株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

次世代5G通信の開発過程

Next Generation 5G Communication Development Process

発行 TrendForce 商品コード 891229
出版日 ページ情報 英文
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=110.56円で換算しております。
Back to Top
次世代5G通信の開発過程 Next Generation 5G Communication Development Process
出版日: 2019年06月30日 ページ情報: 英文
概要

当レポートは原文が中国語のため、英訳が必要となる場合があります。納期については、当社までお問合せ下さい。

現在3GPPは、5Gの標準化プロセスを推進しており、今後導入される予定の5G無線アクセス技術は、LTEを進化させた技術と5G対応の新たな無線アクセス技術 (RAT) で構成されます。3GPPが新たに開発した無線アクセス技術である5G New Radio (5G NR) は、拡大を続けるマルチクラスの多様なネットワークのニーズに対応するもので、モバイルブロードバンドや各種業界向けのIoT、自動車用ネットワークアプリケーションでも利用されます。この統一的な無線アクセス技術には柔軟性と敏捷性が求められますが、適切なコアネットワーク技術があれば、幅広い周波数帯域 (6 ~100GHzミリ波帯) に対応可能であり、将来的にeMBB (高速大容量) 、mMTC (同時多接続) 、uRLLC (高信頼低遅延) といった5Gの多様な要件を満たす信頼性の高い安定的なネットワーク環境を提供することができます。また5G NRには、新たな環境への展開を可能にし、多様なサービスや機器の要求条件に対応するための優れた拡張性も求められます。

当レポートでは、次世代5G通信技術の開発動向に関する調査と分析を行っています。

第1章 3GPPの主な5G標準化プロジェクト

  • 次世代移動体通信サービスの見取り図
  • 5G NR技術標準開発プロセス

第2章 主なメーカーのチップソリューション

  • 5G NRの標準化に関するチップメーカーの論争
  • MWCS 2017以降激化した競争

第3章 MWCS 2019以降の主なメーカーの5G関連事業の動向

  • Qualcomm
  • Intel
  • Samsung
  • Ericsson
  • Nokia
  • HuaweiとZTE

第4章 周波数をめぐる国際的な動き

  • 世界規模での5Gの周波数に関する計画をいち早く発表した米国
  • 高、中、低の各周波数帯をカバーするEUの5G周波数戦略
  • EUの計画に近い中国の5Gサービス「高低周波数帯調整」

第5章 TRIの見解

  • 周波数帯の計画と密接に関わる主要な5Gサービス
  • QualcommとIntelの5G開発戦略の違い
  • 今後順次発表されるチップ計画および5GサービスでSA/NSAネットワークの選択を迫られるテレコムベンダー
  • 個々の技術分野および世界市場向けの主要な通信関連部品へのリソース集約が必要な台湾メーカー

第6章 低出力広帯域のモノのインターネット (IoT) 関連市場の動向

  • 2017年:NB-IoT開発の起点
  • NB-IoTによって実質的に排除されることなく、それぞれの主要な応用分野で使用されるLoRaとSigfox
  • 国際的なチップメーカーの製品戦略
  • 世界的なネットワークの状況:大規模な商業利用を推進する中国
  • 台湾テレコムベンダーの戦略と業績
  • 今後の課題:LPWAN開発の鍵となるビジネスモデルとサービスモデルの構築と設計
  • TRIの見解

第7章 5G時代到来前夜のビジネスチャンス:スモールセルの開発

  • 5G時代へと向かうなか、高周波数帯、低遅延、同時多接続などの要求条件に対応可能なスモールセルに商機
  • スモールセル製品のトレンド
  • スモールセルの市場規模
  • スモールセル関連機器メーカーの開発状況
  • 台湾メーカーにとってのスモールセル製品のビジネスチャンス
  • TRIの見解

