株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

エンタープライズ・アプリケーション向け人工知能 (AI) - ディープラーニング、機械学習、自然言語処理、コンピュータービジョン、マシンリーズニング、「強いAI」:世界市場の分析と予測

Artificial Intelligence for Enterprise Applications - Deep Learning, Machine Learning, Natural Language Processing, Computer Vision, Machine Reasoning and Strong AI: Global Market Analysis and Forecasts

発行 Tractica 商品コード 328668
出版日 ページ情報 英文 169 Pages; 144 Tables, Charts & Figures
即納可能
価格
本日の銀行送金レート: 1USD=115.27円で換算しております。
Back to Top
エンタープライズ・アプリケーション向け人工知能 (AI) - ディープラーニング、機械学習、自然言語処理、コンピュータービジョン、マシンリーズニング、「強いAI」:世界市場の分析と予測 Artificial Intelligence for Enterprise Applications - Deep Learning, Machine Learning, Natural Language Processing, Computer Vision, Machine Reasoning and Strong AI: Global Market Analysis and Forecasts
出版日: 2016年09月06日 ページ情報: 英文 169 Pages; 144 Tables, Charts & Figures
担当者のコメント
Tracticaは、時代を先取りした商品ラインナップを展開する市場調査会社です。レポートを分野別にまとめてご購入できる『年間契約型レポートパッケージ』もございます。既刊のオートメーションおよびロボティクス関連レポート10冊に2016年発行予定の新刊12冊を加えた22冊を、6冊分の価格でお求めいただける大変お得なセットです。専門アナリストのサポートサービスもご利用いただけますので、是非合わせてご検討下さい。
概要

人工知能 (以下AI) は近年になって急速に、世界各地の企業経営者の大きな関心事項となっています。AIとはコンピューターに人間と同じ感覚・思考・学習能力を持たせるための技術ですが、一部の領域では人間の能力を凌駕しており、特に大量のデータを迅速・正確・効率的に処理することができます。AI企業への投資が急激に拡大する一方、AIのアルゴリズムの開発も急ピッチで進められています。エンタープライズ (企業向け) AIの市場規模は、2016年には3億5800万米ドル、2025年には312億米ドルと、64.3%ものCAGR (複合年間成長率) で成長する見通しです。

当レポートでは、企業向け用途 (エンタープライズ・アプリケーション) の人工知能 (AI) 市場の現状と将来展望について分析し、AIの技術的概略や主な機能、現時点での普及・活用状況、全体的な市場規模の見通し (今後10年間分)、産業別・技術内容別の詳細動向、今後の技術・市場の方向性、主要企業のプロファイル (30社以上) などを調査・推計しております。

第1章 エグゼクティブ・サマリー

  • イントロダクション
  • 市場促進要因
  • 市場阻害要因
  • 技術
  • 市場予測

第2章 市場の課題

  • 市場促進要因
    • データセットの大規模化
    • 機械学習のアルゴリズムの大幅改善
    • ハードウェアの進歩
    • 技術能力の連動
  • 市場阻害要因
    • 「宣伝しすぎ」と「買いかぶりすぎ」
    • 非現実的な期待
    • 社会的矛盾
    • 社会的な反発
    • 正確なデータの必要性
    • まだ未成熟な神経科学
    • 経験を積んだ人材の不足
    • 結論
  • 市場の有効活用と新たなビジネスモデル
    • ビジネスモデル
  • 主な産業:AIの主な活用方法・ニーズ、使用事例
    • 広告
    • 航空宇宙
    • 農業
    • ビルオートメーション
    • ビジネス
    • 教育
    • ファッション
    • 金融
    • ゲーム
    • 政府機関
    • 医療
    • IT
    • 投資
    • 法務
    • ライフサイエンス
    • ロジスティクス
    • 製造業
    • メディア・エンタテインメント
    • 石油・ガス・鉱業
    • 不動産
    • 小売業
    • 不動産
    • スポーツ・フィットネス
    • 電気通信

