お知らせ :東京証券取引所JASDAQスタンダード市場への新規上場に関するお知らせ
株式会社グローバルインフォメーション
表紙:セラミックス積層造形 (AM) の市場:2019~2030年
市場調査レポート
商品コード
935990

セラミックス積層造形 (AM) の市場:2019~2030年

Ceramics Additive Manufacturing Production Markets: 2019-2030

出版日: | 発行: SmarTech Analysis | ページ情報: 英文 164 Pages | 納期: 即納可能 即納可能とは

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=110.22円
セラミックス積層造形 (AM) の市場:2019~2030年
出版日: 2020年04月21日
発行: SmarTech Analysis
ページ情報: 英文 164 Pages
納期: 即納可能 即納可能とは
  • 全表示
  • 概要
  • 目次
概要

当レポートでは、セラミックス積層造形 (AM:付加製造) 市場の基本構造・最新情勢や将来展望について分析し、セラミックスAMの概要・特性や、本格的な生産・活用に向けた動き、主な用途、種類別 (テクニカルセラミックス、従来型セラミックス) および材料別・生産プロセス別・用途別の市場動向の見通し (今後10年間分)、関連市場 (サービス、部品など) の構造・動向、といった情報を取りまとめてお届けいたします。

第1章 セラミックス積層造形 (AM):本格的な生産に近づく

  • セラミックスAM関連指標の持続的な増加傾向
    • セラミックスAMの大手企業の生産拡大:大企業からの支援
    • セラミックスAM:新しい先端材料セグメントへの進出
    • 建設用3Dプリンティング用のセメント材料の成長:大型部品用AMの市場促進
    • 分野横断型の促進要因
  • セラミックスAM材料の概要
  • セラミックス3Dプリンティング技術
    • BMP (Bound Metal Printing) からBCP (Bound Ceramic Printing) への移行
  • テクニカルセラミックスの活用分野・産業
    • 航空宇宙・防衛
    • 生医学・歯科
    • 自動車・鉄道
    • 海運・エネルギー
    • 電子機器・光学機器
  • セラミックスの伝統的な用途:産業区分
    • 金型・鋳造コア・金型
    • アート・デザイン・日用品
  • 3Dプリントセラミックスの主要な活用分野における注目すべき動向
    • テクニカルセラミックスAMの主な傾向
    • 伝統的セラミックスAMの主な傾向
    • 医療用セラミックスAMの主な傾向
  • 実装タイムライン
  • 3Dプリントセラミックスの将来予測 (今後10年間分)
    • 部門別
    • 地域的
  • 当レポートの分析手法
    • 注記:セラミックスAM市場に対する新型コロナウイルス感染症 (Covid-19) の影響
  • 要点

第2章 セラミックスAM:本格的生産への移行

  • テクニカルセラミックスの液槽光重合法
    • 生産準備の整ったセラミックス光造形法
    • 低コストのセラミックス光造形法の開発
  • セラミックスのバインダージェッティング
    • セラミックスの工業用バインダージェッティング
    • 低コストのセラミックスバインダージェッティングの開発
  • セラミックスの押出技術
    • 伝統的/高度セラミックスの産業用押出成形
    • 日用品向け・低価格セラミックスの押出成形
  • 他のセラミックスAMプロセス
    • ナノ粒子噴射
    • CIMベースのプロセス
  • 3Dプリントセラミックスの将来予測 (今後10年間分)
  • AMハードウェアの収益額シェア:地域別
  • 要点