第8章 5G関連の主要なメーカーの戦略とビジネスチャンス

  • 5G時代が早期に到来する可能性
  • 5G関連の主要なメーカーが採用している戦略の要点
  • 5G関連の主要な技術とビジネスチャンス
目次

3GPP is promoting the 5G standardization process, and its planned 5G radio access structure that consists by LTE Evolution and 5G New RAT (Radio Access Technology), which is New Radio; 5G NR was assigned must meet the ever-expanding, multi-class and diverse networking needs, and be applied to mobile broadband and IoT vertical areas and even car networking applications. This unified air intermediation needs to remain flexible and agile. With the appropriate core network technology, it can support a wider frequency range (<6~100GHz millimeter wave band), providing a reliable and stable network environment, which can support different scenarios such as eMBB, mMTC and uRLLC in the future; In addition, 5G NRs must also have excellent scalability to meet new environmental deployments or different service and equipment requirements.

Low Power Wild Area wireless communication technology with the advantages of low transmission rate, low power consumption, low frequency width and low cost to get into the gap of the long-distance communication network of the Internet of Things. The development momentum is good. Refer to the GSMA Industry Paper report. It is predicted that there will be more than 2 billion LPWAN devices in worldwide by 2019.

Since 2016, low-power WANs have spread rapidly around the world. Technology options such as Sigfox and LoRa have begun to be deployed globally. The standardization process of cellular network technology is also catching up. The development of Narrow Band for IoT communication technology direction is fixed, optimistic about the potential business opportunities of low-power WAN, whether it is chip vendors, system vendors or telecom operators are actively participating in the market layout.

In 2018, telecom operators improved network capacity and voice coverage, and one of the solutions, Small Cell, will play an important role. In the next generation of 5G mobile communication technology planning to enter the business in 2020, including upstream chip vendors and equipment vendors and downstream telecom operators and service providers, all are ready to meet market opportunities. Since 5G is a heterogeneous network (HetNet) convergence era, Small Cell will serve as a new generation of heterogeneous network convergence devices.

5G mobile communication technology emphasizes high mobility, high traffic density and high connection count, that is, the performance, traffic density, delay, user experience rate and number of connections are improved compared to 4G technology, while 5G provides more frequency. In addition to the wide and higher speed mobile networking experience, it supports a wider and deeper application area.

Figure: 5G Adoption Forecast(2020~2025)

                Source: GSMA; Ericsson; TRI, 2017/04.

Table of Contents

Chapter 1: 3GPP 5G standardization main project

  • 1. The map of next generation mobile communication service.
  • 2. 5G NR technical standards development process.

Chapter 2: The chip solutions of the main manufacturers.

  • 1. The 5G NR standardization dispute of the chip manufacturers.
  • 2. The competition is more intense after MWCS 2017.

Chapter 3: 5G deployment dynamics of main manufacturers after MWCS 2019

  • 1. Qualcomm
  • 2. Intel
  • 3. Samsung
  • 4. Ericsson
  • 5. Nokia
  • 6. Huawei & ZTE

Chapter 4: International spectrum dynamic tracking

  • 1. The United States is the first to release 5G spectrum planning globally.
  • 2. EU 5G spectrum strategy involves high, medium and low frequency bands.
  • 3. China's 5G deployment "high and low frequency band coordination" is similar to EU planning.

Chapter 5: TRI Views

  • 1. The 5G key deployment is closely related to spectrum planning.
  • 2. Qualcomm and Intel are different from 5G development strategy.
  • 3. The chip plan will be released one after another, and the telecom vendor will face the choice of SA/NSA networking of the 5G deployment.
  • 4. Taiwanese manufacturers should focus resources on specific technology areas and communication key components to the world.

