お知らせ :東京証券取引所JASDAQスタンダード市場への新規上場に関するお知らせ
株式会社グローバルインフォメーション
表紙:LIB (リチウムイオンバッテリー) 急速充電技術の現状と予測 (2021年)
市場調査レポート
商品コード
985542

LIB (リチウムイオンバッテリー) 急速充電技術の現状と予測 (2021年)

<2021> Lithium Ion Battery Fast Charging Technology Status and Forecast

出版日: | 発行: SNE Research | ページ情報: 英文 250 Pages | 納期: お問合せ

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=110.15円

ご注意:当報告書は原文が韓国語のため、英訳が必要となる場合があります。納期については、当社までお問合せ下さい。

LIB (リチウムイオンバッテリー) 急速充電技術の現状と予測 (2021年)
出版日: 2021年01月22日
発行: SNE Research
ページ情報: 英文 250 Pages
納期: お問合せ
  • 全表示
  • 概要
  • 目次
概要

電気自動車(EV)時代が本格的に始まりました。Model Sから、60kWh以上のエネルギーを蓄えることができるEVが発売され、急速充電の需要に自然に拡大しました。これは、従来の低速充電器は、充電に約8~9時間の長い時間を費やす必要があるためです。当然、業界はEVの急速充電に焦点を合わせ始めました。

当レポートでは、LIB (リチウムイオンバッテリー) 急速充電技術、電池材料、セル技術をレビューし、ITおよびEVの急速充電技術の開発動向と商品化を国/企業別に予測しています。

目次

第1章 充電技術の理解

  • 充電器技術
    • 充電器の概要
    • デバイスに電力を供給する充電器
    • USB規格別の充電
    • バッテリーを直接充電する充電器
  • ワイヤレス充電技術
    • ワイヤレス充電技術の概要
    • 誘導結合モード
    • 共振結合モード
    • 誘導結合モード vs. 共振結合モード
    • ワイヤレス充電技術の長所と短所

第2章 急速充電技術の理解

  • モバイルITデバイスの急速充電技術
    • 電力変換技術
    • 送電技術
    • 電源I/C技術
    • 電荷アルゴリズム技術
    • 急速充電向けバッテリー技術
  • EVの急速充電技術の理解
    • EVの充電モードの比較:「低速充電 vs. 急速充電」
    • EVの急速充電技術の範囲と問題
    • 高速充電ネットワーク

第3章 急速充電バッテリー向けマテリアルおよびセル技術

  • 急速充電バッテリー用のカソードマテリアル技術
    • リチウムイオンバッテリーのカソード動作原理と要件
    • 層状カソード材料
    • スピネルベースのカソード材料
    • 遷移金属リン酸塩ベースのカソード材料
  • 急速充電リチウムイオンバッテリー用のアノードマテリアル技術
    • 黒鉛
    • アモルファスカーボン
    • 金属陽極(金属陽極)
    • チタン酸リチウム(LTO)
    • 酸化物ベースの高電位アノード
  • 急速充電バッテリー用の電解質マテリアル技術
    • 概要
    • 電解質の構成マテリアル
    • 急速充電電池の電解質特性基準
    • 急速充電電池の電解質設計例:高濃度塩設計
    • 急速充電電池の電解質設計例:異種塩設計
  • 急速充電バッテリーのマテリアルおよびセル技術
    • 急速充電電池の電極設計原理(電極の屈曲度)
    • 急速充電電池の電極設計調査の例(1)
    • 急速充電電池の電極設計調査の例(2)

第4章 急速充電技術向け技術動向:国/企業別

  • 急速充電技術向け技術動向:国別
    • 韓国
    • 日本
    • 中国
    • 米国
    • 欧州
  • 急速充電技術向け技術動向:企業別
    • Enevate
    • Toshiba
    • Storedot
    • Honda
    • Nissan
    • Dyson
    • Toyota
    • Porsche
    • Daimler
    • BMW
    • Hyundai
    • Tesla
    • Rimac
    • GM
    • KAIST
    • EUROCELL
    • PNNL
    • Stanford University
    • University of Texas
    • A123
    • GP Battery
    • Battrion
    • BESS technology
    • ABB
    • NTU
    • Drexel University
    • Guangzhou Automobile Group
    • Nanotech Energy
    • Samsung Electro-Mechanics
  • 急速充電技術に関連する特許レビュー
目次

The Electric Vehicle (EV) Era has begun in earnest. Starting with the Model S, EVs that can store more than 60kWh of energy have been released, which has naturally expanded to the demand for fast charging. This is because the conventional slow charger has to spend a long time of around 8-9 hours for charging. Naturally, the industry started to focus on fast charging of EVs.

