株式会社グローバルインフォメーション
TEL: 044-952-0102
市場調査レポート

クラウドおよびエンタープライズデータセンターハードウェア - サーバー、ワークステーション、カード、ストレージ、ネットワークインフラにおける人工知能 (AI):世界市場の分析と予測

Artificial Intelligence in Cloud and Enterprise Data Center Hardware - Servers, Workstations, Cards, Storage, and Networking Infrastructure: Global Market Analysis and Forecasts

発行 Tractica 商品コード 914179
出版日 ページ情報 英文 91 Pages; 59 Tables, Charts & Figures
即納可能
価格
本日の銀行送金レート: 1USD=109.93円で換算しております。
Back to Top
クラウドおよびエンタープライズデータセンターハードウェア - サーバー、ワークステーション、カード、ストレージ、ネットワークインフラにおける人工知能 (AI):世界市場の分析と予測 Artificial Intelligence in Cloud and Enterprise Data Center Hardware - Servers, Workstations, Cards, Storage, and Networking Infrastructure: Global Market Analysis and Forecasts
出版日: 2019年10月17日 ページ情報: 英文 91 Pages; 59 Tables, Charts & Figures
概要

当レポートでは、クラウド・エンタープライズデータセンターにおける、特にコンピューター、ストレージ、およびネットワーク機能といった、AIインフラ要件を促進するビジネス、消費者および政府向けAIアプリケーションについて調査しており、市場、エコシステム、ベンダーおよび技術の変化する特性を分類し、地域、機能、チップセット、デリバリーモデル、および垂直産業別によるインフラハードウェア支出予測を提供しています。

第1章 エグゼクティブサマリー

第2章 市場課題

  • イントロダクション
  • 定義
  • 市場促進要因
  • 市場障壁
  • エコシステムの問題
  • ハイパースケーラーAIのワークロード
  • エンタープライズAIのワークロード

第3章 技術課題

  • 技術動向
  • シリコンアーキテクチャー (CPU、GPU、ASIC、FPGA、カスタムデザイン)
  • コンピューティング
  • メモリー
  • ストレージ
  • ネットワーキング
  • デリバリーモデル:IaaS、PaaS、SaaS
  • ソフトウェア定義データセンター
  • 将来

第4章 主要企業

  • ベンダー
  • ホワイトボックスベンダー
  • クラウドサービスプロバイダー

第5章 市場予測

  • 調査範囲・手法
  • AI向けクラウド・エンタープライズデータセンターハードウェア
  • AI向けクラウド・エンタープライズデータセンターハードウェア:地域別
  • AI向けクラウド・エンタープライズデータセンターハードウェア:機能別
  • AI向けクラウド・エンタープライズデータセンターハードウェア:コンピューターカテゴリー別
  • AI向けクラウドデータセンターハードウェア:デリバリーモデル別
  • AI向けクラウド・エンタープライズデータセンターハードウェア:垂直産業別
  • 結論・提言

第6章 企業ディレクトリ

第7章 頭字語・略語リスト

第8章 目次

第9章 図表

第10章 調査範囲、情報源、調査手法、注記

目次
Product Code: CEDC-19

The first movers in artificial intelligence (AI) have been the hyperscaler operators. This is partly because their businesses had progressed to the point where they needed AI. Google needed AI to optimize web searches; Amazon to do customization of its online retail offerings; and Facebook to enhance its activity feed, photo, and social media applications. The other reason is that the hyperscalers are the ones with the deep pockets to fund the high costs of research in AI. These companies are now attempting to democratize AI technology and make it pervasive.

Data center infrastructure, specifically computing, memory, storage, and networking, is in the process of going through a reboot to support AI. Though AI represents just a small portion of a cloud data center's workload and an even smaller portion of an enterprise's workload, it drives a different type of application profile and thus requires different architectures and components. Advances in technology have played a major part in enabling AI expansion and market penetration. In turn, AI applications are driving the development of new silicon and system architectures, storage and networking options, and delivery models. Meanwhile, Tractica's research indicates that enterprises are not abandoning on-premise computing. While the hyperscalers have been driving AI implementation in the cloud, there is corresponding demand for on-premise and colocated solutions from early adopter enterprises.

This Tractica report examines the AI applications in business, consumer, and government that are driving requirements in AI infrastructure, especially the compute, storage, and networking functions in cloud and enterprise data centers. The report also catalogs the changing nature of the market, ecosystem, vendors, and technologies, including the underlying semiconductors powering the next generation in AI. Market forecasts include infrastructure hardware spend from 2018 to 2025 segmented by region, function, chipset, delivery model, and enterprise vertical.

