メールサービス キャンペーン : 期間中に新規登録や配信希望カテゴリの変更等をされた方に、ご用意した無料レポートを提供しております。 新規登録 / 登録内容変更

株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

自動車産業における積層造形 (AM):市場機会の分析

Additive Manufacturing Opportunities In Automotive - 2018

発行 SmarTech Markets Publishing LLC 商品コード 317103
出版日 ページ情報 英文 191 Pages
即納可能
価格
本日の銀行送金レート: 1USD=112.40円で換算しております。
Back to Top
自動車産業における積層造形 (AM):市場機会の分析 Additive Manufacturing Opportunities In Automotive - 2018
出版日: 2018年06月20日 ページ情報: 英文 191 Pages
概要

当レポートでは、自動車産業における積層造形 (AM) 技術の利用動向を調査し、自動車産業におけるAMの重要性、各種AM技術とその用途、自動車AMの各種材料とソフトウェア、AMによる自動車部品製造の各種サービスとその用途、AMハードウェア・AMソフトウェア・AMサービス、AM材料、AMによる最終部品などの収益・販売規模の10カ年予測などをまとめています。

第1章 自動車産業における積層造形の時代の到来

  • AMの転換点としての自動車
  • 世界のAMによる自動車市場の現況
    • 燃料経済・電気自動車・AM
  • 地域別の考察
    • 北米
    • アジア
    • 欧州
  • 材料に関する考察
    • 金属AM:バッチ製造へ
    • セラミックスAMの長期の市場機会
    • 複合材料によるAMの成長
  • ソフトウェアに関する考察:オートメーションとネットワーキング
    • プロトタイピングから製造へ
    • 重要な中間ステップとしての関節法
    • エンドツーエンドプロセスの自動化
    • 連続積層FDMの自動化
      • ポリマー粉末床溶融結合プロセスの自動化
      • 金属粉末床溶融結合プロセスの自動化
      • 金属積層プロセスの自動化
      • 光重合プロセスの自動化
      • バインダージェッティングプロセスの自動化
  • 主なAMの用途
  • もっとも影響力を持つ自動車AMアライアンス
    • Stratasys/Siemens/Ford
    • BMW/Carbon/Desktop Metal
    • Daimler/EOS
    • GM/Autodesk
    • Divergent/PSA/SLM Solutions (Audi)
    • Local Motors/Cincinnati Inc/IBM
  • 予測手法
  • 本章の要点

第2章 自動車製造におけるAM技術とその用途

  • 金属AM技術の製造への移行
  • サーモポリマーポリマーによるAM技術
    • 粉末床溶融結合技術
      • SLS
      • MJF/HSS
    • サーモポリマー押出成形
      • 連続繊維複合材
      • 短繊維複合材料
      • ロボットアーム積層
      • 大規模押出成形・積層
  • フォトポリマーAM技術
    • 大規模SLA・DLP
    • 高速連続技術 (CLIP・cDLM)
    • 材料噴射
  • 自動車産業におけるプロフェッショナルAMハードウェア需要・売上の予測
  • 低コスト技術
    • FFF
    • SLA
    • ベンチトップPBF
    • 連続製造のための製造セル
  • 自動車産業向け低コストAMハードウェアの予測
  • 複合材料
  • 10カ年予測:自動車産業向けAMハードウェア
    • 金属AMハードウェア
    • ポリマー (光重合・PBF・押出成形)
    • 地域分析・地域別予測
  • 本章の要点

第3章 自動車製造材料・ソフトウェア

  • 自動車部品製造用ポリマー・複合材料
    • サーモポリマーフィラメント
    • サーモポリマー粉体
    • 液体フォトポリマー樹脂
  • 自動車部品製造用金属・合金
    • チタニウム・チタニウム合金
    • アルミニウム・アルミニウム合金
    • ニッケル・インコネル超合金
  • 10カ年予測:自動車AM材料
    • 金属材料
    • ポリマー・複合材料
  • 地域分布
  • 自動車AM用ソフトウェアの各種タイプ
    • CAD
    • CAE
    • CAM
    • MES
    • PLM
    • シミュレーション&プロセスモニタリング
  • 自動車開発/製造に利益となる専用ソフトウェア能力
  • 10カ年ソフトウェア予測
  • 本章の要点