Chapter 6: Low-power wide-area Internet of Things market development dynamic tracking

  • 1. The year 2017 is the first year of NB-IoT development.
  • 2. LoRa, Sigfox technology applications have their own focus, not really excluded by NB-IoT.
  • 3. International chip manufacturers' products strategy observation.
  • 4. Global network situation observation: China is promoting large-scale commercial use
  • 5. Taiwan telecom manufacturers' strategy and performance.
  • 6. The future challenge: The key to LPWAN development is the construction and design of business and service models.
  • 7. TRI views

Chapter 7: Pre 5G Business Opportunity: Small Cell Developments

  • 1. Towards the 5G era, Small Cell meets the requirements of high frequency width, low latency and massive connection.
  • 2. Small Cell product trends.
  • 3. Small Cell market size.
  • 4. Small Cell equipment manufacturers' development status.
  • 5. The Small Cell product business opportunities of Taiwan manufacturers.
  • 6. TRI views

Chapter 8: 5G main manufacturers' strategy and business opportunity exploration

  • 1. 5G will arrive early
  • 2. The strategy points of 5G main manufacturers.
  • 3. 5G key technology and business opportunity exploration.

Figures and tables

  • Figure 1.1: Service map
  • Figure 1.2: 3GPP 5G RAT(s)=LTE Evolution+New RAT
  • Figure 1.3: 3GPP 5G wireless access network technology standard development map
  • Figure 1.4: 3GPP Release 15 Timeline
  • Figure 2.1: Qualcomm 5G NR prototype system introduction(1)
  • Figure 2.2: Qualcomm 5G NR prototype system introduction(2)
  • Figure 2.3: Intel 5G chip solution
  • Figure 2.4: The main chip plan at MWC exhibition
  • Figure 3.1: Qualcomm 5G NR SA & NSA Mode Roadmap
  • Figure 4.1: 5G test plan
  • Figure 5.1: GSA 2017 Narrowband Internet of Things Development Report
  • Figure 5.2: Vodafone NB-IoT application service
  • Figure 5.3: 3GPP Release standardization process
  • Figure 5.4: New Air Interface Technology in Huawei NB-IoT Technology Report
  • Figure 5.5: Sigfox value chain and partners
  • Figure 5.6: LoRa value chain and partners
  • Figure 5.7: LoRa Alliance global deployment progress
  • Figure 5.8: Major semiconductor suppliers of LPWAN's three technology campse
  • Figure 5.9: Microchip's LoRa Wafer System Architecture
  • Figure 5.10: A9500 is China Mobile's NB-IoT communication module demonstrated at CES ASIA 2017, using Qualcomm MDM9206
  • Figure 5.11: MediaTek released the MT2625 specification on the official website, which was specially designed for NB-IoT.
  • Figure 5.12: ARM Cordio-N functional map
  • Figure 5.13: Cordio-N NB-IoT IP
  • Figure 5.14: China Unicom eMTC VoLTE Application Demo
  • Figure 5.15: Various types of MDM9206 based modules and terminals of China Unicom
  • Figure 5.16: China Mobile released 4 universal modules at MSCS 2017
  • Figure 5.17: China Mobile's NB-IoT module M5310
  • Figure 5.18: China Mobile's three-mode communication module A9500
  • Figure 5.19: Corecom's three-mode large-size module SIM7000C
  • Figure 5.20: The world smallest NB-IoT system single chip MT2625 of MediaTek
  • Figure 5.21: MediaTek NB-IoT/GSM dual-mode large-size module design
  • Figure 5.22: Other partners of China Mobile will release NB-IoT chips continually
  • Figure 5.23: China Mobile M6311 and M6312 2G communication module
  • Figure 5.24: The global network operator of Sigfox
  • Table 5.1: Global telecom operator NB-IoT deployment case
  • Table 5.2: Comparison between NB-CIoT and NB-LTE
  • Table 5.3: Comparison between Release 13 and Release 14
  • Table 5.4: Global Sigfox chip supplier system single chip model and support band list
  • Table 5.5: Semtech transceiver chip support frequency band list
