表紙
市場調査レポート

自動車産業における積層造形(付加製造)の機会:10ヵ年市場予測

Additive Manufacturing Opportunities in the Automotive Industry: A Ten-Year Forecast

発行 SmarTech Markets Publishing LLC 商品コード 317103
出版日 ページ情報 英文
即納可能
価格
本日の銀行送金レート: 1USD=104.18円で換算しております。
Back to Top
自動車産業における積層造形(付加製造)の機会:10ヵ年市場予測 Additive Manufacturing Opportunities in the Automotive Industry: A Ten-Year Forecast
出版日: 2014年12月31日 ページ情報: 英文
概要

3D印刷は自動車産業において2019年までに11億米ドルを生成すると見込まれています。

当レポートでは、自動車産業における3D印刷装置の販売が生み出す新たなビジネスチャンスについて調査し、自動車産業が消費すると見込まれる3D印刷材料、ソフトウェアおよびサービスの規模、自動車産業における3D印刷の限界とその克服例、自動車産業における3D印刷装置、ソフトウェア、サービスおよび材料消費の10カ年予測、地域別の売上額・売上高の予測、および主要な3D印刷企業の特に自動車産業のニーズに対応した製品戦略などについてまとめ、お届け致します。

第1章 イントロダクション

  • 自動車産業における3D印刷の歴史
  • 自動車における3D印刷の発展:プロトタイピングを超えて
    • 自動車産業における3D印刷の将来の開発動向
    • 自動車産業における3D印刷の導入モデル
  • 本書の目的・範囲
  • 調査手法
  • 本書の構成

第2章 自動車産業におけるラピッドプロトタイピングアプリケーション

  • 自動車におけるラピッドプロトタイピングの概念的価値命題
  • 自動車におけるラピッドプロトタイピングの機能的価値命題
  • 自動車におけるラピッドプロトタイピングのサプライチェーン価値命題
  • コンセプトモデルvs.機能的プロトタイプ
  • パイプラインに伝わる自動車プロトタイピングの改善
  • 本章の要点

第3章 自動車産業におけるエンドユーズパーツ&ツーリングの積層造形

  • エンドユーズパーツの積層造形の要件
  • 自動車向けエンドユーズパーツへの積層造形の適用
  • 自動車におけるエンドユーズコンポーネントの積層造形の現在の利用例
  • 自動車における積層造形の将来の利用とビジネスモデル
  • エンドユーズパーツの自動車積層造形における動向
  • 自動車におけるラピッドツーリングの大判砂型3D印刷(3D砂型積層)の機会
  • 自動車における積層造形の課題
  • 本章の要点

第4章 自動車産業における3D印刷材料

  • 熱可塑性物質
  • フォトポリマー
  • バインダージェット向け粉末複合材料
  • 金属粉およびその他の金属材料
  • 自動車の3D印刷に用いられるその他の材料
  • 自動車産業における新しい材料動向
  • 本章の要点

第5章 自動車における3D印刷の主なダイナミクス(メーカー、サービスプロバイダーおよびエンドユーザー)

  • 自動車における主な3Dプリンターメーカー
    • 3D Systems
    • Stratasys
    • ExOne
    • voxlejet
    • EOS
    • その他のメーカー
  • 自動車における主な3D印刷サービスプロバイダー
    • Materialise
    • Solid Concepts/Stratasys
  • 自動車における3D印刷の主なエンドユーザー
    • Ford Motor Company
    • BMW Group
    • Opel
  • 本章の要点

第6章 自動車部門における3D印刷の市場展望および10カ年予測

  • 予測手法
  • 市場機会
  • 自動車産業における3D印刷ハードウェアの10カ年予測
  • 自動車産業における3D印刷材料の10カ年予測
  • 自動車産業における3D印刷サービス&ソフトウェアの10カ年予測
目次
Product Code: SMP-AM-AUTO-1214

Automotive manufacturers were among the earliest adopters of additive manufacturing/3D printing (3DP) technology, but for decades have relegated 3D printing technology to low volume prototyping applications, while other industries have taken additive manufacturing to new levels. But today, an explosion of growth in utilization of 3D printing from automotive manufacturers is powering an evolution in automobile design and production. In this latest report, SmarTech illustrates how 3D printing in the automotive industry will generate a combined $1.1 billion dollars by 2019.