第4章 AMによる自動車部品製造におけるサービスとその用途

  • 自動車製造能力を提供するAMサービスビューロー
    • 自動車AM工場の将来のビジョン
    • ポリマーAMベンダーによる工場への3Dプリンター導入戦略
  • 10カ年予測:AMサービス
  • 主なAM導入事例
    • 自動車OEM
    • ラピッドプロトタイピング
    • 金属・ポリマーによるプロトタイプ:世界需要予測
    • 工具・固定具・成形型など:間接的製造事例
    • 工具AM収益の予測
  • 最終部品製造向けAM
  • 10カ年予測:最終部品製造向けAM
  • 本章の要点
目次
Product Code: SMP-AM-AUTO-0618

In 2016, SmarTech Publishing released the most complete and thorough analysis and forecast of automotive additive manufacturing. Two years later many new events have continued to propel the use of 3D printing technology into the future of automotive production. This new 200-page 2018 report confirms the 2016 forecast, while also expanding it with new high-value and high-volume applications and technologies that have emerged.

Automotive industry stakeholders worldwide are now racing toward full industrialization and integration of the AM process within their end-to-end production workflow, beginning with software and materials, passing through the actual AM hardware, and ending with services and a growing number of possible applications. 3D printing is thus well positioned to expand its use as the primary technology for automotive prototyping as well as tooling, while also establishing a stronger than ever opportunity for serial and mass customized part production.

This third dedicated study of automotive additive manufacturing expands coverage to consider the greater long term potential for additive manufacturing as a key production technology for the massive global automotive industry, paving the way to widespread adoption of both metal and polymer AM technologies. This comprehensive report includes:

  • Ten-year 3D printing opportunity and market data forecasts in volume and value terms for automotive additive manufacturing. These cover hardware, materials, software, services and overall printed parts value - illustrated with over 80 charts and exhibits.
  • Expanded market data to include key metrics at a country level, better capturing the regional attitudes towards introducing AM in the production workflow for prototyping, tooling and final parts.
  • Complete lists and descriptions of key AM hardware and AM materials (both polymer and metal alloys) used in automotive AM, including upcoming production-ready technologies.
  • Complete analysis of software used in the end-to-end automotive production cycle, in light of recent advanced in generative design software and PLM software solutions.
  • The latest trailing twenty-four months activity and competitive analysis to reflect the rapidly evolving landscape in which major automakers, automotive tier 1 and tier 2 suppliers and “application agnostic” 3D printing service are finding new cost-effective solutions through AM adoption.
  • Complete and detailed analysis and forecast of the potential for final parts production through AM

This is by far the most extensive exploration of where the opportunities will be found in automotive additive manufacturing for prototypes, tools and final parts in the next decade.

Table of Contents

Chapter One: Automotive Additive Manufacturing is Coming of Age

  • 1.1. Automotive as the Inflection Point for AM
  • 1.2. The Global AM Automotive Market Today
    • 1.2.1. Fuel Economy, Electric Mobility and AM
      • 1.1.2.1. Electric Smart Mobility and AM
      • 1.2.1.2. Mass Reduction Trends for Today
  • 1.3. Geographic Considerations for Automotive AM Applications
    • 1.3.1. North America
    • 1.3.2. Asia
    • 1.3.3. Europe
  • 1.4. Material Factors
    • 1.4.1. Metal AM Moving to Batch Production
    • 1.4.2. Long Term Ceramics AM Opportunities
    • 1.4.3. Additive Manufacture of Composites for Automobiles Making Strides
  • 1.5. Software Factors: The Drive for More AM Automation and Networking
    • 1.5.1. From Prototyping to Production and Beyond
    • 1.5.2. Indirect AM processes as a key intermediate step
    • 1.5.3. Automating the End-to-end Process
    • 1.5.4. Automating Continuous Layer FDM
      • 1.5.4.1. Automating Polymer Powder Bed Fusion Processes
      • 1.5.4.2. Automating Metal Powder Bed Fusion Processes
      • 1.5.4.3. Automating Metal Deposition Processes
      • 1.5.4.4. Automating Photopolymerization Processes
      • 1.5.4.5. Automating Binder Jetting Processes
  • 1.6. Primary AM Application Segments in Automotive
  • 1.7. Most Influential Alliances in Automotive AM
    • 1.7.1. Stratasys/Siemens/Ford
    • 1.7.2. BMW/Carbon/Desktop Metal
    • 1.7.4. Daimler/EOS
    • 1.7.5. GM/Autodesk
    • 1.7.6. Divergent/PSA/SLM Solutions (Audi)
    • 1.7.7. Local Motors/Cincinnati Inc/IBM
  • 1.8. Forecasting in this Report
    • 1.8.1. Discussion of Methodology
    • 1.8.2. Important Methodology Changes versus Previous Studies
  • 1.9. Key Points from this Chapter

