特集 : 国別レポートが13,000件から検索可能になりました!

特集 : 海外市場の委託調査がセミカスタムベースでお手軽にできます

株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

深層学習 (ディープラーニング) 向けチップセットの世界市場:AI学習・推論向けCPU・GPU・FPGA・ASIC・SoCアクセラレーター

Deep Learning Chipsets - CPUs, GPUs, FPGAs, ASICs, and SoC Accelerators for AI Training and Inference Applications: Global Market Analysis and Forecasts

発行 Omdia | Tractica 商品コード 948453
出版日 ページ情報 英文 69 Pages; 88 Tables, Charts & Figures
即納可能
価格
本日の銀行送金レート: 1USD=106.59円で換算しております。
深層学習 (ディープラーニング) 向けチップセットの世界市場:AI学習・推論向けCPU・GPU・FPGA・ASIC・SoCアクセラレーター Deep Learning Chipsets - CPUs, GPUs, FPGAs, ASICs, and SoC Accelerators for AI Training and Inference Applications: Global Market Analysis and Forecasts
出版日: 2020年07月02日 ページ情報: 英文 69 Pages; 88 Tables, Charts & Figures
概要

人工知能(AI)アクセラレーションのニーズは広く認められており、AIアクセラレーションチップセットは、エンタープライズ(データセンター)およびエッジ向けデバイスメーカーにとって、標準機能要件となっています。このことから、AIチップセットの出荷数および収益は過去2年間で大幅に増加を示しています。世界の深層学習 (ディープラーニング) 向けチップセットの収益規模は、2019年の114億米ドルから、2025年には712億米ドルに成長すると予測しています。

当レポートでは、深層学習 (ディープラーニング) 向けチップセットの市場を調査し、市場の定義と概要、市場成長への各種影響因子の分析、技術動向、アクセラレーションの必要性、チップセット要件、収益規模の推移と予測、チップセットタイプ・学習/推論区分・コンピューティング能力・エンドユーザーなど各種区分別の内訳、競合環境、主要企業のプロファイルなどをまとめています。

エグゼクティブサマリー

市場分析

  • 市場でのAIの使用
    • エンタープライズでのAIアクセラレーション
    • エッジでのAIアクセラレーション
  • 市場区分
    • アーキテクチャ(チップセットタイプ)別
    • 学習 vs 推論
    • 計算能力別
    • 消費電力別
    • エンドユーザー別:エンタープライズ ・エッジ
  • 市場成長因子
  • 市場の障壁・課題
  • 用途・使用例
  • 地域による違い
  • スタートアップ事業者の取り組み

技術分析

  • ニューラルネットワークの進化・ハードウェアアクセラレーションの必要性
  • AI推論のワークロード
  • ニューラルネットワークの解釈とチップセット要件
  • ディープラーニング向けチップセットアーキテクチャ
  • 新しいAIアクセラレーションアーキテクチャ
  • チップセットの技術パラメーター
  • ベンチマーキング
  • AIチップセットに用いるデータ形式
  • ディープラーニングの開発フレームワーク

主要企業

  • Amazon
  • AMD
  • ARM
  • Cerebras Systems
  • CEVA
  • Esperanto Technologies
  • Facebook
  • Google
  • Graphcore
  • Groq
  • Gyrfalcon Technologies
  • Habana Labs (Intel)
  • Huawei
  • Intel
  • Kalray
  • MediaTek
  • Movidius (Intel)
  • Mobileye (Intel)
  • NVIDIA
  • Qualcomm
  • SambaNova
  • Thinci (now Blaize)
  • Xilinx

市場予測

  • 予測手法・前提因子
  • 総市場
  • 収益:チップセットタイプ別
  • 収益:学習・推論別
  • 収益:コンピューティング能力別
  • 収益:消費電力別
  • 平均販売価格:チップセットタイプ別
  • 収益:エンドユーザー別
  • CPU
  • GPU
  • ASIC
  • FPGA
  • SoCアクセラレーター
  • 総論
図表

