade
      • 1.5.1.2. Blade Protection
      • 1.5.1.3. Noise Mitigation
    • 1.5.2. Control System Updates
      • 1.5.2.1. Advanced Controls
      • 1.5.2.2. SCADA
      • 1.5.2.3. LiDAR
      • 1.5.2.4. Condition Monitoring System (CMS)
    • 1.5.3. Power Electronics & Electrical Systems
      • 1.5.3.1. Grid Connection Upgrades
    • 1.5.4. Life Extension
  • 1.6. Repowering

Key Component Failure and RCA

  • 1.7. Blades
  • 1.8. Direct-Drive Drivetrains
    • 1.8.1. Permanent Magnet
  • 1.9. Gearbox Drivetrains
    • 1.9.1. Gearbox
    • 1.9.2. Doubly Fed Induction Generators
  • 1.10. Main Bearing
  • 1.11. Blade Bearing

Asset Optimisation

  • 1.12. Maintenance Strategies
    • 1.12.1. OEM
    • 1.12.2. Third-party
    • 1.12.3. In-house
    • 1.12.4. Hybrid
    • 1.12.5. Reactive Maintenance (Corrective)
    • 1.12.6. Preventive (Time-Based) Maintenance
    • 1.12.7. Predictive Maintenance
      • 1.12.7.1. Performance monitoring (non-intrusive condition monitoring)
      • 1.12.7.2. Condition-based maintenance
      • 1.12.7.3. Reliability-based maintenance (risk-based)
    • 1.12.8. Improvement Maintenance
  • 1.13. Maintenance Scorecard Methodologies
    • 1.13.1. Failure Scenarios
    • 1.13.2. Model Parameters
      • 1.13.2.1. Unscheduled Cost Factors
      • 1.13.2.2. Supply Chain factors
      • 1.13.2.3. CMS Factors
      • 1.13.2.4. Additional Factors
  • 1.14. Maintenance Strategy Scorecard
    • 1.14.1. Reference Failure Scenario
    • 1.14.2. High Gearbox Failure Scenario
    • 1.14.3. High Blade Failure Scenario
    • 1.14.4. High Generator Failure Scenario
  • 1.15. Limitations and Future Work

