株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

積層造形 (AM:Additive Manufacturing) におけるチタンの市場機会:2017年

Titanium Opportunities in Additive Manufacturing - 2017

発行 SmarTech Markets Publishing LLC 商品コード 343017
出版日 ページ情報 英文 89 Pages
即納可能
価格
本日の銀行送金レート: 1USD=113.83円で換算しております。
Back to Top
積層造形 (AM:Additive Manufacturing) におけるチタンの市場機会:2017年 Titanium Opportunities in Additive Manufacturing - 2017
出版日: 2016年11月30日 ページ情報: 英文 89 Pages
概要

当レポートでは、積層造形 (AM:Additive Manufacturing) におけるチタンの市場機会について調査し、主要エンドユーザー産業における金属AMとチタン利用の動向、各種AM技術とチタン金属粉利用の動向、サプライチェーンと主要企業、金属3Dプリンティングハードウェアの年間販売台数・成長率・インストールベース、AM用チタン粉末の需要・収益の10カ年予測 (産業別) などをまとめています。

第1章 金属・チタン積層造形市場の状況:12ヶ月のレビュー

  • チタン需要に影響を及ぼす金属積層造形の主要動向
    • 品質保証イニシアチブ
    • パーツ検査プロセス
    • 金属AM専用プリント準備&シミュレーションソフトウェア
  • 市場・用途の追跡調査:AMチタンコンポーネントと主要市場における価値
    • 航空宇宙産業における金属AMとチタン
    • 整形外科部門における金属AMとチタン
    • 歯科部門における金属AMとチタン
    • 自動車・輸送産業における金属AMとチタン
  • 積層造形のサプライチェーンにおけるチタン粉末
  • 本章の要点

第2章 積層造形技術とチタン金属粉の活用

  • AM技術に適したチタン粉末の主な特徴
    • AM向けの球状チタン金属粉の一般的要件
  • 金属粉末床溶融結合技術と関連の金属粉製造に関する考察
    • レーザー金属粉末床溶融結合
    • 電子ビーム金属粉末床溶融結合
  • 指向性エネルギーシステム (Blown Powder) と関連の金属粉製造に関する考察
  • ワイヤーベースの指向性エネルギー堆積技術と市場に関する考察
  • 積層造形用チタン粉末のエンドユーザーに関する考察
  • 本章の要点

第3章 積層造形用チタン材の分析:製造法・企業・サプライチェーン

  • チタン粉末サプライチェーンに関する考察
  • チタン粉末による積層造形法
    • ガス噴霧
    • プラズマ噴霧
    • 新しい造形法
  • AM産業における競合チタン材料
  • 影響力を持つAM用チタン粉末サプライヤー・リセラー・市場シェア分析
    • AP&C
    • GKN Hoeganaes
    • LPW Technology
    • Metalysis
    • Praxair Surface Technologies
    • Puris, LLC
    • Tekna
    • 大阪チタニウムテクノロジーズ
    • Pyrogenesis
    • H.C. Starck
    • ATI Metals Corp.
    • Z3DLab

第4章 積層造形用チタン粉末の10カ年予測:サマリー

  • 予測手法レビュー
  • 金属3Dプリンティングハードウェアの予測
    • 年間販売台数・市場成長率
    • インストールベース
  • チタン粉末需要・収益:産業別
    • 航空宇宙
    • 自動車
    • 医療
    • 歯科
    • サービスビューロー・ジュエリー・その他

SmarTech Publishingについて

アナリストについて

用語

図表

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次
Product Code: SMP-AM-TI2017-1116

SmarTech Publishing was the first industry analysis firm to publish a report on the market opportunities emerging from additively manufactured titanium. In this story, we bring the story up to date with a full analysis on the markets for of AM utilizing metal powders and other titanium feedstocks in modern commercial additive manufacturing systems.

We believe that titanium printing is becoming the largest opportunity for metal additive manufacturing materials, with revenues exceeding all other alloy groups used in metal AM over the next ten-year period. Sought after primarily for its high strength to weight ratio, biological inertness, and other desirable properties when combined with additive layer manufacturing, titanium alloys are burgeoning in the medical, aerospace, automotive, dental, and consumer products industries.

With GE purchasing a controlling share in one of the largest titanium additive manufacturing companies in the world, and thus gaining a significant stake in the supply chain for titanium powders used in additive manufacturing systems, the titanium supply chain has been thrust into short term uncertainty. The market is responding to significantly increased demand for high quality, traceable, and exceptionally pure titanium materials for additive manufacturing, with a number of new market entrants having taken place in 2016 and more planned for 2017. Capacity expansions at existing leaders in the titanium powder supply chain are underway, thus creating a chaotic future scenario with potentially over a billion dollars on the line in the future.