第3章 技術的課題

  • 人工知能 (AI) の定義
  • AIの冬と復興期
  • AIの詳細な説明
  • 機械学習 (マシンラーニング)
  • ディープラーニング (深層学習)
  • 自然言語処理
  • コンピューター版
  • マシンリーズニング (機械推量)
  • 「強いAI」
  • ゲームの分野での進化
    • 囲碁の場合
    • ゲームとの実用的な関連性
  • 機械学習の歴史
  • 深層学習の歴史
  • 機械学習と深層学習の違い
  • 構造化データ/非構造データ
  • 教師あり学習/教師なし学習
  • 「既知の事実」と「未知の事実」
  • 機械学習の事例
  • ディープラーニングの事例
  • 自然言語処理
    • 仮想アシスタンス機能の優位性
      • Amazon Alexa Voice Service
      • Apple Siri
      • Baidu Duer
      • Facebook Moneypenny
      • Microsoft Cortana
      • Google Now
      • 市場の促進要因についての理解
  • 音声認識
  • コンピュータービジョン
  • マシンリーズニング
  • 予測的API
  • センサー
  • 当レポートの分析対象外となる技術 (アビオニクスなど)
  • 今後の方向性
    • 市場の新たな波
    • 整備と回復
    • AIはある種の問題の解決には適さない
    • 影響度の拡大

第4章 主な市場参入企業

  • IBM
  • Microsoft
  • Facebook
  • Google
  • Baidu
  • NVIDIA
  • Rocket Fuel
  • Dstillery
  • Prism Skylabs
  • Continental AG
  • Tesla Motors
  • Mobileye
  • Lending Club
  • Kabbage
  • Coursera
  • Knewton
  • Bloomberg
  • FinGenius
  • Medtronic
  • Apple
  • Intel
  • 日本電気
  • Qualcomm
  • Salesforce
  • DataMinr
  • Roche Holding AG
  • Cognitive Scale
  • Declara
  • AiCure
  • Sailthru

第5章 市場予測

  • 予測手法
  • 世界のAI市場の将来予測
  • エンタープライズAIの市場収益額:産業別
  • エンタープライズAIの市場収益額:技術別
  • AI関連の市場収益額
    • AI関連サービス
      • 設置サービス
      • 訓練
      • カスタム化サービス
      • アプリケーション統合サービス
      • 整備・サポートサービス
    • AI関連ハードウェア
      • クラウド
      • GPUチップ
      • コンピュータ
      • ネットワーク製品
      • ストレージ装置
  • AI市場の収益額:産業別
    • 広告
    • 航空宇宙
    • 農業
    • 自動車
    • ビルオートメーション
    • ビジネス
    • 教育
    • ファッション
    • 金融
    • ゲーム
    • 政府機関
    • 医療
    • IT
    • 投資
    • 法務
    • ライフサイエンス
    • ロジスティクス
    • 製造業
    • メディア・エンタテインメント
    • 石油・ガス・鉱業
    • 不動産
    • 小売業
    • スポーツ・フィットネス
    • 通信
    • 運輸
  • AI市場の収益額:技術別
    • 機械学習
    • ディープラーニング
    • 自然言語処理
    • コンピュータ版
    • マシンリーズニング
    • 「強いAI」

第6章 結論と提言

  • 主な分析結果
  • 潜在的顧客向け提言
  • 技術ベンダー向け提言
  • 結論

第7章 企業一覧

第8章 略語・頭文字集

第9章 目次

第10章 図表一覧

第11章 分析範囲・情報源・分析手法・注記

図表一覧

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次
Product Code: AIE-16

Artificial intelligence (AI) technologies are quickly gaining mindshare among corporate executives around the world, driving a proliferation of use cases that touch virtually every industry. AI technologies, which include deep learning, machine learning, natural language processing (NLP), and computer vision, among others, are designed to endow computers with human-like faculties such as hearing, seeing, reasoning, and learning. But AI enables computers to do some things better than humans, especially when it comes to processing very large amounts of data quickly, efficiently, and accurately.

Investment is flowing rapidly into the development of AI technologies, both at the startup level as well as within some of the world's4 leading technology companies. Meanwhile, innovation in AI algorithms is progressing at a breakneck pace and industry players are scrambling to determine the optimal platforms to deliver AI-enabled services on a cost-effective basis across an ever-expanding set of use cases. Tractica's analysis has identified nearly 200 real-world enterprise use cases for AI that are classified into 25 industry sectors. The firm forecasts that revenue for enterprise AI applications will increase from $358 million in 2016 to $31.2 billion by 2025, representing a compound annual growth rate (CAGR) of 64.3%.

