特集: 調査項目の変更・追加が可能なセミカスタムオーダー型の調査レポート(Lucintel社)はこちら

特集 : 国別の市場調査レポートをお探しの方はこちら

株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

民間航空機部品製造における付加製造 (AM) の市場機会:2019-2029年

Opportunities in Additive Manufacturing for Civil Aviation Parts Production, 2019-2029

発行 SmarTech Analysis 商品コード 914918
出版日 ページ情報 英文 115 Pages
即納可能
価格
本日の銀行送金レート: 1USD=108.13円で換算しております。
民間航空機部品製造における付加製造 (AM) の市場機会:2019-2029年 Opportunities in Additive Manufacturing for Civil Aviation Parts Production, 2019-2029
出版日: 2019年10月15日 ページ情報: 英文 115 Pages
概要

当レポートでは、民間航空機部品製造における付加製造 (AM) を調査し、付加製造 (AM) による部品製造の概要、航空宇宙製造部門との適合性、航空宇宙部門向けAM技術・製造ハードウェア・材料・AM部品の種類・概要、10カ年成長予測、主要サプライヤーなどをまとめています。

第1章 付加製造 (AM) による部品製造について

  • 調査目的・調査手法
  • 本書の構成
  • 航空宇宙部品・システムの付加製造の有望性
  • 航空宇宙分野における関連事業者
  • 市場機会の規模
  • SWOT分析
  • 本章の要点

第2章 付加製造技術・材料の進化と航空宇宙製造部門における需要との適合性

  • 航空機製造機としてのAMハードウェアの進化
  • AMハードウェアシステムの製造能力
    • 金属粉末床溶融結合
      • 電子ビーム金属粉末床溶融結合
      • レーザー金属粉末床溶融結合
    • 指向性エネルギー堆積 (DED) 技術
    • 金属バインダージェッティング・結合金属印刷技術
    • その他の重要金属AM技術
    • ポリマー・複合材料による航空宇宙製造技術
      • 熱可塑性フィラメント押出成形
      • 複合材料ペレット押出成形
      • 熱可塑性粉末床溶融結合
  • 民間航空宇宙部品製造のAM工場・AMオートメーション
    • 直接的なAMエンドツーエンドプロセスの自動化
    • AMプロセスを統合した間接的製造ワークフロー
    • 自動化AM工場
      • 金属粉末床溶融結合工場
      • 金属・サンドバインダージェッティング工場
      • ポリマー付加製造工場
  • 10カ年予測:民間航空向けAMハードウェア販売
    • 金属ハードウェア
    • ポリマー・複合材料
  • 本章の要点

第3章 航空宇宙部門における材料:金属 vs ポリマー

  • 金属AM材料の市場機会
    • 金属材料
      • チタン合金
      • ニッケル合金
      • アルミニウム
      • スチール
    • 金属AM材料サプライヤー
      • AP&C
      • Carpenter
      • Sandvik
      • Hoganas
      • Praxair Surface Technologies
      • Heraeus
      • Oerlikon
    • 主な提携・買収
  • ポリマー・複合材料
    • ポリマーAM材料サプライヤー
  • セラミックス
  • 10カ年予測:民間航空向け材料販売
    • 金属材料
    • ポリマー・複合材料
  • 本章の要点

第4章 変化を続けるサプライチェーンにおける重要サプライヤー

  • AMサービスビューロー・航空宇宙AM部品プロバイダー
  • 主なAMサービスビューロー
  • 主なAM航空機部品製造業者
  • 航空会社MROによるAMへの取り組み (社内調達)
  • AMサービスの収益予測
    • 部品タイプ別
    • サプライヤータイプ別
  • 本章の要点

第5章 付加製造航空機部品について

  • AM部品の各種タイプ
  • ポリマー部品製造の市場機会
    • 大型航空機部品向けの技術・複合材料の台頭
  • 付加製造の提供価値
  • 認証・標準規格
  • 10カ年予測・分析
  • 本章の要点

SmarTech Analysisについて

目次
Product Code: SMP-AM-CA-1019

The opportunities in additive manufacturing for civil aviation parts production are beyond question. The number of application cases leveraging AM's value proposition continues to expand, increasingly driven by some of the largest aviation part suppliers, including GE Aviation, MTU, Rolls Royce, Safran and others. By choosing to adopt AM, tier 1 suppliers have increased pressure on all other suppliers to do the same. Many of them are now rising to challenge, widening the number of AM adopters in the industry as well as the number of tested applications.

This report identifies and assesses the business potential of these trends, in light of the latest developments for additive manufacturing in aviation, focusing exclusively on end-use part production (for tools and final parts).