第3章 セラミックスAM用フィラメント・スラリー・粉末・ナノ粒子

  • AMで使用されるセラミックス材料
    • ジルコニアセラミックス
    • アルミナセラミックス
    • シリコンセラミックス
    • カルシウムセラミックス
    • セメント系材料
    • クレイ
    • ガラス
    • セラミックス射出成形(CIM)材料
  • 光重合プロセス用のスラリーセラミックス材料
    • 光重合プロセスにおけるジルコニア
    • 光重合プロセスにおけるアルミナ
    • 光重合プロセスにおけるシリコン
    • 光重合プロセスにおけるTCP (透明セラミックス保護) とHA (ヒドロキシアバタイト)
    • 光重合プロセス用セラミックス材料の将来予測 (今後10年間分)
  • バインダージェッティングプロセス用の粉末セラミックス材料
    • ケイ砂
    • ジルコンとジルコニア
    • テラコッタ、粘土、磁器
    • 他のバインダージェッティング用テクニカルセラミックスパウダー
    • バインダージェッティングのための粉末セラミックス材料の将来予測 (今後10年間分)
  • 材料押出プロセス用のセラミックス材料
    • 大判押出3Dプリント用セメント
    • 押し出しおよびマイクロ押し出し3D印刷用のセラミックス材料
    • 押出プロセス用のペーストセラミックス材料の将来予測 (今後10年間分)
    • 熱可塑性押し出し用の結合セラミックスフィラメント
  • その他のAMプロセス用のセラミックス材料
  • セラミックスAM材料の将来予測 (今後10年間分)
    • セラミックス材料市場の将来予測 (今後10年間分)
    • セラミックスAM材料の収益額シェア:地域別
  • 要点

第4章 生産用セラミックスAM:部品とサービス

  • 部品製造に向けた重要な進化的ステップとしてのセラミックスAMサービス
    • テクニカルセラミックス3Dプリンティング専門のサービスプロバイダー
    • 伝統的セラミックス3Dプリンティング専門サービスプロバイダー
  • セラミックスAMサービス市場の将来予測 (今後10年間分)
  • セラミックスAMのエンドユーザー
  • セラミックス3Dプリンティング主な産業分野における、テクニカルセラミックスAMの用途
    • 航空宇宙、自動車
    • 医療・生医学
    • 歯科
    • ジュエリー・高級品
    • エレクトロニクス・光学機器
    • エネルギー
  • セラミックス3Dプリンティング主な産業分野における、従来型セラミックスAMの用途
  • セラミックスAM部品市場の将来予測 (今後10年間分)
    • セラミックスAM市場の予測:用途別 (金額・数量ベース)
    • セラミックスAM市場の予測:地域別 (金額ベース)
  • 要点
  • SmarTech分析について
  • アナリストについて
  • このレポートで使用されている頭字語と略語
目次
Product Code: SMP-CAM-0420

The new ‘Ceramics Additive Manufacturing for Part Production 2020- 2030 report’ identifies the most commercially important additive manufacturing technologies, material types and material form factors, as well as application segments for ceramics additive manufacturing, differentiating between technical and traditional ceramic materials. The report also present an in-depth analysis of the different types of firms offering ceramic AM services and parts, including specific forecasts on ceramics AM service providers, ceramic 3D printed parts providers and ceramic 3D printed parts adopters. The report includes ten-year forecasts and performance analyses on these segments and relative subsegments including, for the first time, an analysis and forecast of the new bound ceramic 3D printing segment and materials, where green ceramic parts and produced using thermal extrusion of ceramic powders bound in a thermoplastic filament matrix.

Key ceramics AM industry leaders analyzed in this report include: 3DCeram-Sinto, Lithoz, Prodways, Admatec/Formatec, ExOne, voxeljet, SGL Carbon, Schunck Carbon Technologies, XJet, Nanoe, Johnson Mattheys, and a large number of other entities operating in ceramics AM services, cement extrusion as well as ceramics AM end-users.

This report will present ceramics AM industry operators with a complete competitive analysis of the market, and offer all entities interested in implementing ceramics AM capabilities with a complete map of all available technologies and their revenue potential for the short, medium and long term.