Chapter Two: AM Technologies and Their Applications in Automotive Production

  • 2.1. Metal AM Technologies Moving into Production
    • 2.1.1. Metal Powder Bed Fusion Hardware for Automotive AM
    • 2.1.2. Relevant New Metal PBF Systems in Development
    • 2.1.3. Metal Binder Jetting/MIM Bound Powder Technologies for Automotive Part Production
      • 2.1.3.1. Next Gen Binder Jetting
    • 2.1.4. Are There Metal Deposition Technologies in the Future of Automotive AM?
      • 2.1.4.1. Types of Metal Deposition Technologies
      • 2.1.4.2. Blown Powder (cold spray)
  • 2.2. Thermopolymer AM Technologies Used in the Automotive Segment
    • 2.2.1. Powder Bed Fusion Technologies for Automotive Applications
      • 2.2.1.1. SLS for Lowering Part Production Costs Automotive
      • 2.2.1.2. MJF/HSS in Automotive
    • 2.2.2. Thermopolymer extrusion applications
      • 2.2.2.1. Continuous Fiber Composites Extrusion
      • 2.2.2.2. Chopped Fiber Composites Extrusion
      • 2.2.2.3. Robotic Arm Deposition
      • 2.2.2.4. Large-scale extrusion and deposition
  • 2.3. Photopolymer-based AM Technologies Used in Automotive
    • 2.3.1. Large-scale SLA and DLP automotive applications
    • 2.3.2. High-speed Continuous Technologies (CLIP and cDLM) and their Automotive Applications
    • 2.3.3. Material jetting for automotive applications
  • 2.4. Forecast of Professional AM Hardware Demand and Sales in Automotive
  • 2.5. Low-cost Technologies
    • 2.5.1. FFF
    • 2.5.2. SLA
    • 2.5.3. Benchtop PBF
    • 2.5.4. Production Cells for Serial Manufacturing
  • 2.6. Forecast for Low-cost AM Hardware in Automotive
  • 2.7. Composites
    • 2.7.1. Key Continuous Fiber Technologies for Automotive Applications
  • 2.8. Ten-year Forecast for AM Hardware in the Automotive Segment
    • 2.8.1. Ten-year Forecast for Metal AM Hardware in Automotive
    • 2.8.2. Ten-year Forecast for Polymer (Photopolymerization, PBF, Extrusion)
    • 2.8.3. Geographic Considerations and Regional Forecast for AM Hardware in Automotive
  • 2.9. Key Points from this Chapter