The report includes:

  • Detailed ten-year forecasts of the revenue generation potential for additive manufacturing hardware, materials and services in the civil aviation sector. These forecasts are presented in both volume and value ($ Millions) terms and cover printer shipments and install base, revenues from specialist aerospace service bureaus, aerospace-related AM software, and materials (metals, polymers and composites).
  • A detailed ten-year forecast of end-use part production, including detailed part-specific forecast supported by dozens of relevant application cases.
  • A strategic assessment of the leading firms supplying the “additive aerospace” sector. These are divided into airline MROs (insourcing) and major aircraft frame builders, tier 1 (engine builders) and tier 2 aviation parts suppliers, AM service bureaus
  • An analysis of how this segment of the aerospace industry is changing its strategies and adoption patterns for metal AM and is exploiting the improvements that have occurred in the last few years primarily focusing on process automation.

The aerospace segment has seen larger than ever before investments in AM hardware and materials and these trends continue to indicate that the market for AM in commercial and general aviation is still only at the very beginning of its potential growth curve.

This report is based on extensive interviews in the “additive aerospace” sector as well as on SmarTech's extensive database of information and proprietary market forecasts in this space. The report will be highly valuable to marketing, business development and production executives at 3D printer makers, AM material companies, specialist service bureau, as well as within the aerospace industry itself.

Table of Contents

Chapter One: Flying into AM Parts Production

  • 1.1. Objectives and Methodology of this Report
    • 1.1.1. Defining the Aerospace AM Opportunity
    • 1.1.2. Types of Additive Manufacturing Adopters in the Aerospace Industry
  • 1.1.3. Plan of this Report
  • 1.2. The Promise of Additive Manufacturing for Aerospace Parts and Systems
    • 1.2.1. How is 3D Printing Involved in the Latest Aerospace Production Achievements?
    • 1.2.2. Which 3D Printed Parts Are (or Will Soon Be) Flying?
  • 1.3. Who Is Making AM Happen in Aviation and Aerospace?
    • 1.3.1. AM System OEMs: EOS and SLM Solutions
    • 1.3.2. AM Service Providers from Europe and North America
    • 1.3.3. Aerospace Parts Suppliers Adopting AM
    • 1.3.4. AM Technologies for Aerospace Beyond Metal Powder Bed Fusion
    • 1.3.5. Evolution of Metal Materials for Aerospace Applications Beyond Titanium
    • 1.3.6. Evolution of Polymer and Composite Materials for Aerospace Applications Beyond PEEK and ULTEM
  • 1.4. Assessing the Size of the Overall Aerospace Additive Manufacturing Opportunity
    • 1.4.1. How Big Is the Reference Civil Aviation Market for AM?
    • 1.4.2. How Important is the Aerospace Market for AM?
  • 1.5. A SWOT Analysis for Investing in AM for Aviation Part Production
  • 1.6. Key Points from This Chapter

Chapter Two: How Additive Manufacturing Technologies and Materials are Evolving to Meet Aerospace Production Demands

  • 2.1. Evolution of AM Hardware as Aircraft Production Machines
  • 2.2. Production Capabilities in AM Hardware Systems
    • 2.2.1. Metal Powder Bed Fusion
      • 2.2.1.1. Electron Beam Metal Powder Bed Fusion
      • 2.2.1.2. Laser Metal Powder Bed Fusion
    • 2.2.2. Directed Energy Deposition Technologies
      • 2.2.2.1. Repair and Feature Addition Applications for DED
      • 2.2.2.2. Near-net-shape Parts
    • 2.2.3. Metal Binder Jetting and Bound Metal Printing Technologies
      • 2.2.3.1. Bound Metal Printing Creating Strong Link Between AM and Powder Metallurgy Industry
      • 2.2.3.2. Major Competitive Growth in Bound Metal Printing in 2020
      • 2.2.3.3. Industrialization of Metal Binder Jetting Following in the Footsteps of Powder Bed Fusion
    • 2.2.4. Other Relevant Metal AM Technologies
      • 2.2.4.1. Kinetic Consolidation (Cold Blown Powder)
      • 2.2.4.2. Ultrasound Consolidation
    • 2.2.5. Polymer and Composite Technologies for Aerospace Production
      • 2.2.5.1. Thermoplastic Filament Extrusion
      • 2.2.5.2. Composite Pellet Extrusion
      • 2.2.5.3. Thermoplastic Powder Bed Fusion
  • 2.3. AM Factories and AM Automation for Civil Aviation Part Production
    • 2.3.1. Automating the Direct AM End-to-end Process
    • 2.3.2. Indirect Production Workflows Integrating AM Processes as a Key Intermediate Step
      • 2.3.2.1. Immediate Benefits of 3D Printing Molds and Casts
    • 2.3.3. Automated AM Factory Concepts and How they Apply to Civil Aviation Additive Manufacturing
      • 2.3.3.1. Metal Powder Bed Fusion Factories
      • 2.3.3.2. Metal and Sand Binder Jetting Factories
      • 2.3.3.3. Polymer Additive Manufacturing Factories
  • 2.4. Ten-year Forecast of AM Hardware Sales in Civil Aviation
    • 2.4.1. Ten-year Metal Hardware Sales in Civil Aviation
    • 2.4.2. Polymer and Composite Hardware Sales in Civil Aviation
  • 2.5. Key Points from This Chapter