Table of Contents

Chapter One: Ceramics Additive Manufacturing Nears Full Scale Production

  • 1.1. Indicators that Ceramics AM Remains on the Rise
    • 1.1.1. Leading Ceramics AM Firms Moving Further into Production with Support from Large Industrial Groups
    • 1.1.2. Ceramics AM Expanding into New Advanced Materials Segments
    • 1.1.3. Growth of Cement Materials for Construction 3D Printing Is Driving AM of Large-format End-use Parts
    • 1.1.4. Cross Segment Drivers
  • 1.2. Overview of Ceramics AM Materials
  • 1.3. Ceramic 3D Printing Technologies
    • 1.3.1. From Bound Metal 3D Printing to Bound Ceramic 3D Printing
    • 1.3.2. Relevant Ceramic AM Technologies Considered in this Report
      • 1.3.2.1. Ceramic Stereolithography
      • 1.3.2.2. Ceramic Binder Jetting
      • 1.3.2.3. Material Extrusion
      • 1.3.2.4. Material Jetting
  • 1.4. Industrial Application Segments for Technical Ceramics
    • 1.4.1. Aerospace and Defense
    • 1.4.2. Biomedical and Dental
    • 1.4.3. Automotive and Rail
    • 1.4.4. Maritime and Energy
    • 1.4.5. Electronics and Optics
  • 1.5. Industrial Segments of Application for Traditional Ceramics
    • 1.5.1. Tooling, Foundry Cores and Molds
    • 1.5.2. Art, Design and Consumer Products
  • 1.6. Notable Trends in Major Adopting Industries for 3D-printed Ceramics
    • 1.6.1. Key Trends in AM of Technical Ceramics
    • 1.6.2. Key Trends in AM of Traditional Ceramics
    • 1.6.3. Key Trends in Medical Ceramics
  • 1.7. Implementation Timeline
  • 1.8. Summary of Ten-year Forecasts for 3D-Printed Ceramics
    • 1.8.1. Forecast of Ceramics AM Revenues by Segment
    • 1.8.2. Forecast of Ceramics AM Hardware Revenues by Geographic Locations
  • 1.9. Methodology Used in this Report
    • 1.9.1. Note on COVID-19 Pandemic Impact on Ceramics AM
  • 1.10. Key Points from This Chapter

Chapter Two: Ceramics Additive Manufacturing Nears Full Scale Production

  • 2.1. Vat Photopolymerization of Technical Ceramics
    • 2.1.1. Production-ready Ceramics Stereolithography
    • 2.1.2. Developments in Low-cost Ceramics Stereolithography
  • 2.2. Binder Jetting of Ceramics
    • 2.2.1. Industrial Binder Jetting of Ceramics
    • 2.2.2. Developments in Low-cost Ceramics Binder Jetting
  • 2.3. Extrusion Technologies for Ceramics
    • 2.3.1. Industrial Extrusion of Traditional and Advanced Ceramics
    • 2.3.2. Low-cost Ceramic Extrusion for Consumer Products
  • 2.4. Other AM Processes for Ceramics
    • 2.4.1. Nanoparticle Jetting
    • 2.4.2. CIM-based Processes
  • 2.5. Ten-year Forecasts of Ceramics 3D Printing Hardware
  • 2.6. Reassessment of Geographic Considerations for AM Hardware Revenue Distribution
  • 2.7. Key Points from this Chapter

Chapter Three: Ceramic AM Filaments, Slurries, Powders and Nanoparticles

  • 3.1. Ceramic Materials Used in AM
    • 3.1.1. Zirconia Ceramics
    • 3.1.2. Alumina Ceramics
    • 3.1.3. Silicon Ceramics
      • 3.1.3.1. Oxides
      • 3.1.3.2. Non-oxides
    • 3.1.4. Calcium Ceramics
    • 3.1.5. Cement-based Materials
    • 3.1.6. Clays
    • 3.1.7. Glass
    • 3.1.8. Ceramic Injection Molding (CIM) Materials
  • 3.2. Slurry Ceramic Materials for Photopolymerization Processes
    • 3.2.1. Zirconia in Photopolymerization Processes
    • 3.2.2. Alumina in Photopolymerization Processes
    • 3.2.3. Silicon in Photopolymerization Processes
      • 3.2.3.1. Silicon Nitride and Silicon Carbide
      • 3.2.3.2. Silica
    • 3.2.4. TCP and HA in Photopolymerization Processes
    • 3.2.5. Ten-year Forecast of Ceramics Materials for Photopolymerization Processes
  • 3.3. Powder Ceramic Materials for Binder Jetting Processes
    • 3.3.1. Silica Sand
    • 3.3.2. Zircon and Zirconia
    • 3.3.3. Terracotta, Clay and Porcelain
    • 3.3.4. Other Technical Ceramic Powders for Binder Jetting
    • 3.3.5. Ten-year Forecast of Powder Ceramics Materials for Binder Jetting
  • 3.4. Ceramic Materials for Material Extrusion Processes
    • 3.4.1. Cements for Large Format Extrusion 3D Printing
    • 3.4.2. Ceramic Materials for Extrusion and Microextrusion 3D Printing
    • 3.4.3. Ten-year Forecast of Paste Ceramic Materials for Extrusion Processes
    • 3.4.4. Bound Ceramic Filaments for Thermoplastic Extrusion
  • 3.5. Ceramic Materials for Other AM Processes
  • 3.6. Ten-year Forecast for Ceramics AM Materials
    • 3.6.1. Total Ceramic Materials Market Ten-year Forecast
    • 3.6.2. Forecast of Ceramics AM Materials Revenues by Geographic Locations
  • 3.7. Key Points from this Chapter

