無料レポート プレゼントキャンペーン 実施中 : メールサービスに新規登録いただいた方にご用意した無料レポートをご提供

株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

航空宇宙における積層造形 (AM) の機会 2017年 - 民間航空機:機会分析・10ヵ年予測

Opportunities for Additive Manufacturing in Aerospace 2017 - Civil Aviation: An Opportunity Analysis and Ten-Year Forecast

発行 SmarTech Markets Publishing LLC 商品コード 504298
出版日 ページ情報 英文 119 Pages
即納可能
価格
本日の銀行送金レート: 1USD=112.58円で換算しております。
Back to Top
航空宇宙における積層造形 (AM) の機会 2017年 - 民間航空機:機会分析・10ヵ年予測 Opportunities for Additive Manufacturing in Aerospace 2017 - Civil Aviation: An Opportunity Analysis and Ten-Year Forecast
出版日: 2017年05月23日 ページ情報: 英文 119 Pages
概要

当レポートでは、航空宇宙における積層造形 (AM) の機会について調査分析し、民間航空部門における積層造形で見込まれる収益の10ヵ年予測、主要企業の戦略的評価、金属積層造形の戦略・導入パターンの変化、およびマテリアルの10ヵ年予測などをまとめています。

第1章 航空宇宙部品生産に向けたAM (積層造形) 導入の最新動向

  • 「航空宇宙における積層造形」への投資・ステークホルダー数が増加
  • コスト効果的な生産によって補完される部品設計におけるAMの確立されたメリット
  • 商用・一般航空向けAMを形成する地域的な検討事項
  • 非軍事航空宇宙におけるAMのさらなる利用を導くソフトウェアの改善
  • AM工場/専門家サービス業者がサプライチェーンの圧力を緩和
  • マテリアルの要因:ポリマーおよび複合材料が金属の使用に圧力をかける
  • 商用航空におけるAMの導入に起因する競合の影響
  • 商用・一般航空向けAMにおいて最も影響力を持つ6社
    • GE (Concept Laser, Arcam)
    • Airbus
    • Stratasys
    • Siemens and Materialise
    • EOS and SLM Solutions
    • DMG Mori and Trumpf
  • 本調査における予測
  • 本章の要点

第2章 一般・商用航空産業へのAM統合の進行

  • ダイレクトなデザインから生産までのワークフローによるリードタイムの更なる短縮
  • 一般航空のAM重視からメリットを得る商用航空産業
  • 民間航空におけるAMの実施に向けたソフトウェアの重要な役割
  • 商用航空機コンポーネントのAM向けの生成的なデザインツールの実行
  • 3Dプリントで製造されたフライトに重要な部品の資格取得の発展
  • 規制
  • 環境目標
  • 本章の要点

第3章 航空産業における製造向けAMプロセスの進化

  • ポリマー材料押出
  • ポリマー粉末積層造形 (PBF)
  • 金属粉末積層造形の進化
  • 指向性エネルギー堆積技術の発展
  • 民間航空で使用されるツール・プロトタイピング向け3Dプリント技術
  • サービス業者の役割
  • 積層航空宇宙工場
  • 民間航空における積層造形ハードウェアの10ヵ年予測
  • 本章の要点

第4章 商用・一般航空向けAMマテリアルの市場機会

  • 航空機エンジンの先に進む金属AM
  • 製造への移行として発展するポリマーの機会が続く
  • 航空機部品・製造におけるポリマー・複合材料の用途
  • 商用・一般航空で使用されるマテリアルの10ヵ年予測
  • 本章の要点

付録A

アナリストについて

用語

目次
Product Code: SMP-AM-AERO2017-0517

Manufacturing of civil aircraft - that is planes for commercial and general aviation - has already emerged as the first industry sector where 3D printing is an established manufacturing modality. We continue to see important new opportunities emerge in this area in both metal AM and the polymer AM (metal replacement and composite). This report identifies and quantifies the business potential of these new trends. The report includes:

  • Detailed ten-year forecasts of the revenue generation potential for additive manufacturing in the civil aviation sector. These forecasts are presented in both volume and value ($ Millions) terms and cover printer shipments and install base, revenues from specialist aerospace service bureaus, aerospace-related AM software, and materials (metals, polymers and composites).
  • A strategic assessment of the leading firms supplying the "additive aerospace" sector. In this assessment, we also take into consideration the commercial impact of the rapidly growing number of companies that are targeting aerospace firms as potential customers.
  • An analysis of how this segment of the aerospace industry is changing its strategies and adoption patterns for metal AM and is exploiting the increases in speed, part size and process automation that have occurred in the last few years.
  • A discussion of how the absence an appropriate software infrastructure for "additive aerospace" was impacting the market and how significant investments made in this area are going to lead to a much more rapid adoption of the technology. Here there appears to be an opportunity to market new software packages to fully support all phases the AM process, from CAD to PLM to enterprise infrastructure."

The aerospace segment has seen larger than ever before investments in AM hardware and materials and these trends continue to indicate that the market for AM in commercial and general aviation is still only at the very beginning of its potential growth curve.

This report is based on extensive interviews in the "additive aerospace" sector as well as on SmarTech's extensive database of information and proprietary market forecasts in this space. The report will be highly valuable to marketing, business development and production executives at 3D printer makers, AM material companies, specialist service bureau, as well as within the aerospace industry itself.

Table of Contents

Chapter One: Latest Trends in Adoption of AM for Aerospace Part Production

  • 1.1 Investments and Number of Stakeholders in "Additive Aerospace" Increasing
  • 1.2 Established Benefits of AM in Part Design Complemented by Cost-Efficient Production
  • 1.3 Geographic Considerations Shaping AM for Commercial and General Aviation
  • 1.4 Software Improvements Leading to More Use of AM in Non-Military Aerospace
    • 1.4.1 Advancements in Supply Chain and PLM Software
  • 1.5 AM Factories/Specialist Service Bureaus Alleviate Supply Chain Pressure
  • 1.6 Material Factors: Polymers and Composites Put Pressure on Use of Metals
  • 1.7 Competitive Implications Resulting from Adoption of AM in Commercial Aerospace
  • 1.8 The Six Most Influential Firms in AM for Commercial and General Aviation
    • 1.8.1 GE (Concept Laser, Arcam)
    • 1.8.2 Airbus
    • 1.8.3 Stratasys
    • 1.8.4 Siemens and Materialise
    • 1.8.5 EOS and SLM Solutions
    • 1.8.6 DMG Mori and Trumpf
  • 1.9 Forecasting in this Report
    • 1.9.1 Summary of Ten-Year Forecast for AM in Civil Aviation
  • 1.10 Key Points from this Chapter

Chapter Two: Progress in Integrating AM into the General and Commercial Aviation Industry

  • 2.1 Further Reduction in Lead Time through Direct Design-to-Production Workflow
    • 2.1.1 3D Scanning in the Aviation Industry
  • 2.2 Commercial Aviation Industry to Benefit from Focus on AM from General Aviation
    • 2.2.1 For Production of Non-Safety-Critical Components
    • 2.2.2 For Production of Safety-Critical Engine Components
  • 2.3 The Critical Role of Software for Implementation of AM in Civil Aviation
  • 2.4 Implementing Generative Design Tools for AM of Commercial Aviation Components
    • 2.4.1 Current Evolution of Topology Optimization and Trabecular/Lattice Structures for AM Parts
  • 2.5 Developments in Qualifying 3D-Printed Flight-Critical Parts
    • 2.5.1 Part Qualification Requirements
    • 2.5.2 Test Types
    • 2.5.3 New Non-destructive Evaluation Methods for 3D Printed Parts
    • 2.5.4 Post Printing Treatment Providing a Short-Term Solution
    • 2.5.5 Standards and Certifications
    • 2.5.6 Developing Standards for Additive Manufacturing
  • 2.6 Regulations
    • 2.6.1 Europe (EASA)
    • 2.6.2 U.S. (FAA/AMNT)
  • 2.7 Environmental Objectives
  • 2.8 Key Points from this Chapter

