表紙
市場調査レポート

EV(電気自動車)向けLIB(リチウムイオン電池):技術課題および市場予測

LIBs for EV - Technology Issue and Market Forecast (2011-2020)

発行 SNE Research 商品コード 286334
出版日 ページ情報 英文 324 Pages
納期: お問合せ
価格
本日の銀行送金レート: 1USD=102.12円で換算しております。

ご注意:当報告書は原文が韓国語のため、英訳が必要となる場合があります。納期については、当社までお問合せ下さい。

Back to Top
EV(電気自動車)向けLIB(リチウムイオン電池):技術課題および市場予測 LIBs for EV - Technology Issue and Market Forecast (2011-2020)
出版日: 2013年05月13日 ページ情報: 英文 324 Pages
概要

EV(電気自動車)向け電池市場は2011年の26億米ドル規模から、2020年には288億米ドル規模に達すると予測されています。

当レポートでは、世界の電気自動車(EV)向けリチウムイオン電池(LIB)市場について調査し、EVバッテリーについての現在の技術的課題と技術ソリューションの開発動向、国・メーカー別によるEVバッテリー技術のR&Dおよびビジネス動向、技術・タイプ別による世界のEV市場分析および予測、および技術・タイプ・メーカー別に四つ世界のEVバッテリー売上分析と市場予測などをまとめ、概略以下の構成でお届けいたします。

第1章 イントロダクション

  • EV市場失敗の原因
  • EV時代の到来
  • バッテリー技術の開発

第2章 電池についての課題

  • 現在利用可能な電気自動車・バッテリー
  • EVバッテリーについての課題

第3章 EVバッテリー向けソリューション

  • エネルギー密度
  • バッテリー形状
  • バッテリー価格
  • バッテリーの安全性
  • EVバッテリーパックの構造
  • バッテリーの熱管理
  • バッテリーマネジメントシステム(BMS)
  • 将来の自動車に向けた新しいバッテリー

第4章 バッテリーの評価方法

  • 主要企業の新技術開発プロセス
  • バッテリー評価方法:主要企業別

第5章 EVバッテリーのR&D動向:国別

  • 韓国
  • 日本
  • 米国
  • 欧州
  • 中国

第6章 EVバッテリーメーカーのR&Dおよびビジネス動向

  • 韓国
    • LG Chem
    • Samsung SDI(formerly SB LiMotive)
    • SK Innovation
    • EIG
    • Kokam
  • 日本
    • サンヨー(パナソニックグループ)
    • 東芝
    • GSユアサ
    • プライムアースEVエナジー (PEVE、トヨタ)
    • HVE(日立ビークルエナジー)
    • AESC
  • 米国・カナダ
    • EnerDel
    • A123 Systems
    • Johnson Controls
    • Dow Kokam
    • Boston Power
    • Electrovaya
    • Seeo
    • International Battery
    • K2 Energy
    • Maxwell Technologies
    • Valence Technogoly
    • Altair Nanotechnologies
    • Magna
  • 中国
    • BYD
    • Lishen
    • China BAK Battery Inc
    • ATL
    • EVB Technology
  • 欧州
    • Saft
    • Li-Tec
    • GAIA

第7章 各EVモデルに用いられるバッテリーおよび材料

  • 各メーカーが用いるEVバッテリー
  • 各メーカーが用いるEVバッテリー材料

第8章 世界のEV市場予測

  • 世界のEV市場予測:技術別
  • 世界のEV市場予測:国別
    • 米国
    • 日本
    • 韓国
    • 中国
    • オーストラリア
    • 欧州

第9章 世界のEVバッテリー市場予測

  • 世界のEVバッテリー市場予測
    • EVバッテリー市場分析:EVタイプ別
    • EVバッテリー市場分析:技術別
    • EVバッテリー市場分析:タイプ別
    • EVバッテリー市場分析:メーカー別
  • 世界のEVバッテリー市場予測
    • EVバッテリー市場予測:EVタイプ別
    • EVバッテリー市場予測:技術別
    • EVバッテリー価格予測
    • EVバッテリー売上予測