This Tractica report provides an in-depth analysis of the market dynamics surrounding the growth of artificial intelligence for enterprise markets including an assessment of market drivers and challenges, business models, use cases, technology issues, and the competitive landscape. Technologies covered by the study include machine learning, deep learning, natural language processing, computer vision, machine reasoning, and strong AI. Market sizing and revenue forecasts cover the period from 2016 through 2025 and are segmented by six technology areas, five world regions, and 25 industry sectors. The study also includes detailed profiles of more than 30 key industry players.

Key Questions Addressed:

  • What are the key use cases for AI within each industry sector?
  • What business models are being utilized for the deployment of AI in enterprise environments?
  • What are the key barriers to adoption of AI technologies?
  • What is the mix of AI technologies likely to be during the next decade?
  • Who are the key industry players in AI and what are their key areas of strategic focus?
  • How will enterprise AI adoption vary across different world regions?

Who Needs This Report?

  • Enterprise software companies
  • Semiconductor and component manufacturers
  • Service providers and systems integrators
  • Enterprise organizations deploying AI solutions
  • Industry organizations
  • Government agencies
  • Investor community

Table of Contents

1. Executive Summary

  • 1.1. Introduction
  • 1.2. Market Drivers
  • 1.3. Market Barriers
  • 1.4. Technologies
  • 1.5. Market Forecast