Chapter Four: Ceramic AM for Production: Parts and Services

  • 4.1. Ceramics AM Services as a Key Evolutionary Step Towards Parts Production
    • 4.1.1. Specialized Technical Ceramics 3D Printing Service Providers
      • 4.1.1.1. Ceramics AM Hardware Manufacturers Offering AM Services
      • 4.1.1.2. Specialized Ceramics AM Service Providers
      • 4.1.1.3. Ceramics Parts and Materials Manufacturers Offering Ceramic 3D Printing Services
    • 4.1.2. Specialized Traditional Ceramics 3D Printing Service Providers
  • 4.2. Ten-year Forecast of Ceramics AM Services
  • 4.3. Ceramics AM End-users
  • 4.4. Technical Ceramic AM Applications in Major Vertical Markets for Ceramics 3D Printing
    • 4.4.1. 3D Printing of High-performance Ceramic Parts for Aerospace, Automotive
    • 4.4.2. Medical and Biomedical Applications
    • 4.4.3. Dental Applications
    • 4.4.4. Jewelry and Luxury Goods
    • 4.4.5. Electronics and Optics
    • 4.4.6. Energy
  • 4.5. Traditional Ceramic AM Applications in Major Vertical Markets for Ceramics 3D Printing
  • 4.6. Ten-year Forecast of Ceramics AM Parts Value
    • 4.6.1. Forecast of Revenues and Unit Demand for Ceramics AM Applications
    • 4.6.2. Forecast of Ceramics AM Applications Revenues by Geographic Locations
  • 4.7. Key Points from this Chapter
  • About SmarTech Analysis
  • About the Analyst
  • Acronyms and Abbreviations Used In this Report