Tables

  • Deep learning chipset revenue by chipset type, world markets: 2019-25
  • Deep learning chipset revenue, enterprise vs. edge, world markets: 2019-25
  • Deep learning chipset revenue growth rates, world markets: 2020-25
  • Deep learning chipset revenue by power consumption, world markets: 2019-25
  • Deep learning chipset revenue by compute capacity, world markets: 2019-25
  • Deep learning chipset revenue, inference vs. training, world markets: 2019-25
  • Deep learning edge chipset revenue by chipset type, world markets: 2019-25
  • Deep learning edge chipset shipments by chipset type, world markets: 2019-25
  • Deep learning edge chipset revenue growth rates, world markets: 2020-25
  • Deep learning edge chipset revenue by power consumption, world markets: 2019-25
  • Deep learning edge chipset revenue by compute capacity, world markets: 2019-25
  • Deep learning edge chipset revenue for inference vs. training, world markets: 2019-25
  • Deep learning enterprise chipset revenue by chipset type, world markets: 2019-25
  • Deep learning enterprise chipset shipments by chipset type, world markets: 2019-25
  • Deep learning enterprise chipset revenue growth rates, world markets: 2020-25
  • Deep learning enterprise chipset revenue by power consumption, world markets: 2019-25
  • Deep learning enterprise chipset revenue by compute capacity, world markets: 2019-25
  • Deep learning enterprise chipset revenue for inference vs. training, world markets: 2019-25
  • Deep learning edge chipset ASPs by chipset type, mobile, HMDs, drones, and machine vision (non-PC), world markets: 2019-25
  • Deep learning edge chipset ASPs by chipset type, edge servers, world markets: 2019-25
  • Deep learning edge chipset ASPs by chipset type, PCs/tablets, world markets: 2019-25
  • Deep learning edge chipset ASPs by chipset type, cameras, world markets: 2019-25
  • Deep learning edge chipset ASPs by chipset type, smart speakers, world markets: 2019-25
  • Deep learning edge chipset ASPs by chipset type, automotive, world markets: 2019-25
  • Deep learning edge chipset ASPs by chipset type, robots, world markets: 2019-25
  • Deep learning enterprise training chipset ASPs by chipset type, world markets: 2019-25
  • Deep learning enterprise inference chipset ASPs by chipset type, world markets: 2019-25
  • Deep learning CPU chipset revenue by market sector, world markets: 2019-25
  • Deep learning CPU enterprise chipset revenue, training vs. inference, world markets: 2019-25
  • Deep learning CPU edge chipset revenue, training vs. inference, world markets: 2019-25
  • Deep learning CPU enterprise chipset revenue by power consumption, world markets: 2019-25
  • Deep learning CPU enterprise chipset revenue by compute capacity, world markets: 2019-25
  • Deep learning CPU edge chipset revenue by power consumption, world markets: 2019-25
  • Deep learning CPU edge chipset revenue by compute capacity, world markets: 2019-25
  • Deep learning GPU chipset revenue by market sector, world markets: 2019-25
  • Deep learning GPU enterprise chipset revenue, training vs. inference, world markets: 2019-25
  • Deep learning GPU edge chipset revenue, training vs. inference, world markets: 2019-25
  • Deep learning GPU enterprise chipset revenue by power consumption, world markets: 2019-25
  • Deep learning GPU enterprise chipset revenue by compute capacity, world markets: 2019-25
  • Deep learning GPU edge chipset revenue by power consumption, world markets: 2019-25
  • Deep learning GPU edge chipset revenue by compute capacity, world markets: 2019-25
  • Deep learning FPGA chipset revenue by market sector, world markets: 2019-25
  • Deep learning FPGA enterprise chipset revenue, training vs. inference, world markets: 2019-25
  • Deep learning FPGA edge chipset revenue, training vs. inference, world markets: 2019-25
  • Deep learning FPGA enterprise chipset revenue by power consumption, world markets: 2019-25
  • Deep learning FPGA enterprise chipset revenue by compute capacity, world markets: 2019-25
  • Deep learning FPGA edge chipset revenue by power consumption, world markets: 2019-25
  • Deep learning FPGA edge chipset revenue by compute capacity, world markets: 2019-25
  • Deep learning ASIC chipset revenue by market sector, world markets: 2019-25
  • Deep learning ASIC enterprise chipset revenue, training vs. inference, world markets: 2019-25
  • Deep learning ASIC edge chipset revenue, training vs. inference, world markets: 2019-25
  • Deep learning ASIC enterprise chipset revenue by power consumption, world markets: 2019-25
  • Deep learning ASIC enterprise chipset revenue by compute capacity, world markets: 2019-25
  • Deep learning ASIC edge chipset revenue by power consumption, world markets: 2019-25
  • Deep learning ASIC edge chipset revenue by compute capacity, world markets: 2019-25
  • Deep learning SoC accelerator chipset revenue by market sector, world markets: 2019-25
  • Deep learning SoC accelerator enterprise chipset revenue, training vs. inference, world markets: 2019-25
  • Deep learning SoC accelerator edge chipset revenue, training vs. inference, world markets: 2019-25
  • Deep learning SoC accelerator enterprise chipset revenue by power consumption, world markets: 2019-25
  • Deep learning SoC accelerator enterprise chipset revenue by compute capacity, world markets: 2019-25
  • Deep learning SoC accelerator edge chipset revenue by power consumption, world markets: 2019-25
  • Deep learning SoC accelerator edge chipset revenue by compute capacity, world markets: 2019-25
  • Types of devices with enterprises using AI accelerators
  • Edge devices shipping in high volume and chipset requirements
  • Key players in different deep learning chipsets
  • Key CPU products and vendors
  • Key players in GPU
  • Key players in FPGA
  • Comparison of deep learning chipset parameters
  • Selected benchmarks for AI chipsets
  • Data formats used in AI chipsets
  • Popular deep learning frameworks
  • Deep learning chipset companies
  • IP companies