2. Market Issues

  • 2.1. Market Drivers
    • 2.1.1. Larger Data Sets
    • 2.1.2. Significant Improvement in Machine Learning Algorithms
    • 2.1.3. Advances in Hardware
    • 2.1.4. Alignment of Technological Capabilities
  • 2.2. Market Barriers
    • 2.2.1. Over-Hyped and Over-Sold
    • 2.2.2. Unrealistic Expectations
    • 2.2.3. Social Controversy
    • 2.2.4. Societal Backlash
    • 2.2.5. Need for Accurate Data
    • 2.2.6. The Infancy of Neuroscience
    • 2.2.7. Lack of Experienced Talent
    • 2.2.8. Market Barrier Conclusions
  • 2.3. Monetization and New Business Models
    • 2.3.1. Business Models
  • 2.4. Key Industries
    • 2.4.1. Advertising
      • 2.4.1.1. Static Image Recognition, Classification, and Tagging Use Case
      • 2.4.1.1.1. Why There Is a Need
      • 2.4.1.1.2. How It Works
      • 2.4.1.1.3. Benefits
      • 2.4.1.1.4. Challenges
      • 2.4.1.2. Advertising Use Cases
    • 2.4.2. Aerospace
      • 2.4.2.1. Collision Avoidance for Drones Case Study
      • 2.4.2.1.1. Why There Is a Need
      • 2.4.2.1.2. How It Works
      • 2.4.2.1.3. Benefits
      • 2.4.2.1.4. Potential Problems
      • 2.4.2.2. Aerospace Use Cases
    • 2.4.3. Agriculture
      • 2.4.3.1. Agricultural Crop Health Analysis Case Studies
      • 2.4.3.1.1. Why There Is a Need
      • 2.4.3.1.2. How It Works
      • 2.4.3.1.3. Benefits
      • 2.4.3.1.4. Challenges
      • 2.4.3.2. Agricultural Use Cases
    • 2.4.4. Automotive
      • 2.4.4.1. Contextual Awareness for Autonomous Vehicles
      • 2.4.4.1.1. Why There Is a Need
      • 2.4.4.1.2. How It Works
      • 2.4.4.1.3. Benefits
      • 2.4.4.1.4. Potential Problems
      • 2.4.4.2. Automotive Use Cases
    • 2.4.5. Building Automation
      • 2.4.5.1. BuildingIQ Case Study
      • 2.4.5.1.1. Why There Is a Need
      • 2.4.5.1.2. How It Works
      • 2.4.5.1.3. Benefits
      • 2.4.5.1.4. Potential Problems
      • 2.4.5.2. Building Automation Use Cases
    • 2.4.6. Business
      • 2.4.6.1. Signpost Case Study
      • 2.4.6.2. Business Use Cases
    • 2.4.7. Education
      • 2.4.7.1. VerbumWare Case Study
      • 2.4.7.2. Education Use Cases
    • 2.4.8. Fashion
      • 2.4.8.1. Edited Fashion Case Study
      • 2.4.8.2. Fashion Use Cases
    • 2.4.9. Finance
      • 2.4.9.1. Kensho Case Study
      • 2.4.9.2. Finance Use Cases
    • 2.4.10. Gaming
      • 2.4.10.1. Go Championship Case Study
      • 2.4.10.2. Gaming Use Cases
    • 2.4.11. Government
      • 2.4.11.1. Enfield Borough Case Study
    • 2.4.12. Healthcare
      • 2.4.12.1. Digital Radiology Analysis Case Study
      • 2.4.12.1.1. Why There Is a Need
      • 2.4.12.1.2. How It Works
      • 2.4.12.1.3. Benefits
      • 2.4.12.1.4. Challenges
      • 2.4.12.2. Healthcare Use Cases
    • 2.4.13. Information Technology
      • 2.4.13.1. IBM Watson Cognitive Storage Case Study
      • 2.4.13.2. Information Technology Use Cases
    • 2.4.14. Investment
      • 2.4.14.1. Euclidean Technologies Case Study
    • 2.4.15. Legal
      • 2.4.15.1. Lex Machina Case Study
      • 2.4.15.2. Legal Use Cases
    • 2.4.16. Life Sciences
      • 2.4.16.1. Alzheimer's Case Study
      • 2.4.16.2. Why There Is a Need
      • 2.4.16.3. How It Works
      • 2.4.16.4. Benefits
      • 2.4.16.5. Challenges
    • 2.4.17. Logistics
      • 2.4.17.1. DHL Logistics Case Studies
    • 2.4.18. Manufacturing
      • 2.4.18.1. Industrial Automation Quality Assurance Case Study
      • 2.4.18.1.1. Why There Is a Need
      • 2.4.18.1.2. How It Works
      • 2.4.18.1.3. Benefits
      • 2.4.18.1.4. Challenges
      • 2.4.18.2. Manufacturing Use Cases
    • 2.4.19. Media & Entertainment
      • 2.4.19.1. Automated News Story Case Study
      • 2.4.19.1.1. Why There Is a Need
      • 2.4.19.1.2. How It Works
      • 2.4.19.1.3. Benefits
      • 2.4.19.1.4. Challenges
      • 2.4.19.2. Media and Entertainment Use Cases
    • 2.4.20. Oil, Gas, and Mining
      • 2.4.20.1. AI Refinery Operations Case Study
      • 2.4.20.2. Oil, Gas, and Mining Use Cases
    • 2.4.21. Real Estate
      • 2.4.21.1. Commercial Real Estate Development Case Study
      • 2.4.21.2. Real Estate Use Cases
    • 2.4.22. Retail
      • 2.4.22.1. Clothes and Accessories Sizing and Fitting Case Study
      • 2.4.22.1.1. Why There Is a Need
      • 2.4.22.1.2. How It Works
      • 2.4.22.1.3. Benefits
      • 2.4.22.1.4. Challenges
      • 2.4.22.2. Retail Use Cases
    • 2.4.23. Sports and Fitness
      • 2.4.23.1. Professional Sports Outcome Prediction Case Study
      • 2.4.23.2. Sports Use Cases
    • 2.4.24. Telecommunications
      • 2.4.24.1. Communications Network Design Case Study
    • 2.4.25. Transportation
      • 2.4.25.1. Railway Car Wheel Health Case Study

3. Technology Issues

  • 3.1. Definition of Artificial Intelligence
  • 3.2. AI Winters and Renaissance
  • 3.3. A High-Level Description of AI
  • 3.4. Machine Learning
  • 3.5. Deep Learning
  • 3.6. Natural Language Processing
  • 3.7. Computer Vision
  • 3.8. Machine Reasoning
  • 3.9. Strong AI
  • 3.10. Progress in Games
    • 3.10.1. Go
    • 3.10.2. What Is Go?
    • 3.10.3. Commercial Relevance to Games
  • 3.11. History of Machine Learning
  • 3.12. History of Deep Learning
  • 3.13. The Difference between Machine Learning and Deep Learning
  • 3.14. Structured Data versus Unstructured Data
  • 3.15. Supervised versus Unsupervised Learning
  • 3.16. Known Knowledge versus Unknown Knowledge
  • 3.17. An Example of Machine Learning
  • 3.18. An Example of Deep Learning
  • 3.19. Natural Language Processing
    • 3.19.1. Virtual Assistants Are the High Ground
      • 3.19.1.1. Amazon Alexa Voice Service
      • 3.19.1.2. Apple Siri
      • 3.19.1.3. Baidu Duer
      • 3.19.1.4. Facebook Moneypenny
      • 3.19.1.5. Microsoft Cortana
      • 3.19.1.6. Google Now
      • 3.19.1.7. Understanding What Will Drive the Market from Here
  • 3.20. Speech Recognition
  • 3.21. Computer Vision
  • 3.22. Machine Reasoning
  • 3.23. Predictive APIs
  • 3.24. Sensors
  • 3.25. Technologies Not Considered in This Report
    • 3.25.1. Avionics
  • 3.26. Future Directions
    • 3.26.1. The Next Wave
    • 3.26.2. Maintenance and Recovery
    • 3.26.3. AI is Not Suitable for Some Kinds of Problems
    • 3.26.4. The Larger Impact

