表紙
市場調査レポート

高電圧カソード(正極)技術の開発動向およびプロポーザル

High-voltage Cathode Technology Development Trend and Proposal

発行 SNE Research 商品コード 310091
出版日 ページ情報 英文 102 Pages
納期: お問合せ
価格
本日の銀行送金レート: 1USD=101.50円で換算しております。

ご注意:当報告書は原文が韓国語のため、英訳が必要となる場合があります。納期については、当社までお問合せ下さい。

Back to Top
高電圧カソード(正極)技術の開発動向およびプロポーザル High-voltage Cathode Technology Development Trend and Proposal
出版日: 2014年07月01日 ページ情報: 英文 102 Pages
概要

リチウムイオン電池(LIB)の性能は1990年の商品化以来、常に進化を遂げてきましたが、低コストかつ高容量の材料の実現が進まないため、高容量性の点では非常に発展が遅れています。この問題を克服するため、LIBの4つの主要構成要素に焦点を当てた開発が積極的に進められていますが、そのなかで、カソード(正極)材料の開発は、カソード材料への印加電圧を増すことによる高容量の実現を目指しています。

当レポートでは、高容量性の実現を目指した高電圧カソード(正極)材料の開発動向について調査し、LIBおよびLIB用カソード(正極)材料の市場および需要の動向、LIBカソード材料の各種課題、高電圧LIBカソード材料の開発プロポーザルなどをまとめています。

第1章 リチウムイオン電池(LIB)市場

  • リチウムイオン二次電池の用途の拡大
  • リチウムイオン二次電池の開発における4大ターゲット
  • LIB市場の収益予測:全部門
  • LIB市場のセル数予測:IT部門
  • xEV市場の台数の予測
  • 世界のES市場の予測:電池容量
  • LIBコストの予測(セル・パック)
  • LIBコストの構造
  • 4大主要コンポーネントの開発ロードマップ
  • WPMプロジェクトの目標
  • Galaxy Sシリーズとリチウムイオン二次電池の進化

第2章 LIBカソード(正極)材料市場の動向

  • 世界のLIBカソード材料需要の予測
  • 世界のLIBカソード材料需要:地域別
  • 世界のLIBカソード材料需要:セルメーカー別
  • カソード材料の消費分析:SDI
  • カソード材料の消費分析:LGC
  • カソード材料の消費分析:パナソニック
  • カソード材料の消費分析:AESC
  • LIBカソード材料の売上:サプライヤー別
  • カソード材料消費量の変化:タイプ別
  • 材料コスト:タイプ別

第3章 高電圧LIBカソード材料の課題

  • LIBカソード材料の要件
  • LIBカソード材料の主な特性
  • 層状カソード材料
    • LMO2
    • LMM'M"O2、など

第4章 高電圧カソード材料の開発プロポーザル

  • 第1のプロポーザル:金属酸化物による表面処理
  • 第2のプロポーザル:金属ハロゲン化物による表面処理
  • 第3のプロポーザル:金属水酸化物による表面処理
  • 第4のプロポーザル:導電体による表面処理
    • 開発コンセプト
    • 表面処理前後のコインセル性能
    • 表面処理前後のコインセルのサイクル寿命
    • さまざまな条件化におけるサイクル寿命、など

第8章 サマリー・総論

目次
Product Code: R132SB2014010

LIBs were first adopted in small IT devices such as note PCs and HHP and has expanded their territory into various applications including electric vehicles and energy storage systems. Requirements for LIBs vary from application to application

The R&D on LIBs has been mainly directed toward high capacity, high output, low price and high safety.

Since the first commercialization in 1990, LIBs have constantly evolved in terms of performance. Taking cylindrical batteries as an example, their capacity has increased by 2 times but prices declined to less than ½. Nevertheless, the efforts to achieve high capacity is progressing slowly because little progress has been made in securing low-cost, high capacity materials for LIBs.