As a specialty study in a specific material, this report presents our latest -- and highly granular -- market forecast data as well as critical market analysis for use of titanium in key industries adopting AM, as well as considerations for the future adoption and use in other applications. The primary opportunity factors related to the broader supply chain, primary providers of AM titanium powder and other forms, and analysis of the print technologies and powder production processes all combine to help business development and strategy professionals determine how to focus their efforts in titanium powder, parts, and print technologies.

Table of Contents

Chapter One: State of Metal and Titanium Additive Manufacturing Market-Trailing Twelve-Month Review

  • 1.1 Key Trends in Metal Additive Manufacturing Influencing Demand for Titanium
    • 1.1.1 Development of Quality Assurance Initiatives in Metal AM
    • 1.1.2 Development of Part Testing Processes for Titanium Components Made via Metal AM
    • 1.1.3 Development of Metal AM-Specific Print Preparation and Simulation Software
  • 1.2 Market and Application Tracking - Additively Manufactured Titanium Components and Their Value in Key Markets
    • 1.2.1 Metal AM and Titanium in Aerospace
      • 1.2.1.1 Titanium Aluminide Additive Manufacturing in Aerospace
      • 1.2.1.2 Titanium Helping Drive Metal AM in Aerospace Beyond Aircraft Engine Applications
      • 1.2.1.3 Military and Space Segments Driving Increased Titanium AM Demand in 2016
    • 1.2.2 Metal AM and Titanium in Orthopedics Stronger Than Previously Projected
    • 1.2.3 Metal AM and Titanium in Dentistry
      • 1.2.3.1 Applying Titanium Additive Manufacturing Technology to the Increasing Dental Implant Market
      • 1.2.3.2 New Dental Application Segment for Oral Appliance Therapy Sleep Apnea Devices Being Dominated by Titanium
    • 1.2.4 Metal AM and Titanium in Automotive and Transportation
      • 1.2.4.1 New 3D Print-Enabled Automotive Design and Manufacturing Platforms Could Bring Metal AM to New Heights in Transportation
      • 1.2.4.2 Metal AM in Automotive Being Driven by Demand for Aluminum and Steel During the Short Term
  • 1.3 Titanium Powder for Additive Manufacturing Supply Chain in Transition Phase
    • 1.3.1 GE Acquisitions Throw Titanium Powder Capacity into Question
    • 1.3.2 Metal Powder Market Surging to Fill in Capacity Gaps for Titanium Powder in AM
    • 1.3.3 Summary of Latest Market Projections for Titanium Metal Powder Demand
  • 1.4 Key Points from this Chapter

Chapter Two: Additive Manufacturing Technologies and Utilization of Titanium Metal Powders

  • 2.1 Primary Titanium Powder Characteristics for AM Technology
    • 2.1.1 General Requirements for Spherical Titanium Metal Powders for AM
  • 2.2 Metal Powder Bed Fusion Technology and Related Metal Powder Production Considerations
    • 2.2.1 Laser-Based Metal Powder Bed Fusion
    • 2.2.2 Electron Beam-Based Metal Powder Bed Fusion
  • 2.3 Blown Powder Directed Energy Systems and Related Metal Powder Production Considerations
  • 2.4 Wire-Based Directed Energy Deposition Technology and Market Considerations
  • 2.5 End-User Considerations for Titanium Powder in Additive Manufacturing
    • 2.5.1 Increasing Demand for Titanium Powder with Technical Performance Standards
    • 2.5.2 End-User Considerations for Use of Titanium Additive Manufacturing in Medical Markets
      • 2.5.2.1 Powder Bed Fusion in Implants Increasingly Fragmented, Hold Implications for Titanium Powder Production
      • 2.5.2.2 Competition in Orthopedic Implants from Outside the Metals Segment
  • 2.6 Key Points From this Chapter

Chapter Three: Analysis of Titanium Materials for Additive Manufacturing - Production Methods, Players, and Supply Chain

  • 3.1 Supply Chain Considerations for Titanium Powder
  • 3.2 Production Methods for Titanium Powder for AM
    • 3.2.1 Gas-Based Atomization Methods
    • 3.2.2 Plasma-Based Atomization Methods
    • 3.2.3 Emerging AM Powder Production Methods
      • 3.2.3.1 Electrolysis (Metalysis)
      • 3.2.3.2 Experimental Processes
  • 3.3 Competing Titanium Materials in the AM Industry
    • 3.3.1 Titanium Versus Nickel Superalloys, Cobalt Chrome, and Aluminum in AM
  • 3.4 Influential AM Titanium Powder Suppliers, Resellers, and Market Share Analysis
    • 3.4.1 AP&C
    • 3.4.2 GKN Hoeganaes
    • 3.4.3 LPW Technology
    • 3.4.4 Metalysis
    • 3.4.5 Praxair Surface Technologies
    • 3.4.6 Puris, LLC
    • 3.4.7 Tekna
    • 3.4.8 Osaka Titanium
    • 3.4.9 Pyrogenesis
    • 3.4.10 H.C. Starck
    • 3.4.11 ATI Metals Corp.
    • 3.4.12 Z3DLab