4. Key Industry Players

  • 4.1. IBM
  • 4.2. Microsoft
  • 4.3. Facebook
  • 4.4. Google
  • 4.5. Baidu
  • 4.6. NVIDIA
  • 4.7. Rocket Fuel
  • 4.8. Dstillery
  • 4.9. Prism Skylabs
  • 4.10. Continental AG
  • 4.11. Tesla Motors
  • 4.12. Mobileye
  • 4.13. Lending Club
  • 4.14. Kabbage
  • 4.15. Coursera
  • 4.16. Knewton
  • 4.17. Bloomberg
  • 4.18. FinGenius
  • 4.19. Medtronic
  • 4.20. Apple
  • 4.21. Intel
  • 4.22. NEC
  • 4.23. Qualcomm
  • 4.24. Salesforce
  • 4.25. DataMinr
  • 4.26. Roche Holding AG
  • 4.27. Cognitive Scale
  • 4.28. Declara
  • 4.29. AiCure
  • 4.30. Sailthru

5. Market Forecasts

  • 5.1. Forecast Methodology
  • 5.2. Global AI Market Forecasts
  • 5.3. Enterprise AI Revenue by Industry
  • 5.4. Enterprise AI Revenue by Technology
  • 5.5. AI-Driven Revenue Streams
    • 5.5.1. AI-Driven Services
      • 5.5.1.1. AI-Driven Installation Services
      • 5.5.1.2. AI-Driven Training
      • 5.5.1.3. AI-Driven Customization Services
      • 5.5.1.4. AI-Driven Application Integration Services
      • 5.5.1.5. AI-Driven Maintenance and Support Services
    • 5.5.2. AI-Driven Hardware Revenue
      • 5.5.2.1. AI-Driven Cloud Revenue
      • 5.5.2.2. AI-Driven GPU Chip Revenue
      • 5.5.2.3. AI-Driven CPU Revenue
      • 5.5.2.4. AI-Driven Network Product Revenue
      • 5.5.2.5. AI-Driven Storage Device Revenue
  • 5.6. AI Revenue by Industry Segment
    • 5.6.1. AI in the Advertising Industry
    • 5.6.2. AI in the Aerospace Industry
    • 5.6.3. AI in the Agriculture Industry
    • 5.6.4. AI in the Automotive Industry
    • 5.6.5. AI in the Building Automation Industry
    • 5.6.6. AI in Business
    • 5.6.7. AI in the Education Industry
    • 5.6.8. AI in the Fashion Industry
    • 5.6.9. AI in the Finance Industry
    • 5.6.10. AI in the Gaming Industry
    • 5.6.11. AI in Government
    • 5.6.12. AI in the Healthcare Industry
    • 5.6.13. AI in the Information Technology Industry
    • 5.6.14. AI in the Investment Industry
    • 5.6.15. AI in the Legal Industry
    • 5.6.16. AI in the Life Sciences Industry
    • 5.6.17. AI in the Logistics Industry
    • 5.6.18. AI in the Manufacturing Industry
    • 5.6.19. AI in the Media & Entertainment Industry
    • 5.6.20. AI in the Oil, Gas, and Mining Industry
    • 5.6.21. AI in the Real Estate Industry
    • 5.6.22. AI in the Retail Industry
    • 5.6.23. AI in the Sports and Fitness Industry
    • 5.6.24. AI in the Telecommunications Industry
    • 5.6.25. AI in the Transportation Industry
  • 5.7. AI Revenue Forecasts by Technology
    • 5.7.1. Machine Learning
    • 5.7.2. Deep Learning
    • 5.7.3. Natural Language Processing
    • 5.7.4. Computer Vision
    • 5.7.5. Machine Reasoning
    • 5.7.6. Strong AI