Due to the slow progress in securing high performance materials, the development of high capacity LIBs has slowdown. To overcome this challenge, there are aggressive efforts, focused on the 4 key components. Among them, the development of cathode materials is directed to achieving high capacity by increasing the charging voltage of cathode materials.

This report introduces the current trends in the development of cathode materials with high voltage charge capacity and challenges, proposing the directions for future R&D activities.

Table of Contents

1. LIB Market

  • 1.1. Expanding Applications of Li-ion Secondary Batteries
    • 1.1.1. Li-ion Secondary Battery Applications by Capacity
  • 1.2. 4 Key Targets for Development of Li-ion Secondary Batteries
    • 1.2.1. R&D Priority Areas in Li-ion Secondary Batteries by Generation
  • 1.3. LIB market forecast -all segments [2011-2018, , revenue]
  • 1.4. LIB Market Forecast- IT Segment[2012-2018, number of cells]
    • 1.4.1. LIB Market Forecast- IT Segment[2012-2018]
  • 1.5. xEV Market Forecast[2012-2018, number of vehicles]
    • 1.5.1. xEV Market Forecast [battery capacity]
  • 1.6. Global ESS Market[2012-2018, battery capacity]
  • 1.7. LIB Cost Forecast[Cell, Pack]
  • 1.8. LIB Cost Structure Analysis
  • 1.9. Roadmap for Development of 4 Key LIB Components
  • 1.10. WPM Project Goals
  • 1.11. Evolution of Li-ion Secondary Batteries with Galaxy S Series

2. LIB Cathode Material Market Trend

  • 2.1. Global LIB Cathode Material Demand Forecast['12 ~ '18]
  • 2.2. Global LIB Cathode Material Demand by Region['12 ~ '13]
  • 2.3. Global LIB Cathode Material Demand by Cell Maker['12 ~ '13]
  • 2.4. Cathode Material Consumption Analysis- SDI['12 ~ '13]
    • 2.4.1. Breakdown by Supplier
  • 2.5. Cathode Material Consumption Analysis- LGC ['12 ~ '13]
    • 2.5.1. Breakdown by Supplier
  • 2.6. Cathode Material Consumption Analysis- Panasonic ['12 ~ '13]
    • 2.6.1. Breakdown by Supplier
  • 2.7. Cathode Material Consumption Analysis- AESC ['12 ~ '13]
    • 2.7.1. Breakdown by Supplier
  • 2.8. LIB Cathode Material Sales by Supplier['13]
    • 2.8.1. LCO Sales by Supplier
    • 2.8.2. NCM Sales by Supplier
    • 2.8.3. NCA Sales by Supplier
  • 2.9. Changes in Cathode Material Consumption by Type ['12 ~ '13]
    • 2.9.1. Change in Cathode Material Consumption by Type- Samsung SDI
    • 2.9.2. Change in Cathode Material Consumption by Type- LGC
    • 2.9.3. Change in Cathode Material Consumption by Type- Panasonic
    • 2.9.4. Change in Cathode Material Consumption by Type- AESC
  • 2.10. Materials Cost by Type [$/kg]

3. Challenges of High Voltage LIB Cathode Materials

  • 3.1. Requirements for LIB Cathode Materials
  • 3.2. Key Properties of LIB Cathode Materials
    • 3.2.1. Charge/Discharge Curves of the Most Common Cathode Materials
  • 3.3. Layered Cathode Materials [1]
    • 3.3.1. LMO2
    • 3.3.2. High Voltage Cycling Performance of LMO2
    • 3.3.3. High Voltage Cycling Performance Degradation of LMO2
  • 3.4. Layered Cathode Materials [2]
    • 3.4.1. LMM'M"O2
    • 3.4.2. HR-TEM after High Voltage Cycling Performance Test[4.5~4.8]
    • 3.4.3. Optimum LMM'M"O2 Composition Design
  • 3.5. Layered Cathode Materials[3]
    • 3.5.1. Cycling Performance Depending on Ni Content
    • 3.5.2. Coin Cell Performance at Room- and High-Temperature