第10章 参照

第11章 インデックス

目次
Product Code: R107SB2013030

After Anyos Jedlik invented an early type of electric motor in 1828, various EV-related companies including Morrison Electric Vehicle, Baker, and Coulmbia were established in the United States in 1890s. Especially, it is known that electric cars outsold gasoline-based cars in 1899. In 1904, EV companies produced 2000 units of taxis, trucks, and buses and expanded their taxi and car rental businesses from New York to Chicago and about 57 small businesses were producing about 4000 electric cars. However, electric cars surrendered its leading position to gasoline-powered cars and have not made remarkable progress until the early 2000s for the same reason. That is because electric vehicles adopting batteries are more expensive, slower and have a shorter driving range than those using internal combustion engines. Furthermore, they failed to keep abreast of the rapid progress being made in gasoline-powered vehicles and have significantly decreased in number, losing its footing.

Likewise, the biggest obstacle to expanding the EV market lies on batteries to power electric motors. In other words, the development of new battery technologies is the key to expand the EV market. Although traditional lead-acid batteries and Ni-MH batteries have been used in electric cars, lithium-ion batteries are currently receiving most attention and integration into new secondary batteries such as Li-S and redox flow batteries is also being considered.

This report provides close examination on technological issues of currently available batteries used in electric vehicles in terms of energy density, prices, safety, and low-temperature performance, and long-term reliability and new technologies and applications being developed to solve the current technological challenges. In addition, the EV battery market forecast section is dedicated to analyzing and forecasting the EV and EV battery markets by country, technology, and type. According to the analysis of the EV battery market provided in this report, the EV market is expected to reach 1857 vehicles in 2020 compared with 0.91 million vehicles and the EV battery market is expected to hit 84.1GWh ($28.8 billion) compared with .4GWh($2.6 billion) in 2011. Although Ni-MH batteries used in Toyota's HEVs have driven the EV battery market so far, the sales of PHEVs and BEVs whose capacity is about 20 times higher than that of existing HEVs are gradually increasing. Furthermore, as the competitors are strategically expanding EV lineup adopting LiBs, the LiB market share is expected to increase from 56.4% of 2011 to 91.8% in 2020. Although PHEVs and BEVs are now accounting only small portions of the entire sales, they are expected to drive the growth of the EV battery market due to their high capacity.

image1

This report provides close examination on technological issues and solutions for EV batteries and a comprehensive analysis of the global EV and EV battery markets.

The strong points of this report include

  • 1. Current technological issues over EV batteries and development trends for technological solutions
  • 2. R&D and business trends for EV battery technologies by country, and manufacturer
  • 3. Global EV market analysis and forecasts by technology and type (2011-2020)
  • 4. Analysis of global EV battery sales by technology, type and manufacturer and market forecast (2011 -2020)

Table of Contents

1. Introduction

  • 1.1. Cause of EV market failure
  • 1.2. Advent of EV era
  • 1.3. Development of battery technologies

2. Issues over electric batteries

  • 2.1. Currently available EV vehicles and batteries
    • 2.1.1. Electric vehicles
    • 2.1.2. Batteries for EVs
  • 2.2. Issues over EV batteries
    • 2.2.1. Energy density
    • 2.2.2. Price
    • 2.2.3. Safety
    • 2.2.4. Low-temperature performance
    • 2.2.5. Long-term reliability

3. Solutions for EV batteries

  • 3.1. Energy density
    • 3.1.1. Cathode
    • 3.1.2. Anode
    • 3.1.3. Separator
    • 3.1.4. Electrolyte
  • 3.2. Battery shape
    • 3.2.1. Prismatic li-ion batteries
    • 3.2.2. Lithium polymer batteries
  • 3.3. Battery prices
    • 3.3.1. Estimated material costs of EV batteries
    • 3.3.2. Estimated process costs of EV batteries
    • 3.3.3. Estimated costs of EV battery packs
  • 3.4. Battery safety
  • 3.5. Structure of EV battery packs
  • 3.6. Battery thermal management
    • 3.6.1. Thermal modeling
    • 3.6.2. Selection of battery shape for thermal management
    • 3.6.3. Batteyr pack using air cooling type thermal managemet system
    • 3.6.4. Battery pack using water-cooling thermal managemet system
  • 3.7. Battery Management System (BMS)
    • 3.7.1. Main components and functions of BMS
    • 3.7.2. Cell balancing or equalization function
    • 3.7.3. Current and Voltage monitoring
  • 3.8. New batteries for future cars
    • 3.8.1. Li-air battery
    • 3.8.2. Lithium-sulfur battery
    • 3.8.3. All-solid-state battery