Chapter Three: Materials and Software for Automotive Manufacturing

  • 3.1. Polymers and Composites Used In Automotive Part Production
    • 3.1.1. Thermopolymer Filaments
    • 3.1.2. Thermopolymer Powders
    • 3.1.3. Liquid Photopolymer Resins
  • 3.2. Metals and Alloys used in automotive part production
    • 3.2.1. Titanium and titanium alloys
    • 3.2.2. Aluminum and Aluminum Alloys in as a Key to Unlock Automotive AM Production
      • 3.2.2.1. Metal AM in Automotive Driven by Demand for Aluminum
      • 3.2.2.2. Steel and Steel Alloys in Automotive
      • 3.2.2.3. Steel Alloys for Automotive AM
    • 3.2.3. Nickel and Inconel Superalloys in the Automotive Industry
  • 3.3. Ten-year Forecast for Materials in Automotive AM
    • 3.3.1. Forecast for Metal Materials in Automotive AM
    • 3.3.2. Forecast for Polymer and Composite Materials in Automotive AM
  • 3.4. Regional Distribution of AM Materials for Automotive Applications
  • 3.5. Types of AM Software for Automotive AM
    • 3.5.1. CAD
    • 3.5.2. CAE
    • 3.5.3. CAM
    • 3.5.4. MES
    • 3.5.5. PLM
    • 3.5.6. Simulation and Process Monitoring
  • 3.6. AM-Specific Software Capabilities to Benefit Automotive Development/Manufacturing
    • 3.6.1. Parametric Automotive Design
    • 3.6.2. Topology Optimization for Automotive Light weighting
    • 3.6.3. Trabecular and Lattice Structures
    • 3.6.4. Generative Software used in Automotive Part Design
    • 3.6.5. 3D Scanning, Inspection and Reverse Engineering Software
    • 3.6.6. Additive Manufacturing Networks Seeking to Provide Digital Mass Production and Mass Customized Outsourcing with 3D Printing
  • 3.7. Ten-year Software Forecast
  • 3.8. Key Points from this Chapter

Chapter Four: Services and Applications for Automotive Part Production by AM

  • 4.1. AM Service Bureaus Providing Automotive Production Capabilities
    • 4.1.1. Visions for the Automotive AM Factory of Tomorrow
      • 4.1.1.1. Concept Laser's Factory of Tomorrow
      • 4.1.1.2. EOS NextGenAM
      • 4.1.1.3. Additive Industries' MetalFAB1
      • 4.1.1.4. Renishaw's Automated Workflow
      • 4.1.1.5. DMG Mori's Path to Digitalization
    • 4.1.2. Polymer AM Vendor Strategies for Adapting 3D Printers to Factory Environments
      • 4.1.2.1. Stratasys Infinity, Continuous Build and Composite Demonstrator Platforms
      • 4.1.2.2. Carbon's SpeedCell
      • 4.1.2.3. 3D Systems' Figure 4
  • 4.2. Ten-year Forecast for AM Services
  • 4.3. Relevant AM Applications Case Histories in Automotive
    • 4.3.1. Automotive OEM's
    • 4.3.2. Rapid Prototyping
      • 4.3.2.1. Better Functional Prototyping - Recent Relevant Cases
    • 4.3.3. Forecast for Metal and Polymer Prototypes Global Demand
    • 4.3.4. Tooling, Jigs, Fixtures, Molds and Other Indirect Manufacturing Cases
      • 4.3.4.1. Printed Casting Patterns for Functional Prototypes
      • 4.3.4.2. 3D printing for composite tooling
    • 4.3.5. Forecast for AM Revenues in Tooling
  • 4.4. AM for Final Parts Production
    • 4.4.1. One-off Concepts, Motorsports, Limited Series And Custom Production (Short Batch)
      • 4.4.1.1. Formula 1 Openly Adopts AM
      • 4.4.1.2. Wheels from space
    • 4.4.2. Part replacement and obsolescence management, including classic car part reproduction (medium batch)
      • 4.4.2.1. Metal and Polymer Spare Parts at Daimler-Benz
      • 4.4.2.2. Metal spare parts at Audi
      • 4.4.2.3. Polymer Spare Parts at Volvo Construction Equipment
      • 4.4.2.4. Obsolescence Management at Porsche (Volkswagen)
    • 4.4.3. Mass Production and Mass Customization Cases (Medium Batch)
      • 4.4.3.1. High-end car parts production
      • 4.4.3.2. Mass customization
    • 4.4.4. Mass Production (Large Batch)
      • 4.4.4.1. Moving into the factory
  • 4.5. Ten-year Forecast for AM in Final Parts Automotive Production
  • Key Points from This Chapter
  • About SmarTech Publishing
  • About the Analyst
  • Acronyms and Abbreviations Used In this Report