Figures

  • Deep learning chipset revenue, world markets: 2019-25
  • Estimated AI workloads on enterprise GPUs and CPUs
  • Deep learning chipset revenue, world markets: 2019-25
  • Deep learning chipset year-on-year revenue growth rates, world markets: 2020-25
  • Deep learning chipset revenue by chipset type, world markets: 2019-25
  • Deep learning chipset revenue, inference vs. training, world markets: 2019-25
  • Deep learning chipset revenue by compute capacity, world markets: 2019-25
  • Deep learning chipset revenue by power consumption, world markets: 2019-25
  • Deep learning chipset revenue by market sector, world markets: 2019-25
  • Deep learning CPU chipset revenue, world markets: 2019-25
  • Deep learning GPU chipset revenue, world markets: 2019-25
  • Deep learning ASIC chipset revenue, world markets: 2019-25
  • Deep learning FPGA chipset revenue, world markets: 2019-25
  • Deep learning SoC accelerator chipset revenue, world markets: 2019-25
目次
Product Code: DLC-20

The need for artificial intelligence (AI) acceleration is widely recognized as of 2020. AI acceleration chipsets have become a standard feature requirement for device manufacturers within the enterprise (data center) and edge markets. As a result, the volume and revenue of AI chipsets have increased drastically in the last two years. NVIDIA's latest A100 offers petaOPS of compute performance under certain compute conditions, marking a tremendous jump from the petaOPS server DGX-1 introduced just two short years ago.

Deep learning (DL) is slowly moving past its hype cycle as proof-of-concept (PoC) AI applications developed in the past two years go into production. AI chipset customers have become more sophisticated in terms of chipset needs for AI application acceleration and are asking for specific benchmarks when talking to vendors. Customers' needs for chipsets are coming to the forefront, forcing chipset companies to rethink the applicability of their technology. All prominent chip companies, such as Intel, NVIDIA, and Qualcomm, have invested heavily in AI. Cloud companies have started rolling out graphics processing units (GPUs), field-programmable gate arrays (FPGAs), and application-specific integrated circuits (ASICs), giving developers a choice for AI acceleration. Omdia forecasts that global revenue for DL chipsets will increase from $11.4bn in 2019 to $71.2bn by 2025.

This Omdia Market Report assesses the industry dynamics, technology issues, and market opportunity surrounding DL chipsets, including CPUs, GPUs, FPGAs, ASICs, and SoC accelerators. As an update to Omdia's 2019 ‘Deep Learning Chipsets ’ report, it captures the state of this fast-moving chipset market. Global market forecasts, segmented by chipset type, compute capacity, power consumption, market sector, and training versus inference, extend through 2025. Omdia also provides profiles of 23 key industry players.