Unlike small electronic devices, including smartphones, EVs should secure a life of more than 10 years and at the same time, be charged at a high voltage of at least 220V. Also, safety must be secured. The technological difficulty of quick charging to send higher voltage and current naturally increases more.

In the modes to charge the electric vehicle, there are various modes: the direct charging mode to supply energy directly by connecting the plug to the electric vehicle, the battery exchange mode to replace the whole battery itself, the non-contact charging mode to charge the battery by delivering the electric power through electromagnetic induction, etc. Among them, the direct-charging mode, which is most common, is divided into 2 kinds, depending on the charging speed: the Quick Charging Mode which can charge relatively quickly by using direct current, and the Slow Charging Mode which charges slowly compared to the Quick Charge by using alternating current.

Currently, the technology in the electric vehicle battery industry is being developed to the extent of being capable of charging up to about 80% of the battery capacity within 20 to 30 minutes. It is faster than the slow charge mode which takes about 9 hours (based on 60kWh vehicles) for 100% full-charge, but still needs to be improved, compared to the lubrication time of a general vehicle having an internal-combustion engine.

In the case of the existing known quick charging technology for lithium-ion secondary batteries, it is accompanied by a loss of the energy density of the battery, and thus, there may be a limit to the direct application to industrialization. Therefore, in order to realize a quick-charging Li-ion battery without loss of energy density, understanding the related electrochemical reaction mechanisms and designing and developing new innovative materials based on them are essential.

During the quick charge, lithium-ion desorption must occur at a rapid rate within the cathode oxide crystal structure; for the performance parameters to be possessed as an anode material, a low discharge potential, a high unit weight, and specific capacity per volume are preferentially considered. In addition to graphite anodes which have been widely used in small lithium-ion batteries, next-generation anode materials aiming at high capacity, high safety, and high durability should be reviewed.

This report will review rapid charging technologies, battery materials, and cell technologies and forecast the development trends and commercialization of IT and rapid charging technologies for EVs, by country/company.

The strong points of this report are as follows:

  • 1. Summarize the concepts of charging technology and rapid charging technology;
  • 2. Consider issues and materials of rapid charging technology, cells, and electrode design technology;
  • 3. Summarize technological trends by country/company for rapid charging technology;
  • 4. Present applied examples of rapid charging technology for each major company; and
  • 5. Introduce the technology and patents related to the rapid charging technology

And this report provides information on trends in rapid charging technology to date.

Table of Contents

1. Understanding of Charging Technology

  • 1.1. Charger Technology
    • 1.1.1. Outline of Charger
    • 1.1.2. Charger to Power the Device
    • 1.1.3. Charging via USB Standard
    • 1.1.4. Charger to Charge Batteries Directly
  • 1.2. Wireless Charging Technology
    • 1.2.1. Outline of Wireless Charging Technology
    • 1.2.2. Inductive Coupling Mode
    • 1.2.3. Resonance Coupling Mode
    • 1.2.4. Inductive Coupling Mode vs. Resonance Coupling Mode
    • 1.2.5. Advantages and Disadvantages of Wireless Charging Technology

2. Understanding of Quick Charge Technology

  • 2.1. Quick Charging Technology for Mobile IT Devices
    • 2.1.1. Power Conversion Technology
    • 2.1.2. Power Transmission Technology
    • 2.1.3. Power I/C Technology
    • 2.1.4. Charge Algorithm Technology
    • 2.1.5. Battery Technology for Quick Charge
  • 2.2. Understanding of Quick Charge Technology for EVs
    • 2.2.1. Comparison of Charging Modes of EVs: " Slow Charge vs. Quick Charge"
    • 2.2.2. Quick Charge Technology Scope and Issues for EVs
      • 2.2.2.1 Wireless Charging Technology
      • 2.2.2.2 Battery Exchange Mode
      • 2.2.2.3 Fast Charging Battery Technology
    • 2.2.3. Fast Charge Network
      • 2.2.3.1 PORSCHE MISSION E concept
      • 2.2.3.2 ABB TERRA HP program
      • 2.2.3.3 CONTINENTAL ALLCHARGE program
      • 2.2.3.4 Toshiba SciB Battery program