Chapter Three: Metals vs. Polymers in the Air

  • 3.1. Metal AM Material Opportunities in Civil Aviation Applications
    • 3.1.1. Metal Materials for Civil Aviation AM
      • 3.1.1.1. Key Facts About Titanium Alloys
      • 3.1.1.2. Key Facts About Nickel Alloys
      • 3.1.1.3. Key Facts About Aluminum
      • 3.1.1.4. Key Facts About Steels
      • 3.1.1.5. Key Facts About Copper
    • 3.1.2. Metal AM Material Suppliers for Civil Aviation Industry Applications
      • 3.1.2.1. AP&C
      • 3.1.2.2. Carpenter
      • 3.1.2.3. Sandvik
      • 3.1.2.4. Höganäs
      • 3.1.2.5. Praxair Surface Technologies
      • 3.1.2.6. Heraeus
      • 3.1.2.7. Oerlikon
    • 3.1.3. Relevant Partnerships and Acquisitions
  • 3.2. Polymer and Composite Materials for Aerospace Additive Manufacturing
    • 3.2.1. Polymer AM Material Suppliers for Civil Aviation Industry Applications
      • 3.2.1.1. Key Composite Materials Suppliers
      • 3.2.1.2. Key PAEK Polymers Suppliers
  • 3.3. Ceramics
  • 3.4. Ten-year Forecast of Materials Sales in Civil Aviation
    • 3.4.1. Ten-year Forecast of Metal Materials Sales in Civil Aviation
    • 3.4.2. Ten-year Forecast of Polymer and Composite Materials Sales in Civil Aviation
  • 3.5. Key Points from This Chapter

Chapter Four: Influential Aircraft AM Parts Suppliers in a Changing Supply Chain

  • 4.1. From AM Services to Aerospace AM Parts Providers
    • 4.1.1. Early Role of Metal AM Service Bureaus in the Aerospace Industry
    • 4.1.2. Success Factors for AM Metal Services in the Aerospace Industry
  • 4.2. Prominent AM Service Bureaus Producing Aircraft Parts
    • 4.2.1. Additional Insights on Key AM Service Providers to the Aviation Industry
  • 4.3. Prominent Aircraft Parts Manufacturers Adopting Additive Manufacturing
  • 4.4. Notable Activities with AM by Airline MROs (Insourcing)
  • 4.5. Forecast for AM Service Revenues in Civil Aviation
    • 4.5.1. Forecasts by Part Type
    • 4.5.2. Forecast by Supplier Type
  • 4.6. Key Points from This Chapter

Chapter Five: Flying Additively Manufactured Aircraft Parts

  • 5.1. Types of AM Parts in Civil Aviation
  • 5.2. Evolving Polymer Part Production Opportunities
    • 5.2.1. Rise of Composite Materials and Technologies for Large Aircraft Parts
  • 5.3. Understanding the Additive Manufacturing Value Proposition for Aircraft Parts Manufacturers
    • 5.3.1. Moving into Simpler and Smaller Serial Parts
    • 5.3.2. Moving into Systems
  • 5.4. Certifications and Standards
    • 5.4.1. Relevant Standards for AM
    • 5.4.2. Known Standards Currently Used by Civil Aviation AM Operators
    • 5.4.3. Relevant Certifying Organizations for Aviation AM
    • 5.4.4. Guidelines for Metal AM Part Certification
  • 5.5. Ten-year Forecast and Analysis of Additively Manufactured Aircraft Parts in Civil Aviation
  • 5.6. Key Points from this Chapter