Chapter Three: Evolution of AM Processes for Production in the Aviation Industry

  • 3.1 Polymer Material Extrusion
  • 3.2 Polymer Powder Bed Fusion (PBF)
    • 3.2.1 PBF of Composite Materials for Civil Aviation
  • 3.3 Evolution of Metal Powder Bed Fusion
    • 3.3.1 Evolution of Metal PBF Systems for Civil Aviation
  • 3.4 Evolution of Directed Energy Deposition Technologies
    • 3.4.1 Evolution of DED System Manufacturers and Systems
  • 3.5 3D Printing Technologies for Tooling and Prototyping Used in Civil Aviation
    • 3.5.1 FDM for Composite Tooling
    • 3.5.2 Photopolymerization
    • 3.5.3 Binder Jetting
  • 3.6 Role of Service Bureaus
    • 3.6.1 Materialise
    • 3.6.2 Stratasys Direct Manufacturing
  • 3.7 Additive Aerospace Factories
    • 3.7.1 Europe
    • 3.7.2 North America
  • 3.8 Ten-Year Forecast for Additive Manufacturing Hardware in Civil Aviation
    • 3.8.1 Ten-Year Forecast for Polymer AM Hardware in Civil Aviation
    • 3.8.2 Ten-Year Forecast for Metal AM Hardware in Civil Aviation
  • 3.9 Key Points from this Chapter

Chapter Four: Market Opportunities for AM Materials for Commercial and General Aviation

  • 4.1 Metal AM Moving Beyond Aircraft Engines
    • 4.1.1 Turbine Blades
    • 4.1.2 Fuel Nozzles
    • 4.1.3 Airframes and Major Structural Components
    • 4.1.4 Other Safety-Critical Parts
    • 4.1.5 Non-Safety-Critical Parts
  • 4.2 Polymer Opportunities Evolving as Transition to Manufacturing Continues
    • 4.2.1 Rise of Composite Materials and Technologies for Large Aircraft Parts
  • 4.3 Polymer and Composites Applications in Flight Parts and Production
    • 4.3.1 Tools
    • 4.3.2 Environmental Control Systems
    • 4.3.3 Cabin Components
  • 4.4 Ten-Year Forecast of Materials Used in Commercial and General Aviation
    • 4.4.1 Summary of Ten-Year Metals Forecast
    • 4.4.2 Summary of Ten-Year Polymer Forecast
  • 4.5 Key Points from This Chapter

APPENDIX A 107

  • A.1 Manufacturers of AM Hardware Used in Civil Aviation Manufacturing
  • A.2 Leading Software Companies Influencing Civil Aviation AM Production
  • A.3 Relevant 3D Printing Material Vendors Influencing Civil Aviation
  • A.4 Influential Aerospace Companies Advancing 3D Print Technology
  • A.5 Relevant System Agnostic 3D Printing Service Providers in Civil Aviation