List of Exhibits

  • Exhibit 1-1: Drivers for Adoption of Ceramics Additive Manufacturing
  • Exhibit 1-2: Ceramic Material Families Convergence
  • Exhibit 1-3: Map of the Leading Ceramics AM Technologies
  • Exhibit 1-4: Typical Bound Ceramic Filament 3D Printing Workflow
  • Exhibit 1-5: Ceramics Stereolithography Hardware OEMs
  • Exhibit 1-6: Ceramic Binder Jetting Hardware OEMs
  • Exhibit 1-7: Primary Commercially Available Pneumatic Extrusion Technologies and System OEMs
  • Exhibit 1-8: Primary New Technologies for Ceramics AM and System OEMs
  • Exhibit 1-9: Ceramic AM Applications by Materials (Larger Rectangles Indicate Higher Expected Demand)
  • Exhibit 1-10: Expected Timeline for Adoption of Ceramics AM Technologies in Final Parts Production
  • Exhibit 1-11: Overall Market Forecast for Revenues ($USM) in Ceramics AM by Segment and Primary Subsegment 2019 - 2030
  • Exhibit 1-12: Expected Year on Year Growth of Ceramics AM Related Revenues ($USM) 2019 - 2030
  • Exhibit 1-13: CAGR for Ceramics AM Revenues by Segment 2019 - 2030
  • Exhibit 1-14: Revenues ($USM) from Ceramics AM Hardware by Geographic Location 2019 - 2030
  • Exhibit 1-15: Breakdown of Geographic Ceramic AM Revenue Data ($USM)
  • Exhibit 2-1: High-end Stereolithography Systems and Sizes for Ceramics AM
  • Exhibit 2-2: Low-cost Stereolithographic Ceramic 3D Printers
  • Exhibit 2-3: High-end Binder Jetting Systems and Sizes
  • Exhibit 2-4: Low-cost Ceramic Binder Jetting Systems and Sizes
  • Exhibit 2-5: Industrial Grade Cement Extrusion Systems
  • Exhibit 2-6: Low-cost Clay Extrusion 3D Printers and Prices
  • Exhibit 2-7: Available Material Jetting Systems for Ceramics AM
  • Exhibit 2-8: How the Ceramics Injection Molding Process Works
  • Exhibit 2-9: Forecasted Average Price of Ceramics AM Hardware by Technology ($US) 2019 - 2030
  • Exhibit 2-10: Ceramics AM Hardware Revenues ($USM) by Technology - 2019 - 2030
  • Exhibit 2-11: Ceramics AM Hardware Unit Sales Growth Trend and YoY Growth
  • Exhibit 2-12: Ceramics AM Hardware Revenues CAGR by Technology Segment
  • Exhibit 2-13: Ceramics AM Hardware Unit Demand by Technology 2019- 2030
  • Exhibit 2-14: Comparison Between Low-cost and High-end Ceramics AM Hardware Revenues ($USM) 2019 - 2030
  • Exhibit 2-15: Ceramics AM Hardware Unit Sales by Technology and Price Point
  • Exhibit 2-16: Ceramics AM Hardware Revenues ($USM) by Technology and Price Point
  • Exhibit 2-17: High-end Ceramics AM Hardware Unit Sales
  • Exhibit 2-18: High-end Ceramics AM Hardware Revenues ($USM)
  • Exhibit 2-19: Low-cost Ceramics AM Hardware Unit Sales
  • Exhibit 2-20: Low-cost Ceramics AM Hardware Revenues ($USM)
  • Exhibit 2-21: Forecast of Ceramics AM Hardware Revenues by Geographic Locations ($USM): 2019-2030 Forecast
  • Exhibit 3-1: Graphic Map of Ceramics AM Materials Distribution by Type, Technology and Quantities
  • Exhibit 3-2: Ceramic Materials for Non-AM CIM applications
  • Exhibit 3-3: Primary Commercially Available Ceramic Products for Photopolymerization Processes, Properties and Applications
  • Exhibit 3-4: Commercially Available Zirconia AM Materials for Photopolymerization
  • Exhibit 3-5: Commercially Available Alumina AM Materials for Photopolymerization Processes
  • Exhibit 3-6: Commercially Available Silicate Ceramics Material for Photopolymerization
  • Exhibit 3-7: Commercially Available Calcium Ceramics Material for Biomedical Applications
  • Exhibit 3-8: Demand of Slurry Ceramic Materials for Photopolymerization (Metric Tonnes) 2019 - 2030
  • Exhibit 3-9: Expected Average Price Trend for Slurry Ceramic Materials ($/kg)
  • Exhibit 3-10: Revenues ($USM) from Slurry Materials Used in Photopolymerization Processes 2019 - 2030
  • Exhibit 3-11: Revenue CAGR for Ceramic Slurries Used in Photopolymerization Processes by Material Type 2019-2030
  • Exhibit 3-12: Year-on-year Revenue Growth from Slurry Ceramic Materials Used in Photopolymerization ($USM)
  • Exhibit 3-13: Commercially Available Ceramic Products for Powder-Based Processes, Properties and Applications
  • Exhibit 3-14: Demand of Powder Ceramic Materials Used in Binder Jetting (Tonnes)
  • Exhibit 3-15: Demand of Powder Technical Ceramic Materials Used in Binder Jetting (Tonnes)
  • Exhibit 3-16: Expected Average Price for Ceramic Powder Used in Binder Jetting
