特集 : 国別レポートが13,000件から検索可能になりました!

特集 : 海外市場の委託調査がセミカスタムベースでお手軽にできます

株式会社グローバルインフォメーション
表紙
市場調査レポート
商品コード
926052

リチウムイオン電池向けカソード材料:技術動向・市場予測 (~2030年)

<2020> Lithium Ion Battery Cathode Technology Trend and Market Forecast (~2030)

出版日: | 発行: SNE Research | ページ情報: 英文 295 Pages | 納期: お問合せ

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=106.14円

ご注意:当報告書は原文が韓国語のため、英訳が必要となる場合があります。納期については、当社までお問合せ下さい。

リチウムイオン電池向けカソード材料:技術動向・市場予測 (~2030年)
出版日: 2020年02月12日
発行: SNE Research
ページ情報: 英文 295 Pages
納期: お問合せ
  • 全表示
  • 概要
  • 目次
概要

二次電池の市場はIT向けから、ESS、EVの分野にも用途を拡張しており、カソード材料の市場も同様に需要が拡大すると予想されています。地域別で見ると、韓国、中国、日本の3カ国が世界のカソード市場をリードしています。中国企業は、国内の大手バッテリーメーカーの成長とともに供給量を増やし、確固たる位置付けを築いています。一方、日本企業は前駆体の先進技術をベースに中国に対抗しています。また、韓国のカソード材料企業は、中国企業との価格競争に立ち向かうと同時に、日本のメーカーとのカソード材料および前駆体の技術競争に対処しなければならない状況にあります。

当レポートでは、リチウムイオン電池向けカソード材料の技術および市場を調査し、カソード材料技術の現況および開発動向、技術上の課題、製造プロセス、主要企業の動向、世界のLIB市場の予測、材料・企業・地域別のカソード材料需要の予測、価格動向などをまとめています。

第1章 カソード材料技術の現況・開発動向

  • イントロダクション
    • カソード材料開発の状況
    • 設計基準
    • 特性要件
  • カソード材料のタイプ
    • レイヤーベース
      • LiCoO2
      • LiNiO2
      • LiMO2(M = Fe, Mn)
      • Ni-Mn系
      • 3コンポーネント(Ni-Co-Mn) 系
      • リチウム過剰複合材料
    • スピネル系複合材料
      • LiMn2O4
      • LiMxMn2-xO4
    • オリビン系複合材料
      • LiFePO4
      • LiMPO4(M = Mn, Co, Ni)
  • その他のカソード材料
    • フッ化物系複合材料

第2章 Ni-Rich NCM技術

  • イントロダクション
  • Ni-Rich NCMの問題
    • カチオンミキシング
    • H2-H3位相変化
    • 残留リチウム複合材料
  • Ni-Rich NCMの課題
    • 遷移金属ドーピング
    • 表面改質
    • 濃度勾配構造

第3章 製造プロセス

  • 製造プロセス
  • 前駆体の製造プロセス
    • リアクター
    • リアクター後のプロセス
  • カソード材料の特性評価
  • カソード基板の製造プロセス

第4章 カソード材料企業の動向

  • 韓国
    • L&F
    • Umicore Korea
    • Ecopro BM
    • Cosmo AM&T
    • Iljin Materials
    • Posco Chemical
  • 日本
    • 日亜化学工業
    • 住友金属鉱山
    • 戸田工業
    • 三井金属鉱業
    • 新日本電工
  • 中国
    • Reshine
    • Shanshan
    • Easpring
    • B&M
    • Pulead
    • XTC
    • ZEC
    • CY Lico
    • Ronbay

第5章 世界のLIB市場の予測

  • 総市場
  • 小型IT
  • 中型EV
  • 大型ESS

第6章 カソード材料市場の動向・予測

  • 需要
    • カソード需要:国別
    • カソード需要:材料別
    • カソード市場:サプライヤー別
    • 需要の変化:材料別
    • カソード需要:LIB企業別
    • カソード製造能力
    • 価格動向
目次

Recently, the secondary battery market is expanding into the ESS and EV markets, from the application market for small ITs. The cathode material market of secondary batteries is also expected to increase in its demand thereby.