SmarTech believes that the automotive industry is at inflection point in its adoption of 3D printing, driven by several key trends:

  • Record print volumes for 3D printed prototype parts are being achieved by several automotive manufacturers, upwards of hundreds of thousands of parts per year.
  • Use of 3D printing in automotive is evolving from relatively simple concept models for fit and finish checks and design verification, to functional parts that are used in test vehicles, engines, and platforms. This represents a shift in 3D printing adoption towards higher value applications and is an early step towards acceptance of 3D printed end-use parts in automobiles.
  • Leading automotive manufacturers are expanding beyond prototyping and test part production with 3D printing, and now experimenting with utilizing the technology for production of tooling and other parts to enhance the overall manufacturing processes for automobiles.

With these advancements, SmarTech has developed a customer adoption model for 3D printing specific to participants in the automotive industry. A key feature of this report, the model is a template for illustrating the automotive industry's current and potentially future adoption of 3D printing technology. With these dramatic developments in mind, SmarTech is publishing this new report on the opportunities for 3D printing/additive manufacturing in the automotive industry over the next decade:

  • This reports looks at the new business opportunities generated from selling 3DP equipment into the automotive industry. This report also looks at the growing value of 3DP materials, software and services that the automotive sector will consume.
  • In addition, the report also examines the limitations of 3DP in automotive industry, and how several key companies are overcoming them in order to broaden the use of 3D printing in automotive.
  • As well as analysis, this report includes SmarTech's ten-year forecast of 3DP equipment, software, services and materials consumed by the automotive industry. Projections of both sales value and unit sales are included, along with breakouts by geographical region. The report also includes discussions of how major 3DP firms are adapting their 3DP product market strategies specifically to meet the needs of the automotive industry.

SmarTech believes that this report will be essential reading for business development and marketing executives in both the automotive industry and at 3DP firms.

Table of Contents

SmarTech reserves the right to change this table of contents at any time prior to release

Chapter One: Introduction

  • 1.1 History of 3D Printing in the Automotive Industry
  • 1.2 Evolution of 3D Printing in Automotive: Beyond Prototyping
    • 1.2.1 Future Development Trends for 3D Printing in Automotive
    • 1.2.2 Adoption Model for 3D Printing in Automotive
  • 1.3 Objective and Scope of this Report
  • 1.4 Methodology of this Report
  • 1.5 Plan of this Report

Chapter Two: Rapid Prototyping Applications in the Automotive Industry

  • 2.1 Conceptual Value Propositions for Rapid Prototyping in Automotive
    • 2.1.1 The Most Important Benefit for Rapid Prototyping in Automotive - Reduced Product Development Time
    • 2.1.2 Increasing Creativity in Design to Produce Better Automobiles
    • 2.1.3 Enhancing Design Efficiency
  • 2.2 Function Value Propositions for Rapid Prototyping in Automotive
    • 2.2.1 3D Printing's Role in Reducing Weight
    • 2.2.2 3D Printing's Role in Reducing Part Counts
    • 2.2.3 Enhanced Product Customization
  • 2.3 Supply Chain Value Propositions for Rapid Prototyping in Automotive
  • 2.4 Concept Models Versus Functional Prototypes
    • 2.4.1 Concept Models - Interior Components
    • 2.4.2 Concept Models - Tire Design
    • 2.4.3 Concept Models - Air Ducting, Piping, Covers
    • 2.4.4 Concept Models - Aerodynamic Models
    • 2.4.5 Functional Models - Cylinder Heads and Blocks
    • 2.4.6 Functional Models - Fuel Tanks, Manifolds, Oil Pans
    • 2.4.7 Functional Models - Housings and Supports
  • 2.5 Improvements for Automotive Prototyping Coming Down the Pipeline
    • 2.5.1 Recent Improvements
  • 2.6 Key Points from This Chapter

Chapter Three: Additive Manufacturing of End Use Parts & Tooling in the Automotive Industry