Key Questions Addressed:

  • What chipset types are being used for deep learning (DL) today, and how will they change through 2025 and beyond?
  • What are the power consumption and compute capacity profiles of chipsets used for DL applications?
  • What is the market opportunity for DL chipsets in enterprise environments versus edge devices?
  • Which market sectors and industries will drive demand for DL chipsets?
  • What is the state of technology development for DL chipsets, and which companies are driving innovation?
  • What are some of the emerging architectures for DL chipsets?
  • What are the key performance matrices for DL chipsets?
  • What are some of the use cases for DL chipsets in different application markets?
  • What has changed in the DL chipset market in the last two years?
  • How are startups faring in the DL chipset market?

Who Needs This Report?

  • Semiconductor and component manufacturers
  • OEM companies building devices using AI chipsets
  • Cloud companies using AI chipsets
  • Service providers and systems integrators
  • End-user organizations deploying deep learning systems
  • Industry associations
  • Government agencies
  • Investor community

Table of Contents

Executive summary

  • Introduction
  • 2020 report update
  • Key findings
  • Market forecasts

Market issues

  • Use of AI in the market
    • AI acceleration within enterprises
    • AI acceleration at the edge
  • Market segmentation
    • Segmentation by architecture (chipset type)
    • Segmentation based on training vs. inference
    • Segmentation based on compute capacity
    • Segmentation based on power consumption
    • Segmentation based on market sector: Enterprise and edge market
  • Market drivers
    • Popularity of AI and increasing complexity
    • Multiple AI pipelines
    • Complexity of training
    • Growth in enterprise applications
    • Desire to minimize production costs
    • Latency and throughput requirements for inference
    • Computer vision
    • Speech applications for embedded devices
  • Market barriers and challenges
    • Capital needs for chip development
    • Availability of expertise
    • Long development cycle and rapidly changing market
  • Applications and use cases
    • Enterprise applications and use cases
    • Edge applications and use cases
    • Other
  • Regional differences
  • Startup activity in deep learning chipsets
    • Many acquisitions
    • Casualties

Technology issues

  • Evolution of neural networks since 2012 and the need for hardware acceleration
    • Computation needs per forward pass (inference)
    • Compute needs for training
    • A neural network zoo
  • AI inference workloads
    • Recommendation engine
    • Image and video
    • Audio and speech
    • Text/natural language processing
    • Search
  • Translating neural network needs to chipset requirements
    • Processing elements and arithmetic logic units
    • Memory
    • On-chip connectivity
    • Chip-to-chip connectivity
  • Chipset architectures for deep learning
    • Central processing units
    • Graphics processing units
    • Field-programmable gate arrays
    • Application-specific integrated circuits
    • System-on-chip accelerators
  • Emerging AI acceleration architectures
    • Optical computing
    • Analog computing
    • Processing in memory
    • Neuromorphic
  • Technology parameters for chipsets
  • Benchmark
  • Data formats used in AI chipsets
  • Deep learning development frameworks

Key industry players

  • Amazon
  • AMD
  • ARM
  • Cerebras Systems
  • CEVA
  • Esperanto Technologies
  • Facebook
  • Google
  • Graphcore
  • Groq
  • Gyrfalcon Technologies
  • Habana Labs (acquired by Intel)
  • Huawei
  • Intel
  • Kalray
  • MediaTek
  • Movidius (Intel)
  • Mobileye (Intel)
  • NVIDIA
  • Qualcomm
  • SambaNova
  • Thinci (now Blaize)
  • Xilinx
  • Deep learning chipset and IP companies

Market forecasts

  • Forecast methodology and assumptions
    • Omdia coverage of AI chipsets
  • Overall market
  • Revenue by chipset type
  • Revenue by training vs. inference
  • Revenue by compute capacity
  • Revenue by power consumption
  • Average selling price by chipset type
  • Revenue by market sector
  • Central processing units
  • Graphics processing units
  • Application-specific integrated circuits
  • Field-programmable gate arrays
  • System-on-chip accelerators
  • Conclusions