List of Exhibits

  • Exhibit 1-1: Exploring 3D Printing in Automobile Technology Development Areas
  • Exhibit 1-2: Total Projected Automotive 3D Printing Opportunities, by Category, 2014-2026
  • Exhibit 1-3: Total AM Market Value for Automotive
  • Exhibit 1-4: Expected Year on Year Growth Rate for AM Automotive
  • Exhibit 1-5: Estimated CAGR rates for Automotive AM Segments
  • Exhibit 1-6: Potential Polymer and Thermoplastic Composite Applications for 3D Printing in Automobiles to Reduce Weight
  • Exhibit 1-7: Summary of Potentially Disruptive AM Composite Manufacturing Technologies for the Automotive Industry
  • Exhibit 1-8: Automotive Industry AM Adoption Model
  • Exhibit 2-1: Leading metal AM Systems used in automotive
  • Exhibit 2-2: Leading metal binder jetting and bound metal systems
  • Exhibit 2-3: Leading metal deposition systems
  • Exhibit 2-4: Leading thermoplastic powder bed fusion manufacturers
  • Exhibit 2-5: Thermoplastic extrusion manufacturers, technologies and key materials
  • Exhibit 2-6: Leading photopolymerization system manufacturers for automotive AM
  • Exhibit 2-7: Professional AM Hardware Unit Sales Forecast in Automotive 2017 - 2028
  • Exhibit 2-8: Professional AM Hardware Revenues Forecast ($USM) in Automotive 2017 - 2028
  • Exhibit 2-9: Forecast of Low Cost AM Hardware Unit Sales in Automotive 2017-2028
  • Exhibit 2-10: Forecast of Low Cost AM Hardware Revenues ($USM) in Automotive 2017-2028
  • Exhibit 2-11: Forecast of Total Yearly AM Hardware Units Sales in Automotive 2017 - 2028
  • Exhibit 2-12: Forecast of Total Yearly AM Hardware Revenues ($USM) in Automotive 2017 - 2028
  • Exhibit 2-13: Expected YoY Growth Rates and Growth Trend for AM Hardware Spending in Automotive
  • Exhibit 2-14: Forecasted Growth Rates for Hardware Sales in Automotive by Technology 2018 - 2028
  • Exhibit 2-15: Cumulative Unit Sales of AM Hardware in Automotive (2017 - 2028)
  • Exhibit 2-16: Forecast of Yearly Metal AM Hardware Unit Sales in Automotive 2017 - 2028
  • Exhibit 2-17: Forecast of Yearly Metal AM Hardware Revenues ($USM) in Automotive 2017 - 2028
  • Exhibit 2-18: Forecast of Yearly Polymer AM Hardware Unit Sales in Automotive 2017 - 2028
  • Exhibit 2-19: Forecast of Yearly Metal AM Hardware Sales Revenues ($USM) in Automotive 2017 - 2028
  • Exhibit 2-20: Comparison Between Metal and Polymer AM Hardware Revenues Growth Trends in Automotive
  • Exhibit 2-21: Comparison Between Low-cost and Professional AM Hardware Unit Sales Growth Trends in Automotive
  • Exhibit 2-22: Comparison Between Low-cost and Professional AM Hardware Revenues Growth Trends in Automotive
  • Exhibit 2-23: Geographic Distribution of AM Hardware Unit Sales in Automotive 2017-2028
  • Exhibit 2-24: Geographic Distribution of AM Hardware Revenues in Automotive 2017-2028.
  • Exhibit 3-1: Comparison Between Demand of Polymer Materials in Automotive (Kg) 2017 - 2028
  • Exhibit 3-2: Comparison Between Demand of Thermoplastic Filament Materials (Kg) for Extrusion Technologies in Automotive 2017- 2028
  • Exhibit 3-3: Primary Thermoplastic Powder Materials Used in Powder Bed Fusion Processes for Automotive Applications
  • Exhibit 3-4: Comparison Between Demand of Thermoplastic Powder Polymer Materials (Kg) for Powder Bed Fusion Technologies in Automotive 2017 - 2028
  • Exhibit 3-5: Comparison Between Demand of Photopolymer Resin Materials (Kg) for Photopolymerization Technologies in Automotive 2017 - 2028
  • Exhibit 3-6: Primary Materials f
  • Exhibit 3-15: Overall AM Material Revenues YoY Growth and Growth Trend (2017 - 2028)