Chapter Four: Summary of Ten-Year Forecasts for Titanium Powders in Additive Manufacturing

  • 4.1 Methodology Review
  • 4.2 Metal 3D Printing Hardware Forecasts
    • 4.2.1 Annual Unit Sales and Market Growth
    • 4.2.2 Install Base
  • 4.3 Titanium Powder Demand and Revenues by Vertical Industry
    • 4.3.1 3D-Printed Titanium in Aerospace
    • 4.3.2 3D-Printed Titanium in Automotive
    • 4.3.3 3D-Printed Titanium in Medical
    • 4.3.4 3D-Printed Titanium in Dentistry
    • 4.3.5 3D-Printed Titanium in Service Bureaus, Jewelry, and Other Applications

About SmarTech Publishing

About the Analyst

Acronyms and Abbreviations Used In this Report

List of Exhibits

  • Exhibit 1-1: Top Short-Term 3D Print Material Opportunities for Commercial Aerospace and General Aviation
  • Exhibit 1-2: Total Titanium Mix in Aerospace 3D Printing Applications - Multi-Year Evolution
  • Exhibit 1-3: Beneficial Traits of 3D-Printed Orthopedic Implants
  • Exhibit 1-4: Total Projected AM Titanium Powder Demand Comparison, Medical Applications, 2014-2024
  • Exhibit 1-5: Total Printed Dental Implant Components Opportunity, 2015-2025
  • Exhibit 1-6: Total Projected Sleep Related Oral Appliance Therapy Devices Printed, 2015-2025
  • Exhibit 1-7: Total Projected AM Metal Powder Demand (All Alloy Groups and Technologies), Automotive Applications, 2015-2026
  • Exhibit 1-8: Total Projected 3D-Printed Titanium Metal Powder Demand, 2014-2026 (tons)
  • Exhibit 1-9: Total Projected 3D-Printed Titanium Metal Powder Revenue, 2014-2026
  • Exhibit 2-1: Current Metal Additive Manufacturing Technology Hierarchy
  • Exhibit 2-2: Laser Metal Powder Bed Fusion System Parameters
  • Exhibit 2-3: Electron-Based Powder Bed Fusion System Parameters
  • Exhibit 2-4: Powder-Based Directed Energy Deposition System Parameters
  • Exhibit 2-5: Total Projected Wire Versus Powder Metal AM System Install Base, Global, 2015-2025
  • Exhibit 2-6: Total Projected AM Wire Versus Powder Titanium Alloy Shipments, Global, 2015-2025
  • Exhibit 2-7: Wire-Based AM Industry Demand Comparison
  • Exhibit 2-8: 3D Printable Implant Material Comparison
  • Exhibit 2-9: Titanium versus PEKK Orthopedic Implant Material Revenue Mix ($US Millions) - 2014-2024
  • Exhibit 3-1: AM Metal Powder Production Process Flow
  • Exhibit 3-2: Comparison of Titanium Powder Production Techniques for Use in Additive Manufacturing
  • Exhibit 3-3: Currently Available Specialty Titanium Alloys for AM
  • Exhibit 3-4: Potential Future Specialty Titanium Alloys for AM
  • Exhibit 4-1: Total Projected Annual Metal 3D Printing System Unit Sales, by Technology - 2015-2026
  • Figure 4-2: Total Projected Metal System Install Base, by Technology - 2015-2026
  • Figure 4-3: Total Annual Titanium Metal Powder Demand, by Type - Aerospace Industry, 2014-2026
  • Figure 4-4: Total Annual Titanium Metal Powder Revenue, Aerospace Industry - 2014-2026
  • Exhibit 4-5: Total Annual Titanium Metal Powder Demand by Type, Automotive Industry - 2014-2026
  • Exhibit 4-6: Total Annual Titanium Metal Powder Revenue, Automotive Industry - 2014-2026
  • Exhibit 4-7: Total Annual Titanium Metal Powder Demand by Type, Medical Industry - 2014-2026
  • Exhibit 4-8: Total Annual Titanium Metal Powder Revenue, Medical Industry - 2014-2026
  • Exhibit 4-9: Total Annual Titanium Metal Powder Demand, Dental Industry - 2014-2026
  • Exhibit 4-10: Total Annual Titanium Metal Powder Revenue, Dental Industry - 2014-2026
  • Exhibit 4-11: Total Annual Titanium Metal Powder Demand, Non-Specialty Service Bureaus - 2014-2026
  • Exhibit 4-12: Total Annual Titanium Metal Powder Revenue, Non-Specialty Service Bureaus - 2014-2026
  • Exhibit 4-13: Total Annual Titanium Metal Powder Demand, Jewelry Industry - 2014-2026
  • Exhibit 4-14: Total Annual Titanium Powder Demand, Other Industries -2014-2026
  • Exhibit 4-15: Total Annual Titanium Powder Revenue, Other Industries -2014-2026
Back to Top