  • Table 5.6: List of basic specifications of the LoRa development kit launched by ST
  • Table 5.7: NB-IoT main chip supplier and chip model
  • Table 5.8: China Telecom Internet of Things Special Subsidy Incentive Program
  • Table 5.9: China Telecom NB-IoT tariff plan
  • Figure 6.1: Base station development trend from 2015 to 2020
  • Figure 6.2: Base station type comparison
  • Figure 6.3: Comparison of the number of users supported by each base station
  • Figure 6.4: Small Cell multi-beam controllable antenna map
  • Figure 6.5: Small Cell placement diagram
  • Figure 6.6: Small Cell setting of Denver USA
  • Figure 6.7: C-RAN Small Cell Structure
  • Figure 6.8: OneCell transmission comparison
  • Figure 6.9: Traffic Capacity Impact Factor
  • Figure 6.10: 5G Small Cell Protocol
  • Figure 6.11: 5G Small Cell Construction map
  • Figure 6.12: Comparison of Nokia 5G and 4G per cell capacity (sub 6 GHz)
  • Figure 6.13: Ultra dense network (UDN) Evolution
  • Figure 6.14: Small Cell Enterprise Controller structure
  • Figure 6.15: 5G ecosystem and key technologies
  • Figure 6.16: 5G support technology
  • Table 6.1: Technical specifications and target values of the standard specification 38.913
  • Table 6.2: Small Cell Smart Multi-Beam Controllable Antenna Design Points
  • Table 6.3: Small Cell usage scenarios and applications
  • Table 6.4: 5G Small Cell Protocol Structure
  • Table 6.5: Huawei proposes the development trend of Small Cell 25
  • Table 6.6: Small Cell market size from 2015 to 2025 (by region)
  • Table 6.7: Small Cell market size from 2015 to 2025 (by structure)
  • Table 6.8: Main countries millimeter wave (mmWave) frequency band application
  • Table 6.9: Small Cell products of Huawei
  • Table 6.10: Pre5G Massive MIMO 2.0 Base Station Products of ZTE
  • Table 6.11: Netcom product line classification of MitraStar
  • Table 6.12: Taiwan Telecom Operator Small Cell Layout Status
  • Table 6.13: The Opportunities and Challenges of Small Cell
  • Figure 7.1: 5G development schedule
  • Figure 7.2: Automotive communication elements
  • Figure 7.3: KT provides 5G service (3600 Live VR/Time Slice)
  • Figure 7.4: MWC exhibition points from 2014 to 2018
  • Figure 7.5: 5G ecosystem and key technologies
  • Figure 7.6: The development layout from 4G to 5G of Qualcomm
  • Figure 7.7: Intel has become the only wafer sponsor of the global Olympics and Winter Olympics
  • Figure 7.8: Intel cooperates with Spreadtrum that forms a complete 5G platform
  • Figure 7.9: Huawei launched Balong 5G01 at MWC 2018
  • Figure 7.10: NTT DoCoMo 5G Instant Traffic Monitoring System
  • Figure 7.11: NTT DoCoMo and Sony launched New Concept Cart
  • Figure 7.12: The technology differences5G and 4G (LTE)
  • Figure 7.13: IMT-2020 5G technology commercialization evolution
  • Figure 7.14: The Technical Standard of 5G Radio Interface
  • Figure 7.15: Antenna design and beamforming effects
  • Figure 7.16: RF front-end structure and the vendors
  • Table7.1: ORAN Alliance Development Points
  • Table7.2: LTE Modem release time and brief specifications of Intel and Qualcomm
  • Table7.3: The 5G chips of Qualcomm, Intel and Huawei
  • Table7.4: CEVA's 5G IP solution specifications list
  • Table7.5: Current status of 5G technology trials in various countries
  • Table7.6: 5G network application evolution sample and its supporting technology
  • Table7.7: 5G key technology functions and applications
  • Table7.8: Beamforming function
  • Table7.9: Radio frequency band division
  • Table7.10: 5G performance challenges and solutions - wireless technology
  • Table7.11: 5G performance challenges and solutions - network technology
  • Table7.12: Cell phone antenna design
Back to Top