3. Materials and Cell Technology for Quick Charging Batteries

  • 3.1. Cathode Material Technology for Quick Charge Batteries
    • 3.1.1 Cathode Operation Principles and Requirements for Li-ion Batteries
    • 3.1.2 Layered Cathode Materials
      • 3.1.2.1 LCO/NCA
      • 3.1.2.2 NCM Ternary
      • 3.1.2.3 Quick Charge Technology for NCM Ternary Cathode Materials (1)
      • 3.1.2.4 Quick Charge Technology for NCM Ternary Cathode Materials (2)
    • 3.1.3 Spinel-based Cathode Materials
      • 3.1.3.1 Spinel-based Cathode Materials
      • 3.1.3.2 Quick Charge Technology for Spinel-based Cathode Materials
    • 3.1.4 Transition Metal Phosphate-based Cathode Materials
      • 3.1.4.1 Transition Metal Phosphate-based Cathode Materials
      • 3.1.4.2 Quick Charge Technology for Transition Metal Phosphate-based Cathode Materials
  • 3.2. Anode Material Technology for Quick Charge Li-ion Battery
    • 3.2.1 Graphite
    • 3.2.2 Amorphous Carbon
    • 3.2.3 Metal Anode (Metal Anode)
    • 3.2.4 Lithium Titanate (LTO)
    • 3.2.5 Oxide-based High Potential Anode
  • 3.3. Electrolyte Material Technology for Quick Charge Battery
    • 3.3.1 Outline
    • 3.3.2 Constituent Materials for Electrolyte
      • 3.3.2.1 Organic Solvent
      • 3.3.2.2 Lithium Salt
      • 3.3.2.3 Additive
    • 3.3.3 Electrolyte Property Criteria for Quick Charge Batteries
    • 3.3.4 Electrolyte Design Example for Quick Charge Batteries: High Concentration Salt Design
    • 3.3.5 Electrolyte Design Example for Quick Charge Batteries: Heterologous Salt Design
  • 3.4. Material and Cell Technology for Quick Charge Battery
    • 3.4.1 Electrode Design Principle for Quick Charge Battery (Electrode Tortuosity)
    • 3.4.2 Examples of Electrode Design Research for Quick Charge Battery (1)
    • 3.4.3 Examples of Electrode Design Research for Quick Charge Battery (2)

4. Technology Trends by Country/Company for Quick Charge Technology

  • 4.1. Technology Trends by Country for Quick Charge Technology
    • 4.1.1 Korea
    • 4.1.2 Japan
    • 4.1.3 China
    • 4.1.4 USA
    • 4.1.5 Europe
  • 4.2. Technology Trends by Company for Quick Charge Technology
    • 4.2.1 Enevate
    • 4.2.2 Toshiba
    • 4.2.3 Storedot
    • 4.2.4 Honda
    • 4.2.5 Nissan
    • 4.2.6 Dyson
    • 4.2.7 Toyota
    • 4.2.8 Porsche
    • 4.2.9 Daimler
    • 4.2.10 BMW
    • 4.2.11 Hyundai
    • 4.2.12 Tesla
    • 4.2.13 Rimac
    • 4.2.14 GM
    • 4.2.15 KAIST
    • 4.2.16 EUROCELL
    • 4.2.17 PNNL
    • 4.2.18 Stanford University
    • 4.2.19 University of Texas
    • 4.2.20 A123
    • 4.2.21 GP Battery
    • 4.2.22 Battrion
    • 4.2.23 BESS technology
    • 4.2.24 ABB
    • 4.2.25 NTU
    • 4.2.26 Drexel University
    • 4.2.27 Guangzhou Automobile Group
    • 4.2.28 Nanotech Energy
    • 4.2.29 Samsung Electro-Mechanics
    • 4.2.30 Xiaomi
  • 4.3. Patent Review related to Quick Charge Technology for 2015-2020
株式会社グローバルインフォメーション
© Copyright 1996-2021, Global Information, Inc. All rights reserved.