The Li-ion secondary battery was invented by Akira Yoshino in Japan around the year of 1985, which was commercialized by the company of SONY in 1991. At the time, the cathode material, used by SONY, was lithium cobalt oxide (LiCoO2; hereinafter, referred to as ‘LCO'). The LCO as a cathode material in Li-ion secondary batteries has nominal voltage of 3.7V and is the material where lithium can be reversibly intercalated and delithiated. It is still the most used material because it is easy to be synthesized and also has relatively good life characteristics. However, problems of such LCO began to emerge. One of the problems is that LCO, mainly composed of Co ? which has limited reserves, is very expensive. Another problem is on the performance of the material: that the battery capacity is at most 150mAh/g, about a half of the theoretical capacity, due to the structural instability of LCO at the end of charging. Due to this, it is difficult to use LCO cathode materials in mid- and large-sized batteries for EVs and power storage, which becomes an unfavorable condition.

Accordingly, the cathode material, where this point has been improved, is lithium-nickel-cobalt-aluminum oxide (LiNi0.8Co0.15Al0.05O2; hereinafter, referred to as ‘NCA'). And the newly developed cathode material is lithium-nickel-cobalt-manganese oxide (LiNi1/3Co1/3Mn1/3O2; hereinafter, referred to as ‘NCM'), which was invented by 3M ? holding the NCM111 patent. LG Chem has also developed LiNi0.5Co0.2Mn0.3O2 (NCM 523) material some of whose compositions, composed of NCM, have been adjusted. Recently, many researches have been conducted on high Ni-based cathode materials, such as NCM622, NCM811, etc.

In addition, there is lithium-manganese oxide (LiMn2O4; hereinafter, referred to as ‘LMO') which structurally has a spinel structure; even though its capacity is 100mAh/g, lower than LCO, it has good output characteristics and excellent safety, and above all, it is applied to low-end products by using its low price as an advantage or being blended in some cathode materials for EVs.

The last one is lithium-Ferric Phosphate oxide (LiFePO4; hereinafter, referred to as ‘LFP'), which has the Olivine Structure; since its structural safety is high but the discharge voltage is relatively lower as appr. 3.5V, researches are in full swing on the high-voltage olivine cathode material in which Fe is replaced with Mn, Ni or the like.

In the case of the cathode materials that form the cathode among the four major components (cathode, anode, electrolyte, and separator) of Li-ion secondary batteries, since its proportion is large to the extent of accounting for about 30-40% of the total cost of Li-ion secondary batteries, it could be said that in order to commercialize large-sized lithium-ion secondary batteries whose cost is considered as the most important factor, improving the performance of cathode materials and lowering prices at the same time is an essential factor.

In the global cathode material market, 3 countries of Korea, China, and Japan are leading the market. Chinese companies have emerged as the absolute strong by increasing the quantity of supply along with the growth of major Chinese battery makers based on the domestic market and where Japanese companies are responding to the China's offensive based on their advanced technology for precursors. Korean cathode material companies are in the situation where they will have to confront the price competition with Chinese companies and simultaneously, to cope with the keen technical competition for cathode materials and precursors with Japanese makers.

In the future, the cathode material market is expected to lead to the keenly competitive phase among materials makers in 3 countries of Korea, China, and Japan, along with the great growth of LIB in the global EV market.

In this report, we described the technical trends on cathode materials by various types, and especially, have updated the development trend of cathode material technologies centered on Ni-rich NCM. Moreover, the mineral market used for cathode materials was also discussed in detail. The subject company for cathode materials included 6 Korean, 6 Japanese, and 9 Chinese companies.

In the market segment, we analyzed the demand and supply outlooks for the market by country, company, and cathode material type, for the last four years (2015-2018).

Table of Contents

Chapter 1. Current Status and Development Trend of Cathode Material Technology

1. Introduction

  • 1.1. Status of Cathode Material Development
  • 1.2. Design Criteria for Cathode Materials
    • 1.2.1. Ionic Bonding and Covalent Bonding
    • 1.2.2. Types of Mott-Hubbard and Charge Transfer
    • 1.2.3. Concept of Charge Transfer Reaction in 3d Transition Metal Oxide
    • 1.2.4. Concepts of diffusion in Solid-Phase and of 2-Phase Coexistence Reaction
  • 1.3. Properties Required for Cathode Materials