About SmarTech Analysis

  • About the Analyst
  • Acronyms and Abbreviations Used In this Report

List of Exhibits

  • Exhibit 1-1: Estimated Forecasted Revenues from Aircraft Parts ($USM) 2019 - 2029 and Expected Value of AM Part Revenues
  • Exhibit 1-2: Size of the Overall AM Opportunity (Bottom Up Analysis)
  • Exhibit 1-3: Comparison of Top Down and Bottom Up Analysis
  • Exhibit 1-4: Expected Year on Year Revenue Growth Rates for AM in Civil Aviation 2019 - 2029
  • Exhibit 1-5: Expected CAGR for AM in Civil Aviation Revenues by Market Segment16
  • Exhibit 1-6: Total Primary Metal AM Opportunities Market Forecast, by End- User Segment, all Powder Metal AM Technologies, 2018-2029
  • Exhibit 1-7: A SWOT Analysis of AM in Aviation Applications
  • Exhibit 2-1: The Road to AM Industrialization in Civil Aviation, from R&D to Digital Factories
  • Exhibit 2-2: Leading AM Technologies Used in Civil Aviation Part Production
  • Exhibit 2-3: Opportunities for Directed Energy Deposition in Commercial Aviation
  • Exhibit 2-4: EOS P 810 Automated Workflow Production Solution for Composite Parts
  • Exhibit 2-5: Metal AM Hardware System Unit Demand in Civil Aviation
  • Exhibit 2-6: Metal AM Hardware System Revenues in Civil Aviation
  • Exhibit 2-7: Expected YoY Revenue Growth Rate for Metal AM Hardware Sales in Civil Aviation 2019 - 2029
  • Exhibit 2-8: Expected CAGR by Metal AM Hardware Segment in Civil Aviation
  • Exhibit 2-9: Polymer AM Hardware System Unit Demand in Civil Aviation
  • Exhibit 2-10: Composite AM Hardware System Revenues in Civil Aviation
  • Exhibit 2-11: Polymer and Composite AM Hardware System Revenues in Civil Aviation
  • Exhibit 2-12: Expected YoY Revenue Growth Rate for Polymer and Composite AM Hardware Sales in Civil Aviation 2019 - 2029
  • Exhibit 2-13: Expected CAGR by Polymer and Composite AM Hardware Segment Civil Aviation
  • Exhibit 3-1: Comparison in Metal AM Powder Demand within AM Adoption Segments
  • Exhibit 3-2: Comparison Between Metal and Polymer Materials Demand in Civil Aviation AM 2019 - 2029
  • Exhibit 3-3: Metal AM Powder Materials Demand in Civil Aviation in Metric Tonnes by Material Type 2019 - 2029
  • Exhibit 3-4: Metal AM Powder Materials Revenues ($USM) in Civil Aviation in Metric Tonnes by Material Type 2019 - 2029
  • Exhibit 3-5: Expected Year on Year Growth Rate for Metal AM Materials Revenues in Civil Aviation 2019 - 2029
  • Exhibit 3-6: Expected CAGR by Metal Material Revenue Segment in Civil Aviation
  • Exhibit 3-7: Extrusion Thermoplastic Materials Demand in Civil Aviation in Metric Tonnes by Material Type 2019 - 2029
  • Exhibit 3-8: Extrusion Thermoplastic Materials Revenues ($USM) in Civil Aviation by Material Type 2019 - 2029
  • Exhibit 3-9: Photopolymer Materials Demand in Civil Aviation in Metric Tonnes by Material Type 2019 - 2029
  • Exhibit 3-10: Photopolymer Materials Revenues ($USM) in Civil Aviation by Material Type 2019 - 2029
  • Exhibit 3-11: Thermoplastic Powder Materials Demand in Civil Aviation in Metric Tonnes by Material Type 2019 - 2029
  • Exhibit 3-12: Thermoplastic Powder Materials Revenues ($USM) in Civil Aviation by Material Type 2019 - 2029
  • Exhibit 4-1: AM Service Bureaus Supplying Parts into the Civil Aviation Industry
  • Exhibit 4-2: Aerospace Parts Providers (Tier 2 Suppliers)
  • Exhibit 4-3: Revenues from Polymer AM Service Bureaus by Application Type ($USM) 2019 - 2029
  • Exhibit 4-4: Revenues from Metal AM Service Bureaus by Application Type ($USM) 2019 - 2029
  • Exhibit 4-5: Trend for AM Service Bureau Revenues by Application Type (Polymer and Metal) 2019 - 2029
  • Exhibit 4-6: AM Part Production in the Aviation Industry by Supplier Type
  • Exhibit 4-7: Number of Metal AM Parts by Supplier Type 2019 - 2029
  • Exhibit 4-8: Polymer AM Parts Produce by Type of Supplier
  • Exhibit 5-1: Relevant Application Cases for AM in Civil Aviation*
  • Exhibit 5-2: Evolution in Polymer 3D Printing Applications in Aerospace
  • Exhibit 5-3: Average Weight of AM Parts for Civil Aviation by Material
  • Exhibit 5-4: Average Price for Aviation 3D Printed End-use Parts by Material and Part Type
  • Exhibit 5-5: AM End-use Parts Revenues ($USM) in Civil Aviation by Material Type and YoY Growth