4. Battery evaluation methods

  • 4.1. New technology development processes of major companies
    • 4.1.1. Measurement of EV battery output
    • 4.1.2. Output estimation through HPPC method
    • 4.1.3. Output estimation through J-Pulse method
  • 4.2. Battery evaluation methods by major companies
    • 4.2.1. Evaluation methods of major battery performance of car makers
    • 4.2.2. Evaluation methods of battery durability of car makers

5. EV battery R&D trends by country

  • 5.1. Korea
  • 5.2. Japan
  • 5.3. USA
  • 5.4. Europe
  • 5.5. China

6. R&D and business trends of EV battery manufacturers

  • 6.1. Korea
    • 6.1.1. LG Chem
    • 6.1.2. Samsung SDI(formerly SB LiMotive)
    • 6.1.3. SK Innovation
    • 6.1.4. EIG
    • 6.1.5. Kokam
  • 6.2. Japan
    • 6.2.1. Sanyo (Panasonic group)
    • 6.2.2. Toshiba
    • 6.2.3. GS-Yuasa
    • 6.2.4. Primearth EV Energy (PEVE, Toyota)
    • 6.2.5. HVE (Hitachi Vehicle Energy)
    • 6.2.6. AESC
  • 6.3. USA & Canada
    • 6.3.1. EnerDel
    • 6.3.2. A123 Systems
    • 6.3.3. Johnson Controls
    • 6.3.4. Dow Kokam
    • 6.3.5. Boston Power
    • 6.3.6. Electrovaya
    • 6.3.7. Seeo
    • 6.3.8. International Battery
    • 6.3.9. K2 Energy
    • 6.3.10. Maxwell Technologies
    • 6.3.11. Valence Technogoly
    • 6.3.12. Altair Nanotechnologies
    • 6.3.13. Magna
  • 6.4. China
    • 6.4.1. BYD
    • 6.4.2. Lishen
    • 6.4.3. China BAK Battery Inc
    • 6.4.4. ATL
    • 6.4.5. EVB Technology
  • 6.5. Europe
    • 6.5.1. Saft
    • 6.5.2. Li-Tec
    • 6.5.3. GAIA

7. Batteries and materials used in each EV model

  • 7.1. EV batteries used by each manufacturer
  • 7.2. EV battery materials used by each manufacturer

8. Globla EV market forecast (2011-2020)

  • 8.1. Global EV market forecast by technology (2011-2020)
  • 8.2. Global EV market forecast by country (2011-2020)
    • 8.2.1. USA
    • 8.2.2. Japan
    • 8.2.3. Korea
    • 8.2.4. China
    • 8.2.5. Australia
    • 8.2.6. Europe

9. Global EV battery market forecast (2011-2020)

  • 9.1. Global EV battery market forecast (2011-2012)
    • 9.1.1. EV battery market analysis by EV type (2011-2012)
    • 9.1.2. EV battery market analysis by technology (2011-2012)
    • 9.1.3. EV battery market analysis by type (2011-2012)
    • 9.1.4. EV battery market analysis by manufacturer (2011-2012)
  • 9.2. Gloval EV battery market forecast (2011-2020)
    • 9.2.1. EV battery market forecast by EV type (2011-2020)
    • 9.2.2. EV battery market forecast by technology (2011-2020)
    • 9.2.3. EV battery price forecast (2011-2020)
      • 9.2.3.1. Forecast of EV battery pack price by technology (2011-2020)
      • 9.2.3.2. Forecast of EV battery cell price by technology Cell (2011-2020)
    • 9.2.4. EV battery sales forecast (2011-2020)
      • 9.2.4.1. EV battery pack sales forecast by technology (2011-2020)
      • 9.2.4.2. EV battery cell sales forecast by technology (2011-2020)

10. Reference

11. Index

  • 11.1. Figure
  • 11.2. Table
Back to Top