  • 3.1 Requirements for Additive Manufacturing of End Use Parts
  • 3.2 Applying Additive Manufacture of End Use Parts to Automotive
    • 3.2.1 How Additive Manufactured Parts Can Increase Fuel Economy
    • 3.2.2 How Additive Manufactured Parts Can Increase Part Performance
    • 3.2.3 How Additive Manufactured Parts Can Increase Product Differentiation
    • 3.2.4 Automotive Supply Chain Enhancement Through Additive Manufacturing
  • 3.3 Current Use Cases for Additive Manufacture of End Use Components in Automotive
    • 3.3.1 3D Printed Castable Molds and Cores
    • 3.3.2 3D Printed Hand Tools, Jigs, and Fixtures for Enhancement of Traditional Automotive Manufacture
    • 3.3.3 3D Printed End Use Parts in Performance Autosports and Luxury Vehicles
  • 3.4 Future Uses and Business Models for Additive Manufacturing in Automotive
    • 3.4.1 Replacement Automotive Parts
    • 3.4.2 3D Printed Automobiles
    • 3.4.3 Repair of Traditional Automotive Tooling
  • 3.5 Trends in Automotive Additive Manufacturing of End Use Parts
    • 3.5.1 Powder Doping Will Increase Appearance and Performance
    • 3.5.2 Carbon Fiber Testing Develops
    • 3.5.3 Metal 3D Printing Process Development for End Use Parts in Automotive
  • 3.6 Opportunities for Large Format Sand 3D Printing of Rapid Tooling in Automotive
    • 3.6.1 Sand Best Suited for Specialized Mold Components
    • 3.6.2 Relevant Recent Developments in Sand Printing
  • 3.7 Challenges for Additive Manufacturing in Automotive
    • 3.7.1 Quality Assurance, Regulation, and Standards
    • 3.7.2 Education and Communication of Value
  • 3.8 Key Points From This Chapter

Chapter Four: 3D Printing Materials in the Automotive Industry

  • 4.1 Thermoplastics
    • 4.1.1 Polyamides
    • 4.1.2 PEEK and Polyetherimide
    • 4.1.3 Nylon 11 & 12
    • 4.1.4 Extrusion Versus Laser Sintering
  • 4.2 Photopolymers
    • 4.2.1 Photopolymers Versus Thermoplastics in Automotive
    • 4.3.1 Plastic Printing Taking on Critical Mass in Automotive
  • 4.3 Powdered Composites for Binder Jetting
    • 4.3.1 3D Systems Technology
    • 4.3.2 Voxeljet Technology
    • 4.3.3 Future of Binder Jetted Plastics in Automotive
  • 4.4. Metal Powders and Other Metal Materials
    • 4.4.1 Aluminum
    • 4.4.2 Premium Metals (Titanium, Cobalt Chrome, Nickel Alloys)
    • 4.4.3 Direct Metal Tooling and Tool Repair
  • 4.5 Other Materials Used in 3D Printing Automotive
    • 4.5.1 Considerations for 3D Foundry Sand Demand
    • 4.5.2 Improved Binding Agents Create High Quality Parts
  • 4.6 New Material Trends in the Automotive Industry
    • 4.6.1 Graphene and Carbon Fiber Advancements
    • 4.6.2 Photopolymer Paste Composites
  • 4.7 Key Points From This Chapter

Chapter Five: Market Dynamics for 3D Printing in Automotive (Manufacturers, Service Providers, and End Users)

  • 5.1 Leading 3D Printer Manufacturers in Automotive
    • 5.1.1 3D Systems
    • 5.1.2 Stratasys
    • 5.1.3 ExOne
    • 5.1.4 voxlejet
    • 5.1.5 EOS
    • 5.1.6 Other Manufacturers
  • 5.2 Leading 3D Printing Service Providers in Automotive
    • 5.2.1 Materialise
    • 5.2.2 Solid Concepts/Stratasys
  • 5.3 Leading End Users of 3D Printing in Automotive
    • 5.3.1 Ford Motor Company
    • 5.3.2 BMW Group
    • 5.3.3 Opel
  • 5.6 Key Points From This Chapter

Chapter Six: Market Outlook and Ten-Year Forecast of 3D Printing in the Automotive Sector

  • 6.1 Forecasting Methodology
    • 6.2 Forecast Assumptions and Trends
    • 6.2.1 Price Trends for 3D Printers for the Automotive Industry
    • 6.2.2 Price Trends for 3D Printed Materials for the Automotive Industry
    • 6.2.3 Build Rates and Chamber Size
  • 6.3 Total Additive Automotive Market Opportunity
    • 6.3.1 North American Market
    • 6.3.2 European Market
    • 6.3.3 Japense Market
    • 6.3.4 Chinese Market
    • 6.3.5 Rest of World Markets
  • 6.4 Ten Year Forecasts of 3D Printing Hardware in the Automotive Industry
    • 6.4.1 Hardware Shipments
    • 6.4.2 Hardware Revenues
  • 6.5 Ten Year Forecasts of 3D Printing Materials in the Automotive Industry
    • 6.5.1 Material Revenues
    • 6.5.2 Material Shipments
  • 6.6 Ten Year Forecasts of 3D Printing Services & Software in the Automotive Industry
    • 6.6.1 Services
    • 6.6.2 SoftwareWs0.dpuf
Back to Top