About the Analyst

Acronyms and Abbreviations Used In this Report

List of Exhibits

  • Exhibit 1-1: Forecasted Aircraft Deliveries for Commercial Aviation
  • Exhibit 1-2a: AM Hardware Sales in $USM for Civil Aviation by Geographic Region
  • Exhibit 1-2b: AM Materials Sales in Civil Aviation in $USM 2016 - 2027
  • Exhibit 1-3: Composite components in an Airbus A380 Aircraft
  • Exhibit 1-4: Forecasted YoY Growth Rate Trend for AM in Civil Aviation Revenues 2016 - 2027
  • Exhibit 1-5: Total Market for AM in Civil Aviation from 2016 to 2027
  • Exhibit 1-6: Visual Comparison of Market for AM in Civil Aviation 2016 Vs 2027
  • Exhibit 1-7: Total AM in Civil Aviation Market Revenue Share by Product Segment 2016
  • Exhibit 1-8: Total AM Hardware Revenues in Civil Aviation 2016 - 2027
  • Exhibit 1-9: Total AM Materials Sales in $USM for Civil Aviation 2016 - 2027
  • Exhibit 1-10: Total Market for Metal AM in Civil Aviation in $USM 2016 - 2027
  • Exhibit 1-11: Total Market for Polymer AM in Civil Aviation in $USM 2016 - 2027
  • Exhibit 2-1: Example of a Basic Topology Optimization Application
  • Exhibit 2-2: Airbus' Stepwise Approach to Technology Introduction
  • Exhibit 2-3: Current Aerospace Metal AM Workflow Illustration
  • Exhibit 2-4: Current ISO/ASTM Standards for AM
  • Exhibit 2-5: Guidelines for Metal AM Part Certification
  • Exhibit 3-1: Leading AM Technologies Used in Civil Aviation Part Production
  • Exhibit 3-2: Opportunities for Polymer Powder Bed Fusion in Commercial Aerospace Manufacturing
  • Exhibit 3-3: Evolution of Recently Identified Key Trends in Metal Powder Bed Fusion Systems
  • Exhibit 3-4: Maximum Capabilities of Leading Metal PBF Hardware Systems Used in Civil Aviation Part Production
  • Exhibit 3-5: Opportunities for Directed Energy Deposition in Civil Aviation Manufacturing
  • Exhibit 3-6: Largest DED Systems Available on the Market Today from Leading Vendors
  • Exhibit 3-7: Polymer AM Systems Demand by Units Sold in Civil Aviation Manufacturing 2016-2027
  • Exhibit 3-8: Composite AM Systems Demand by Units Sold in Civil Aviation 2016-2027
  • Exhibit 3-9: Polymer AM Systems Sales in Civil Aviation in $USM 2016- 2027
  • Exhibit 3-10: Metal AM Hardware Systems Demand in Civil Aviation 2016-2027
  • Exhibit 3-11: Metal AM Hardware Sales in Civil Aviation 2016-2027
  • Exhibit 4-1: Potential Evolution of AM for Part Production in Civil Aviation
  • Exhibit 4-2: Primary Concerns Relating to Adopting AM Technologies In Civil Aviation Manufacturing
  • Exhibit 4-3: Evolution in Polymer 3D Printing Applications in Aerospace
  • Exhibit 4-4: AM Materials Revenues in Civil Aviation in $USM 2016-2027 by Material Type
  • Exhibit 4-5: Demand of Metal AM Powder Materials by Material Type in Kg (2016-2027)
  • Exhibit 4-6: Sales of Metal AM Powder Materials by Material Type in $USM (2016-2027)
  • Exhibit 4-7: Demand for Extrusion Thermoplastic Materials by Material Type in Kg (2016-2027)
  • Exhibit 4-8: Sales of Extrusion Thermoplastic Materials by Material Type in $USM (2016-2027)
  • Exhibit 4-9: Demand for Polymer AM Powder Materials by Material Type in Kg (2016-2027)
  • Exhibit 4-10: Sales of Polymer AM Powder Materials by Material Type in $USM (2016-2027)
  • Exhibit 4-11: Demand for Photopolymer Materials by Material Type in Kg (2016-2027)
  • Exhibit 4-12: Sales of Photopolymer Materials by Material Type in $USM (2016-2027)
  • Exhibit 4-13: Demand for Non-metallic Binder Jetting Materials by Material Type in Kg (2016-2027)
  • Exhibit 4-14: Sales of Non-metallic Binder Jetting AM Materials by Material Type in $USM (2016-2027)
Back to Top