  • Exhibit 3-16: Comparison Between Growth Trends for Metal and Polymer Materials in Automotive AM
  • Exhibit 3-17: Demand for Metal Materials in Automotive AM by Metal Alloy Type (Kg) 2017 - 2028
  • Exhibit 3-18: Revenues for Metal Materials in Automotive AM by Metal Alloy Type ($USM) 2017 - 2028
  • Exhibit 3-19: Thermoplastic Filament Demand in Automotive AM (Kg) 2017 - 2028
  • Exhibit 3-20: Thermoplastic Filament Revenues in Automotive AM ($USM) 2017 - 2028
  • Exhibit 3-21: Photopolymer Resin Demand in Automotive AM (Kg) 2017 - 2028
  • Exhibit 3-22: Photopolymer Resin Revenues in Automotive AM ($USM) 2017 - 2028
  • Exhibit 3-23: Thermoplastic Powder Demand in Automotive AM (Kg) 2017 - 2028
  • Exhibit 3-24: Thermoplastic Powder Revenues in Automotive AM ($USM) 2017 - 2028
  • Exhibit 3-25: Regional Distribution for AM Materials Demand in Automotive AM
  • Exhibit 3-26: Regional Distribution for AM Materials Revenues in Automotive AM
  • Exhibit 3-27: Primary Software Known to Be Used in the Additive Manufacturing Process for Automotive Production
  • Exhibit 3-28: Revenues Associated with AM Software (excluding CAD) in the Automotive Segment
  • Exhibit 3-29: Year-on-Year Growth and Growth Trend for AM Software in Automotive
  • Exhibit 3-30: Regional Distribution of AM Software Revenues in Automotive AM
  • Exhibit 4-1: Total Metal and Polymer Units and Overall YoY Growth Rate for AM Parts Demand in the Automotive Segment 2017 - 2028
  • Exhibit 4-2: Total Revenues Generated by Metal and Polymer AM in Outsourcing and Growth Trends 2017 - 2028
  • Exhibit 4-3: Total Revenues Generated by AM Services for Metal Parts 2017 - 2028
  • Exhibit 4-4: Total Units Produced by AM Services and External Suppliers for Metal Parts 2017 - 2028
  • Exhibit 4-5: Revenues Generated by AM Service Bureaus and External Suppliers for Automotive by Polymer AM Part Type 2017 - 2028
  • Exhibit 4-6: Total Units Produced by AM Services and External Suppliers for Polymer Parts 2017 - 2028
  • Exhibit 4-7: Comparison Between Types of Metal Units Produced by External AM Services and Suppliers 2017 vs 2028
  • Exhibit 4-8: Types of Metal Units Produced by External AM Services and Suppliers at the End of the Forecast Period (2028)
  • Exhibit 4-9: Comparison Between Types of Polymer Units Produced by External AM Services and Suppliers 2017 vs. 2028
  • Exhibit 4-10: Types of Polymer Units Produced by External AM Services and Suppliers at the End of the Forecast Period (2028)
  • Exhibit 4-11: Summary of Auto Industry Stakeholders and 3D Printing Penetration Analysis
  • Exhibit 4-12: Hierarchy of 3D Printed Automotive Prototype Parts
  • Exhibit 4-13: Total Metal Prototyping Revenues in Automotive AM 2017 - 2028
  • Exhibit 4-14: Total Polymer Prototyping Revenues in Automotive AM 2017 - 2028
  • Exhibit 4-15: Tooling Applications for Different 3D Printing Processes
  • Exhibit 4-16: Total Revenues for Metal Tools, Jigs and Fixtures in Automotive AM 2017 - 2028
  • Exhibit 4-17: Total Revenues for Polymer Tools, Jigs and Fixtures in Automotive AM 2017 - 2028
  • Exhibit 4-18: Total Revenues from Metal Final Parts in Automotive AM
  • Exhibit 4-19: Total Revenues from Metal Final Parts in Automotive AM
  • Exhibit 4-20: Total Revenues from Metal Final Parts in Automotive AM by Specific Part Type
  • Exhibit 4-21: Total Revenues from Polymer Final Parts in Automotive AM by Specific Part Type
  • Exhibit 4-22: Cumulative Revenues Generated by AM Final Parts Production in Metal and Polymers (including composites) for the Automotive sector
Back to Top