6. Recommendations and Conclusion

  • 6.1. Key Findings
  • 6.2. Recommendations for Potential Customers
  • 6.3. Recommendations for Technology Vendors
  • 6.4. Conclusion

7. Company Directory

8. Acronym and Abbreviation List

9. Table of Contents

10. Table of Charts and Figures

11. Scope of Study, Sources and Methodology, Notes

Tables

  • Enterprise AI Revenue by Region, World Markets: 2016-2025
  • Enterprise AI Revenue by Industry, World Markets: 2016-2025
  • Enterprise AI Revenue in the Advertising Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Aerospace Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Agriculture Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Automotive Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Building Automation Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in Business by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Education Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Fashion Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Finance Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Gaming Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in Government by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Healthcare Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Information Technology Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Investment Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Legal Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Life Sciences Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Logistics Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Manufacturing Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Media & Entertainment Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Oil, Gas & Mining Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Real Estate Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Retail Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Sports and Fitness Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Telecommunications Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Transportation Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue by Technology, World Markets: 2016-2025
  • Enterprise Machine Learning Revenue by Region, World Markets: 2016-2025
  • Enterprise Deep Learning Revenue by Region, World Markets: 2016-2025
  • Enterprise Natural Language Processing Revenue by Region, World Markets: 2016-2025
  • Enterprise Computer Vision Revenue by Region, World Markets: 2016-2025
  • Enterprise Machine Reasoning Revenue by Region, World Markets: 2016-2025
  • Enterprise Strong AI Revenue by Region, World Markets: 2016-2025
  • Enterprise AI Revenue by Region and Technology, World Markets: 2016-2025
  • Enterprise AI Revenue in the Advertising Industry by Region and Technology, World Markets: 2016-2025
  • Enterprise AI Revenue in the Aerospace Industry by Region and Technology, World Markets: 2016-2025
  • Enterprise AI Revenue in the Agriculture Industry by Region and Technology, World Markets: 2016-2025
  • Enterprise AI Revenue in the Automotive Industry by Region and Technology, World Markets: 2016-2025
  • Enterprise AI Revenue in the Building Automation Industry by Region and Technology, World Markets: 2016-2025
  • Enterprise AI Revenue in Business by Region and Technology, World Markets: 2016-2025
  • Enterprise AI Revenue in the Education Industry by Region and Technology, World Markets: 2016-2025
  • Enterprise AI Revenue in the Fashion Industry by Region and Technology, World Markets: 2016-2025
  • Enterprise AI Revenue in the Finance Industry by Region and Technology, World Markets: 2016-2025
  • Enterprise AI Revenue in the Gaming Industry by Region and Technology, World Markets: 2016-2025
  • Enterprise AI Revenue in Government by Region and Technology, World Markets: 2016-2025
  • Enterprise AI Revenue in the Healthcare Industry by Region and Technology, World Markets: 2016-2025
  • Enterprise AI Revenue in the Information Technology Industry by Region and Technology, World Markets: 2016-2025
  • Enterprise AI Revenue in the Investment Industry by Region and Technology, World Markets: 2016-2025
  • Enterprise AI Revenue in the Legal Industry by Region and Technology, World Markets: 2016-2025
  • Enterprise AI Revenue in the Life Sciences Industry by Region and Technology, World Markets: 2016-2025
  • Enterprise AI Revenue in the Logistics Industry by Region and Technology, World Markets: 2016-2025
  • Enterprise AI Revenue in the Manufacturing Industry by Region and Technology, World Markets: 2016-2025
  • Enterprise AI Revenue in the Media & Entertainment Industry by Region and Technology, World Markets: 2016-2025
  • Enterprise AI Revenue in the Oil, Gas & Mining Industry by Region and Technology, World Markets: 2016-2025
  • Enterprise AI Revenue in the Real Estate Industry by Region and Technology, World Markets: 2016-2025
  • Enterprise AI Revenue in the Retail Industry by Region and Technology, World Markets: 2016-2025
  • Enterprise AI Revenue in the Sports and Fitness Industry by Region and Technology, World Markets: 2016-2025
  • Enterprise AI Revenue in the Telecommunications Industry by Region and Technology, World Markets: 2016-2025
  • Enterprise AI Revenue in the Transportation Industry by Region and Technology, World Markets: 2016-2025
  • Enterprise AI-Driven Hardware Revenue by Technology Category, World Markets: 2016-2025
  • Enterprise AI-Driven Cloud Revenue by Region, World Markets: 2016-2025
  • Enterprise AI-Driven CPU Revenue by Region, World Markets: 2016-2025
  • Enterprise AI-Driven GPU Chip Revenue by Region, World Markets: 2016-2025
  • Enterprise AI-Driven Network Product Revenue by Region, World Markets: 2016-2025
  • Enterprise AI-Driven Storage Device Revenue by Region, World Markets: 2016-2025
  • Enterprise AI-Driven Services Revenue by Service Category, World Markets: 2016-2025
  • Enterprise AI-Driven Installation Services Revenue by Region, World Markets: 2016-2025
  • Enterprise AI-Driven Training Revenue by Region, World Markets: 2016-2025
  • Enterprise AI-Driven Customization Revenue by Region, World Markets: 2016-2025
  • Enterprise AI-Driven Application Integration Services Revenue by Region, World Markets: 2016-2025
  • Enterprise AI-Driven Maintenance and Support Services Revenue by Region, World Markets: 2016-2025
  • IBM 701 Translator
  • Advertising Use Cases
  • Aerospace Use Cases
  • Agricultural Use Cases
  • Automotive Use Cases
  • Building Automation Use Cases
  • Business Use Cases
  • Education Use Cases
  • Fashion Use Cases
  • Finance Use Cases
  • Gaming Use Cases
  • Healthcare Use Cases
  • Information Technology Use Cases
  • Investment Use Cases
  • Legal Use Cases
  • Life Sciences Use Cases
  • Logistics Use Cases
  • Manufacturing Use Cases
  • Media and Entertainment Use Cases
  • Oil, Gas, and Mining Use Cases
  • Real Estate Use Cases
  • Retail Use Cases
  • Sports Use Cases
  • Telecommunications Use Cases
  • Transportation Use Cases
  • Additional Industry Participants