Key Market Forecasts

  • Cloud and Enterprise Data Center Hardware Revenue for AI by Vertical, World Markets: 2018-2025
  • Cloud and Enterprise Data Center Hardware Revenue for AI by Segment, World Markets: 2018-2025
  • Cloud and Enterprise Data Center Hardware Revenue for AI by Region, World Markets: 2018-2025
  • AI Initiatives, Industry vs. Research Focus, U.S., China, and Europe: 2018
  • Cloud and Enterprise Data Center Hardware Revenue for AI by Function, World Markets: 2018-2025
  • Cloud and Enterprise Data Center Hardware Revenue for AI by Compute Category, World Markets: 2018-2025
  • Cloud and Enterprise Data Center Hardware Revenue for AI by Vertical, World Markets: 2018-2025

Verticals

  • Banking & Financial
  • Retail
  • Automotive & Transportation
  • Telecom & Broadband
  • Healthcare
  • Manufacturing
  • Consumer Packaged Goods
  • Government
  • Travel & Tourism
  • Education
  • Other

Functions and Delivery

  • Models
  • Computing
  • Storage
  • Networking
  • Infrastructure as a service (IaaS)
  • Platform as a service (PaaS)
  • Software as a service (SaaS)

Geographies

  • North America
  • Europe
  • Asia Pacific
  • Latin America
  • Middle East and Africa

Table of Contents

1. Executive Summary

  • 1.1. Introduction
    • 1.1.1. Definitions
  • 1.2. Market Drivers
  • 1.3. Market Barriers
  • 1.4. Technology Issues
  • 1.5. Market Ecosystem
  • 1.6. Market Forecasts

2. Market Issues

  • 2.1. Introduction
    • 2.1.1. First Movers and Early Innovators
    • 2.1.2. Data Center Infrastructure
  • 2.2. Definitions
    • 2.2.1. Cloud and Enterprise Data Center
    • 2.2.2. Public, Private, and Hybrid Clouds
  • 2.3. Market Drivers
    • 2.3.1. Increasing Interest in AI from Cloud Hyperscale Operators
    • 2.3.2. Increasing Interest in AI from Colocation and Tier 2 Operators
    • 2.3.3. Increasing Interest in AI from Enterprises
    • 2.3.4. Increase in Diversity and Complexity of AI Applications and Models
    • 2.3.5. Interest in AI from Global Governments
    • 2.3.6. Growth in AI Startups, Investments, Education, and Jobs
  • 2.4. Market Barriers
    • 2.4.1. Decentralized AI at the Edge
    • 2.4.2. Data Center Costs
    • 2.4.3. Lack of Robust Enterprise Architectures and Data Frameworks
    • 2.4.4. Issues of Privacy
    • 2.4.5. Shortcomings of AI
  • 2.5. Ecosystem Questions
    • 2.5.1. U.S.-China Trade War
    • 2.5.2. The Rise of White Box Vendors
    • 2.5.3. Hyperscalers and DIY Silicon
    • 2.5.4. Enterprises - Should They Implement in Cloud or On-Premise?
  • 2.6. Hyperscaler AI Workloads
  • 2.7. Enterprise AI Workloads

3. Technology Issues

  • 3.1. Technology Trends
  • 3.2. Silicon Architectures (CPU, GPU, ASIC, FPGA, Custom Design)
    • 3.2.1. CPU
    • 3.2.2. GPU
    • 3.2.3. FPGA
    • 3.2.4. ASIC
    • 3.2.5. Custom Design
  • 3.3. Computing
  • 3.4. Memory
  • 3.5. Storage
  • 3.6. Networking
    • 3.6.1. 400 GbE Optical Connections
    • 3.6.2. Smart Network Interface Cards (SmartNICs)
    • 3.6.3. Intent-Based Networking Systems (IBNS)
  • 3.7. Delivery Models: IaaS, PaaS, SaaS
    • 3.7.1. Infrastructure as a Service (IaaS)
    • 3.7.2. Platform as a Service (PaaS)
    • 3.7.3. Software as a Service (SaaS)
    • 3.7.4. Choose the Service
  • 3.8. Software-Defined Data Center
  • 3.9. The Future

4. Key Industry Players

  • 4.1. Vendors
    • 4.1.1. Cisco
    • 4.1.2. Dell
    • 4.1.3. HPE
    • 4.1.4. Huawei
    • 4.1.5. IBM
    • 4.1.6. Inspur
    • 4.1.7. Lenovo
    • 4.1.8. NetApp
  • 4.2. White Box Vendors
    • 4.2.1. ASUSTeK
    • 4.2.2. Compal
    • 4.2.3. Honhai/Foxconn
    • 4.2.4. Inventec
    • 4.2.5. Pegatron
    • 4.2.6. Quanta
    • 4.2.7. Wistron
  • 4.3. Cloud Service Providers
    • 4.3.1. Alibaba
    • 4.3.2. Amazon
    • 4.3.3. Baidu
    • 4.3.4. Data Foundry
    • 4.3.5. Equinix
    • 4.3.6. Flexential
    • 4.3.7. Google
    • 4.3.8. Microsoft
    • 4.3.9. Tencent