  • Exhibit 3-17: Revenues from Ceramic Materials Used in Binder Jetting ($USM)
  • Exhibit 3-18: Revenue CAGR for Ceramic Powder Materials Used in Binder Jetting ($USM)
  • Exhibit 3-19: Revenues from Powder Ceramic Materials Used in Binder Jetting ($USM)
  • Exhibit 3-20: Currently Available Materials for Large Format Extrusion 3D Printing
  • Exhibit 3-21: Commercially Available Materials for Microextrusion 3D Printing
  • Exhibit 3-22: Shipments of Paste Ceramic Materials for Extrusion Technologies (Metric Tonnes)
  • Exhibit 3-23: Average Price per Kg ($) Trend for Paste Ceramic Materials for Extrusion Technologies
  • Exhibit 3-24: Paste Ceramic Materials Revenues ($USM) for Extrusion Technologies by Material Type
  • Exhibit 3-25: Paste Ceramic Materials Revenue CAGR ($USM) for Extrusion Technologies by Material Type
  • Exhibit 3-26: Paste Ceramic Materials Revenues ($USM) YoY Growth for Extrusion Technologies
  • Exhibit 3-27: Commercially Available Bound Ceramic Filament for Thermal Extrusion 3D Printing
  • Exhibit 3-28: Shipments of Bound Ceramic Filaments for Extrusion Technologies (Metric Tonnes) 2019 - 2030
  • Exhibit 3-29: Bound Ceramic Filament Revenues ($USM) for Extrusion by Material 2019 - 2030
  • Exhibit 3-30: Bound Ceramic Filament Revenue CAGR for Extrusion by Material Type 2019 - 2030
  • Exhibit 3-31: Bound Ceramic Filament Revenues and YoY Growth 2019 - 2030
  • Exhibit 3-32: Other Commercially Available Ceramic Materials for Additive Manufacturing
  • Exhibit 3-33: Ceramic Nanoparticle Shipments (Metric Tonnes) for Jetting AM Processes
  • Exhibit 3-34: Average Expected Price ($/Kg) of Nanoparticle Ceramic Materials for Jetting AM Processes 2019 - 2030
  • Exhibit 3-35: Ceramic Nanoparticle Revenues ($USM) for Jetting AM Processes 2019 - 2030
  • Exhibit 3-36: Technical vs. Traditional Ceramics AM Materials Demand (Metric Tonnes) 2019 - 2030
  • Exhibit 3-37: Forecast of Total Technical Ceramics Materials Demand (Metric Tonnes) 2019 - 2030
  • Exhibit 3-38: Demand of Ceramic Materials for Additive Manufacturing by Technology (Tonnes) 2019 - 2030
  • Exhibit 3-39: Revenues from All Ceramic Materials (Technical + Traditional) for Additive Manufacturing ($USM) by Material Type and Form Factor 2019 - 2030
  • Exhibit 3-40: A Comparison Between Revenues from Technical vs. Traditional Ceramic Materials for Additive Manufacturing ($USM) 2019 - 2030
  • Exhibit 3-41: Ceramics AM Material Revenues by Technology ($USM) 2019 - 2030
  • Exhibit 3-42: Ceramics AM Materials Revenues CAGR by Technology 2019 - 2030
  • Exhibit 3-43: Total Ceramics AM Materials Revenues and YoY Growth 2019 - 2030
  • Exhibit 3-44: Technical Ceramic Materials Revenues ($USM) by Geographic Location 2019 - 2030
  • Exhibit 3-45: Traditional Ceramic Materials Revenues ($USM) by Geographic Location 2019 - 2030
  • Exhibit 4-1: Current Go-to-market Strategy for Ceramic 3D-Printed Parts
  • Exhibit 4-2: Future Go-to-market Strategy for Ceramic 3D-Printed Parts
  • Exhibit 4-3: Typical Process Workflow for AM of Technical Ceramic Parts
  • Exhibit 4-4: Total Ceramics AM Parts Revenues ($USM) by Type of Company 2019 - 2030
  • Exhibit 4-5: Ceramics AM Parts Revenues CAGR by Type of Company 2019 - 2030
  • Exhibit 4-6: Technical Ceramics AM Parts Revenues ($USM) by Type of Company 2019 - 2030
  • Exhibit 4-7: Technical Ceramics AM Parts Revenues CAGR by Type of Company 2019 - 2030
  • Exhibit 4-8: Traditional Ceramics AM Parts Revenues ($USM) by Type of Company 2019 - 2030
  • Exhibit 4-9: Technical Ceramics AM Parts Revenues CAGR by Type of Company 2019 - 2030
  • Exhibit 4-10: Example of 3D-Printed Technical Ceramic Parts
  • Exhibit 4-11: Examples of 3D-Printed Traditional Ceramic Parts
  • Exhibit 4-12: Comparison Between Traditional and Technical Ceramics AM Forecast ($USM)
  • Exhibit 4-13: Traditional Ceramics AM Parts Value ($USM)
  • Exhibit 4-14: CAGR by Application
  • Exhibit 4-15: Technical Ceramics AM Parts Value ($USM)
  • Exhibit 4-16: CAGR of Technical Ceramics AM Parts Revenue by Application 2019 - 2030
  • Exhibit 4-17: Traditional Ceramics AM Parts Revenues by Location ($USM)
  • Exhibit 4-18: Technical Ceramics AM Parts Revenues by Location ($USM)
株式会社グローバルインフォメーション
© Copyright 1996-2021, Global Information, Inc. All rights reserved.