Charts

  • Enterprise AI Revenue by Region, World Markets: 2016-2025
  • Enterprise AI Revenue by Region, World Markets: 2016-2025
  • Enterprise AI Revenue by Industry, World Markets: 2016
  • Enterprise AI Revenue by Technology, World Markets: 2016
  • Enterprise AI-Driven Services Revenue by Service Category, World Markets: 2016-2025
  • Enterprise AI-Driven Installation Services Revenue by Region, World Markets: 2016-2025
  • Enterprise AI-Driven Training Revenue by Region, World Markets: 2016-2025
  • Enterprise AI-Driven Customization Revenue by Region, World Markets: 2016-2025
  • Enterprise AI-Driven Application Integration Services Revenue by Region, World Markets: 2016-2025
  • Enterprise AI-Driven Maintenance and Support Services Revenue by Region, World Markets: 2016-2025
  • Enterprise AI-Driven Hardware Revenue by Technology Category, World Markets: 2016-2025
  • Enterprise AI-Driven Cloud Revenue by Region, World Markets: 2016-2025
  • Enterprise AI-Driven GPU Chip Revenue by Region, World Markets: 2016-2025
  • Enterprise AI-Driven CPU Revenue by Region, World Markets: 2016-2025
  • Enterprise AI-Driven Network Product Revenue by Region, World Markets: 2016-2025
  • Enterprise AI-Driven Storage Device Revenue by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Advertising Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Aerospace Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Agriculture Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Automotive Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Building Automation Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in Business by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Education Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Fashion Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Finance Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Gaming Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in Government by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Healthcare Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Information Technology Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Investment Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Legal Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Life Sciences Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Logistics Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Manufacturing Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Media & Entertainment Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Oil, Gas & Mining Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Real Estate Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Retail Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Sports and Fitness Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Telecommunications Industry by Region, World Markets: 2016-2025
  • Enterprise AI Revenue in the Transportation Industry by Region, World Markets: 2016-2025
  • Enterprise Machine Learning Revenue by Region, World Markets: 2016-2025
  • Enterprise Deep Learning Revenue by Region, World Markets: 2016-2025
  • Enterprise Natural Language Processing Revenue by Region, World Markets: 2016-2025
  • Enterprise Computer Vision Revenue by Region, World Markets: 2016-2025
  • Enterprise Machine Reasoning Revenue by Region, World Markets: 2016-2025
  • Enterprise Strong AI Revenue by Region, World Markets: 2016-2025
Back to Top