Condition Monitoring Systems

Concluding Remarks

Appendix A

Appendix B

List of Figures

  • Figure 1: Worldwide wind energy capacity
  • Figure 2: Global annual cumulative wind installed capacity
  • Figure 3: Top 10 cumulative capacity markets, 2013 (left) vs 2014 (right)
  • Figure 4: Worldwide cumulative installed capacity breakdown
  • Figure 5: Top 10 new installed capacity in 2016
  • Figure 6: Chinese wind sector installed capacity and generated electricity
  • Figure 7: Evolution of the Indian Wind Capacity (2010-2016)
  • Figure 8: US Installed Wind Power Capacity, All States
  • Figure 9: US Installed Wind Power Capacity, Top States
  • Figure 10: Age Structure of Turbine Fleet in the US by 1Q 2017
  • Figure 11: Canada's installed capacity, end of 2016
  • Figure 12: USD-MXN exchange rate trend
  • Figure 13: Cumulative Installed Power in the European Union by Source
  • Figure 14: German Onshore Wind Capacity including Repowering and Dismantling
  • Figure 15: Onshore Wind Pipeline by January 2017 (Turbines larger than 0.5MW)
  • Figure 16: Geographic Placement of the Grid Expansion Area -- Draft GEAO (NAGV) of January 2017
  • Figure 17: German wholesale prices in 2016
  • Figure 18: New Policies Scenario and forecast cumulative installed capacity by region
  • Figure 19: Top 15 operator around the world by MW installed capacity
  • Figure 20: Global Newly Installed Capacity by Turbine Manufacturer - 2016
  • Figure 21: Market share of Top 10 turbine manufacturers
  • Figure 22: Evolution of wind turbine capacity and size in Germany
  • Figure 23: Evolution of average nameplate capacity, rotor diameter, and hub height in the US
  • Figure 24: Wind Turbine Characteristics in 2030 for Onshore Wind Projects
  • Figure 25: Onshore wind O&M market size
  • Figure 26: Global growth of out-of-warranty O&M market
  • Figure 27: China's estimated cumulative off-warranty onshore wind capacity
  • Figure 28: WEU 2015 Survey - the typical length of the O%M service contracts
  • Figure 29: MAKE 2016 Survey -- Average length of service packages offered by major western OEMs
  • Figure 30: Past, present and future O&M strategy for large European utilities.
  • Figure 31: Estimated share of the direct drive and geared turbines.
  • Figure 32: Age of Global Wind Capacity Installed Worldwide
  • Figure 33: Generational Gap Between Old and New Turbines
  • Figure 34: Global Production Potential of a 3-5% AEP Increase on Aging Turbines, at 28% Capacity Factor
  • Figure 35: EU-27/28 Production Potential of 3-5% AEP Increase on Aging Turbines, at 28% Capacity Factor
  • Figure 36: U.S. Production Potential of 3-5% AEP Increase on Aging Turbines, at 28% Capacity Factor
  • Figure 37: Capacity Factor and Rotor Diameter
  • Figure 38: Vortex Generator AEP Gain
  • Figure 39: Bladena's Retrofit Blade Technologies
  • Figure 40: Relationship between AEP, Rotor Diameter and Sound Power Level
  • Figure 41: Gamesa's Aging Fleet Solution
  • Figure 42: Siemens' Wind Service Porfolio
  • Figure 43: Cumulative EU-27/28 Repowering Market Potential (GW)
  • Figure 44: Cumulative Global Repowering Market Potential (GW)
  • Figure 45: Cumulative U.S. Repowering Market Potential (GW)
  • Figure 46: Failure Rate by Key Component: Danish Concept <1MW
  • Figure 47: Failure Rate by Key Component: Variable Resistance <1MW
  • Figure 48: Failure Rate by Key Component: Variable Resistance >1MW
  • Figure 49: Failure Rate by Key Component: DFIM <1MW
  • Figure 50: Failure Rate by Key Component: DFIM >1MW
  • Figure 51: Failure Rate by Key Component: Direct Drive
  • Figure 52: Failure Rate by Key Component: All Turbines
  • Figure 53: Repair Time in Days by Key Component: Danish Concept <1MW
  • Figure 54: Repair Time in Days by Key Component: Variable Resistance <1MW
  • Figure 55: Repair Time in Days by Key Component: Variable Resistance >1MW
  • Figure 56: Repair Time in Days by Key Component: DFIM <1MW
  • Figure 57: Repair Time in Days by Key Component: DFIM >1MW
  • Figure 58: Repair Time in Days by Key Component: Direct Drive
  • Figure 59: Repair Time in Days by Key Component: All Turbines
  • Figure 60: Currently used maintenance strategies
  • Figure 61: Which O&M response approach do you tend to adopt in relation to a fleet of ageing wind turbines?
  • Figure 62: How would you best describe your approach towards O&M activities over the whole lifecycle of your assets?
  • Figure 63: Condition monitoring symptom and fault analysis and response process
  • Figure 64: In general do you tend to deploy condition monitoring systems (CMS) on your assets?
  • Figure 65: What kind of CMS do you typically deploy?
  • Figure 66: The strategic equation for reliability based maintenance.
  • Figure 67: Considerations for the maintenance scenarios
  • Figure 68: Maintenance strategy scorecard workflow
  • Figure 69: P-F curve
  • Figure 70: Probability versus component condition indicator
  • Figure 71: Reference scenario strategy comparison -3MW turbine
  • Figure 72: Reference scenario strategy comparison -2MW turbine
  • Figure 73: High gearbox failure scenario strategy comparison -3MW turbine
  • Figure 74: High gearbox failure scenario strategy comparison -2MW turbine
  • Figure 75: High blade failure scenario strategy comparison -3MW turbine
  • Figure 76: High blade failure scenario strategy comparison -2MW turbine
  • Figure 77: High generator failure scenario strategy comparison -3MW turbine
  • Figure 78: High generator failure scenario strategy comparison -2MW turbine
Back to Top