2. Type of Cathode Material

  • 2.1. Layered-Based Compound
    • 2.1.1. LiCoO2
    • 2.1.2. LiNiO2
    • 2.1.3. LiMO2(M = Fe, Mn)
    • 2.1.4. Ni-Mn Based
    • 2.1.5. 3-Component(Ni-Co-Mn) Based
    • 2.1.6. Lithium-Excessive Compound
  • 2.2. Spinel-Based Compound
    • 2.2.1. LiMn2O4
    • 2.2.2. LiMxMn2-xO4
  • 2.3. Olivine-Based Compound
    • 2.3.1. LiFePO4
    • 2.3.2. LiMPO4(M = Mn, Co, Ni)

3. Other Cathode Materials

  • 3.1. Fluoride-Based Compound

Chapter 2. Ni-Rich NCM Technology

1. Introduction

2. Problems of Ni-Rich NCM

  • 2.1. Cation Mixing
  • 2.2. H2-H3 Phase Change
  • 2.3. Residual Lithium Compounds

3. Challenges for Ni-Rich NCM

  • 3.1. Transition Metal Doping
  • 3.2. Surface Modification
  • 3.3. Concentration Gradient Structure

Chapter 3. Manufacturing Process of Cathode Material

1. Manufacturing Process of Cathode Material

  • 1.1. Mixing
  • 1.2. Calcination
  • 1.3. Crushing
  • 1.4. Sieving
  • 1.5. Magnetic Separation

2. Precursor Manufacturing Process

  • 2.1. Reactor
  • 2.2. Process after Reactor

3. Characteristic Evaluation of Cathode Material

  • 3.1. Chemical Composition Analysis
  • 3.2. Measurement of Specific Surface Area
  • 3.3. Measurement of Particle Size
  • 3.4. Measurement of Tapped Density
  • 3.5. Measurement of Moisture Content
  • 3.6. Measurement of Residual Lithium Carbonate
  • 3.7. Thermal Analysis
  • 3.8. Particle Strength

4. Manufacturing Process of Cathode Substrate

Chapter 4. Trends of Cathode Material Company

1. Korean Cathode Company

  • 1.1. L&F
  • 1.2. Umicore Korea
  • 1.3. Ecopro BM
  • 1.4. Cosmo AM&T
  • 1.5. Iljin Materials
  • 1.6. Posco Chemical

2. Japanese Cathode Company

  • 2.1. Nichia
  • 2.2. Sumitomo Metal Mining
  • 2.3. Toda Kogyo
  • 2.4. Mitsui Kinzoku
  • 2.5. Nippon Denko
  • 2.6. Posco Chemical

3. Chinese Cathode Company

  • 3.1. Reshine
  • 3.2. Shanshan
  • 3.3. Easpring
  • 3.4. B&M
  • 3.5. Pulead
  • 3.6. XTC
  • 3.7. ZEC
  • 3.8. CY Lico
  • 3.9. Ronbay

Chapter 5. Outlook for Global LIB Market(by 2030)

1. Outlook for Global LIB Market

2. Outlook for Global LIB Market for Small-Sized IT

3. Outlook for Global LIB Market for Medium-Sized EV

4. Outlook for Global LIB Market for Large-Sized ESS

Chapter 6. Market Trend and Outlook for Cathode Material

1. Market Demand for Cathode Material

  • 1.1. Cathode Demand by Country
  • 1.2. Cathode Demand by Material
  • 1.3. Cathode Market by Supplier
  • 1.4. Demand Change Trends by Material
  • 1.5. Cathode Demand by LIB Company
    • 1.5.1. Samsung SDI's Usage Status for Cathode
    • 1.5.2. LG Chem's Usage Status for Cathode
    • 1.5.3. SKI's Usage Status for Cathode
    • 1.5.4. Panasonic's Usage Status for Cathode
    • 1.5.5. CATL's Usage Status for Cathode
    • 1.5.6. ATL's Usage Status for Cathode
    • 1.5.7. BYD's Usage Status for Cathode
    • 1.5.8. Lishen's Usage Status for Cathode
    • 1.5.9. Guoxuan's Usage Status for Cathode
    • 1.5.10. AESC's Usage Status for Cathode
  • 1.6. Cathode Production Capacity
  • 1.7. Trends of Cathode Prices
    • 1.7.1. Price Structure of Cathode Materials
    • 1.7.2. Price Trends by Cathode Material Type
    • 1.7.3. Mineral Market Trends
      • 1.7.3.1. Nickel
      • 1.7.3.2. Cobalt
      • 1.7.3.3. Manganese
      • 1.7.3.4. Lithium
株式会社グローバルインフォメーション
© Copyright 1996-2020, Global Information, Inc. All rights reserved.