4. Proposal for Development of High Voltage Cathode Materials

  • 4.1. First Proposal for Development of High Voltage Cathode Materials [Surface Treatment with Metal Oxides]
    • 4.1.1. Development Concept
    • 4.1.2. Coin Cell Performance before & after Surface Treatment
    • 4.1.3. SIMMS Analysis for Doping and Surface Treatment Materials
    • 4.1.4. Coin Cell Cycle Life at High Voltage Charging
    • 4.1.5. Comparison of Heat Flow DSC between Charged Plates
    • 4.1.6. 18650 Cycle Lite Test
    • 4.1.7. Low-Temperature [-20oC] Discharge Performance of 18650 Cell
    • 4.1.8. Cycle Life and DSC of Coin Cell after Surface Treatment with Ni[90%] Cathode Material
  • 4.2. Second Proposal for Development of High Voltage Cathode Materials [Surface Treatment of Metal Halide]
    • 4.2.1. Development Concept
    • 4.2.2. Coin Cell Performance before & after Surface Treatment
    • 4.2.3. XRD Crystal Structure and TEM Image
    • 4.2.4. Coin Cell Cycling Performance before & after Surface Treatment of Various Cathode Materials
    • 4.2.5. Full Cell Cycle Life Performance of NCM11 at High Voltage Charge
    • 4.2.6. HR-TEM Image after Surface Treatment
    • 4.2.7. DSC Thermal Stability of Various Cathode Materials before & after Surface Treatment
    • 4.2.8. In-situ XRD of NCM 11 before & after Surface Treatment
    • 4.2.9. High Temp. in-situ XRD of NCM111 before & after Surface Treatment
  • 4.3. Third Proposal for Development of High Voltage Cathode Materials [Surface Treatment- Metal Hydroxide]
    • 4.3.1. Development Concept
    • 4.3.2. Coin Cell Cycling Performance after Surface Treatment with Metal Oxide and Metal Hydroxide [4.3V]
    • 4.3.3. Coin Cell Cycling Performance after Surface Treatment with Metal Hydroxide [4.4, 4.5V]
    • 4.3.4. Coin Cell C-rate after Surface Treatment with Metal Hydroxide [4.4, 4.5V]
    • 4.3.5. Coin Cell Cycle Life after Surface Treatment with Metal Hydroxide[4.4, 4.5V]
    • 4.3.6. Full Cell Cycling Performance after Surface Treatment with Metal Oxide and Metal Hydroxide
    • 4.3.7. Changes in Full Cell Mid Point Potential after Surface Treatment with Metal Oxide and Metal Hydroxide
    • 4.3.8. Full Cell 85oC Swelling after Surface Treatment with Metal Oxide and Metal Hydroxide
    • 4.3.9. Full Cell C-rate Capability after Surface Treatment with Metal Hydroxide
    • 4.3.10. Full Cell Top 8 Safety Test Result after Surface Treatment with Metal Hydroxide
    • 4.3.11. High Temperature Cycle Life and C-rate of Ni[70%] Cathode Material after Surface Treatment with Metal Hydroxide
    • 4.3.12. Room Temperature Cycle Life of NCM 622 after Surface Treatment with Metal Hydroxide
    • 4.3.13. High Temperature Cycle Life of LMO after Surface Treatment with Metal Hydroxide
  • 4.4. Fourth Proposal for Development of High Voltage Cathode Materials [Surface Treatment with Conductor]
    • 4.4.1. Development Concept
    • 4.4.2. Electrode Manufacturing Process
    • 4.4.3. Morphology of Pole Plate and Conductor-Coated Cathode Material
    • 4.4.4. Electrode Density under Varying Conditions
    • 4.4.5. Coin Cell C-rate with Varying Conductor Content
    • 4.4.6. Cycle Life of Prismatic Batteries after Surface Treatment with Conductor
    • 4.4.7. Low Temperature Performance of Prismatic Batteries after Surface Treatment with Conductor

5. Summary and Implications

  • 5.1. Summary
  • 5.2. Implications
Back to Top