5. Market Forecasts

  • 5.1. Scope and Methodology
    • 5.1.1. Hardware Infrastructure and Additional Data
    • 5.1.2. Top-Down Approach
    • 5.1.3. Definitions
    • 5.1.4. Regions
    • 5.1.5. Beyond 2025
  • 5.2. Cloud and Enterprise Data Center Hardware for AI
  • 5.3. Cloud and Enterprise Data Center Hardware for AI by Region
  • 5.4. Cloud and Enterprise Data Center Hardware for AI by Function
  • 5.5. Cloud and Enterprise Data Center Hardware for AI by Compute Category
  • 5.6. Cloud Data Center Hardware for AI by Delivery Model
  • 5.7. Cloud and Enterprise Data Center Hardware for AI by Vertical
    • 5.7.1. Banking and Financial
    • 5.7.2. Retail
    • 5.7.3. Automotive and Transportation
    • 5.7.4. Telecom and Broadband and Energy
    • 5.7.5. Healthcare
    • 5.7.6. Manufacturing
    • 5.7.7. Consumer Packaged Goods
    • 5.7.8. Government
    • 5.7.9. Travel and Tourism
    • 5.7.10. Education
    • 5.7.11. Others
  • 5.8. Conclusions and Recommendations

6. Company Directory

7. Acronym and Abbreviation List

8. Table of Contents

9. Table of Charts and Figures

10. Scope of Study, Sources and Methodology, Notes

Tables

  • Cloud and Enterprise Data Center Hardware Revenue for AI by Segment, World Markets: 2018-2025
  • Year-over-Year Growth, Cloud and Enterprise Data Center Hardware Revenue for AI, World Markets: 2019-2025
  • Cloud and Enterprise Data Center Hardware Revenue for AI by Region, World Markets: 2018-2025
  • Cloud and Enterprise Data Center Hardware Revenue for AI by Function, World Markets: 2018-2025
  • Cloud and Enterprise Data Center Hardware Revenue for AI by Compute Category, World Markets: 2018-2025
  • Cloud Data Center Hardware Revenue for AI by Delivery Model, World Markets: 2018-2025
  • Cloud and Enterprise Data Center Hardware Revenue for AI by Vertical, World Markets: 2018-2025
  • Growth of Cloud Data Centers, Global vs. U.S.: 2019
  • Paperspace's GPU-Powered Virtual Machine
  • Power Density in a Data Center: 2009 vs. 2019
  • Server Market Share: End 2018
  • Baidu Kunlun Processor Features
  • Type of AI Workloads Running at the Cloud Data Center: 2018 and 2025
  • Enterprise AI Workloads Segmented by Location Where They Run: 2018 and 2025
  • Silicon Alternatives for AI
  • Hyperscaler IaaS, PaaS, and SaaS Solutions

Charts

  • Cloud and Enterprise Data Center Hardware Revenue for AI by Segment, World Markets: 2018-2025
  • Cloud and Enterprise Data Center Hardware Revenue for AI by Vertical, World Markets: 2018-2025
  • Cloud and Enterprise Data Center Hardware Revenue for AI by Segment, World Markets: 2018-2025
  • Cloud and Enterprise Data Center Hardware Revenue for AI by Region, World Markets: 2018-2025
  • AI Initiatives, Industry vs. Research Focus, U.S., China, and Europe: 2018
  • Cloud and Enterprise Data Center Hardware Revenue for AI by Function, World Markets: 2018-2025
  • Cloud and Enterprise Data Center Hardware Revenue for AI by Compute Category, World Markets: 2018-2025
  • Cloud Data Center Hardware Revenue for AI by Delivery Model, World Markets: 2018-2025
  • Cloud and Enterprise Data Center Hardware Revenue for AI by Vertical, World Markets: 2018-2025

Figures

  • Fourth Industrial Revolution
  • Data from Autonomous Vehicles
  • R&D Investments: 1Q 2018 and 2Q 2018
  • Adoption of AI
  • Public Cloud, Private Cloud, and On-Premise
  • PUE Improvement by Google
  • Capabilities of AI
  • AI Startups vs. All Startups
  • AI Skill Requirements in Job Postings
  • Edge vs. Cloud Computing
  • Data Center Electricity Use (Billions of kWh/Year): 2006-2020
  • Google's TPU on a Printed Circuit Board and Inside a Data Center
  • Silicon Alternatives for AI
  • NVIDIA's T4 GPU
  • Amazon's FPGA Acceleration
  • Qualcomm Cloud AI 100
  • Google's TPUv2
  • AMD's HBM
  • NVIDIA DGX-1 with Pure Storage
  • Ethernet Evolution
  • Cloud Computing Delivery Models
  • Cloud Computing Delivery Models
  • SDDC Architecture
  • Cisco Rack Server
  • Dell EMC PowerMax All-Flash Enterprise Data Storage
  • IBM Watson Studio
  • Inspur's AI Offering
  • ThinkStation 920 for AI
  • HGX-1 for AI Acceleration
  • QCT's Platforms for Machine Learning
  • Roadmap of AI
  • Primary Components Inside a Data Center
  • Hyperconverged Infrastructure (HCI)
  • IaaS, PaaS, SaaS Architectures
Back to Top