市場調査レポート

リチウム空気電池:技術動向・商業化の見通し

Lithium-Air Batteries: Technology Trends and Commercialization Prospects

発行 SNE Research 商品コード 263775
出版日 ページ情報 英文 142 Pages
納期: お問合せ
価格
本日の銀行送金レート: 1USD=102.95円で換算しております。

ご注意:当報告書は原文が韓国語のため、英訳が必要となる場合があります。納期については、当社までお問合せ下さい。

Back to Top
リチウム空気電池:技術動向・商業化の見通し Lithium-Air Batteries: Technology Trends and Commercialization Prospects
出版日: 2013年01月07日 ページ情報: 英文 142 Pages
概要

当レポートは、最も注目に値するリチウム電池後の技術であるリチウム空気電池市場について調査し、技術課題、基本的技術、技術開発動向および特許動向などをまとめ、概略以下の構成でお届けいたします。

第1章 次世代の2次電池?技術開発状況

  • 次世代電池技術の概要
  • 次世代電池技術の開発動向
    • リチウム硫黄電池
    • 全固体リチウム電池
    • Mg-ion(マグネシウムイオン)電池
    • Na-ion(ナトリウムイオン)電池
  • 次世代高エネルギー密度電池の開発ロードマップ:国別
    • 米国
    • 日本
    • 欧州
    • 韓国

第2章 リチウム空気電池のイントロダクション

  • リチウム空気電池の基本原理
  • リチウム空気電池の技術特徴
  • リチウム空気電池の主要技術

第3章 リチウム空気電池の主要技術

  • 電極
    • アノード
    • カソード
  • 電解質
    • 非水電解質
    • 水性/非水混合電解質
    • 無機固体電解質
    • ポリマー電解質
  • セパレーター・電流コレクター
    • セパレーター
    • 電流コレクター

第4章 金属空気電池の特許動向

  • 金属空気電池技術の特許分析
    • 特許動向:年度別
    • 主要国における在留者/非在留者の出願動向
    • 技術リーダーシップのレベル:特許所有者の国別
    • 技術シェア:特許の段階別
  • リチウム空気電池技術の特許動向
    • 各技術の割合
    • 主要出願者の技術フォーカス領域
    • 主要国の技術フォーカス領域
    • 技術的可能性:技術タイプ別
  • 主要出願者の特許動向
    • 主要出願者の全体的な特許動向
    • 主要出願者:部門別
    • 主要出願者:技術タイプ別
    • 主要出願者のリチウム空気電池特許の動向

第5章 主要研究機関・企業の技術開発・ビジネス動向

  • 米国
  • 欧州
  • 日本
  • 韓国
  • その他

第6章 リチウム空気電池のアプリケーション・商業化予測

  • リチウム空気電池のアプリケーション
  • リチウム空気電池の商業化予測

第7章 インデックス

目次
Product Code: R091SB2013022

Electric vehicles are facing numerous technological challenges to replace gasoline internal combustion engine-powered cars. One of the biggest problems is low energy density of currently available li-ion batteries, which allows a short driving range of 150 km/charge. To boost full-scale development of the EV market, replacing current internal combustion engine cars, it is necessary to develop Evs with a similar single charge range of more than 500km with internal combustion engine cars.

According to NEDO (Japan), the energy density limit of li-ion secondary batteries is expected to be up to 250 Wh/kg. To develop Evs with the 500km range, which is considered as a prerequisite for growth of the EV market, it is required to develop a new type of battery that has energy density of 700 Wh/kg or more. Among several candidate technologies, metal-air batteries such as lithium-air and zinc-air batteries are considered as the most promising.

The biggest advantage of metal-air batteries is very high theoretical energy density in spite of using oxygen as Natures inexhaustible source as well as eco-friendly characteristics. Comparing various metal-air batteries based on electric charge/discharge and other electro-chemical characteristics, lithium-air and zinc-air batteries are recognized as the most likely candidates for next-generation secondary batteries for EV applications. Especially, lithium-air batteries show a similar level of energy density (11,140 Wh/kg) with gasoline (13,000 Wh/kg), and this is also the highest level among metal-air batteries. These potentialities have directed many researchers to focus on lithium-air batteries rather than zinc-air batteries since the mid-2000s.

Table. Energy density of metal-air batteries

(Source: Excellatron Solid State LLC)

Figure. Charge/discharge mechanism at anode-electrolyte and
cathode-electrolyte interfaces of li-ion air battery

(Source : G. Girishkumar et al., J. Phys. Chem. Lett. 1 (2010) 2193)

Although it is forecasted that lithium-air batteries are far away from commercialization due to many issues to be overcome, it is a very challenging field requiring knowledge and expertise of researchers in a variety of areas. Currently many global leaders such as IBM, Toyota, and Samsung are continuously entering the R&D race with increasing investment, and these aggressive R&D activities based on technological achievements in the fields of li-ion and fuel batteries are expected to contribute to solving the technological challenge earlier, and accelerating commercialization.

This report examines the most noteworthy post-LiB technology, namely lithium-air batteries, in terms of technological issues, elemental technologies, technology development trends, and patent trends.

The strong point of this report is the up-to-date technology development trend in the field of lithium-air batteries including:

  • Analysis of development projects and roadmaps for next-generation secondary battery technologies in each country
  • technological issues and elemental technologies of lithium-air batteries
  • Patent trends of metal-air and lithium-air batteries
  • Analysis of development status of various lithium-air battery companies and research institutes in different countries
  • Prospect of future applications and commercialization of lithium-air batteries.

Table of Contents

1. Next-generation secondary batteries ??technology development status

  • 1.1. Overview of next generation battery technologies
  • 1.2. Development trend of next generation battery technologies
    • 1.2.1. Lithium-sulfur batteries
    • 1.2.2. Metal-air bateries
    • 1.2.3. All-solid-state batteries
    • 1.2.4. Mg-ion batteries
    • 1.2.5. Na-ion batteries
  • 1.3. Next-generation high energy density battery development roadmap by country
    • 1.3.1. USA
    • 1.3.2. Japan
    • 1.3.3. Europe
    • 1.3.4. Korea

2. Introduction of lithium-air batteries

  • 2.1. Basic principle of lithium-air batteries
  • 2.2. Technical features of lithium-air batteries
  • 2.3. Key elemental technologies of lithium-air batteries

3. Elemental technologies of lithium-air batteries

  • 3.1. Electrode
    • 3.1.1. Anode
    • 3.1.2. Cathode
  • 3.2. Electrolyte
    • 3.2.1. Non-aqueous electrolyte
    • 3.2.2. Aqueous/non-aqueous mixed electrolyte
    • 3.2.3. Inorganic solid electrolyte
    • 3.2.4. Polymer electorlyte
  • 3.3. Separator and current collector
    • 3.3.1. Separator
    • 3.3.2. Current collector

4. Metal-air battery patent trend

  • 4.1. Metal-air battery technology patent analysis
    • 4.1.1. Patent trend by year
    • 4.1.2. Trend in resident/non-resisdent applications in major countries
    • 4.1.3. Level of Technology Leaderaship by country of patent owner
    • 4.1.4. Technology share by phases of patent
  • 4.2. Lithium-air battery technology patent trend
    • 4.2.1. Percentage of each technology
    • 4.2.2. Technology focus area of major applicant
    • 4.2.3. Technology focus area of major countries
    • 4.2.4. Technological potential of technology type
  • 4.3. Patetn trend of major applicants
    • 4.3.1. Overall parent trend of major applicatns
    • 4.3.2. Major applicatns by sector
    • 4.3.3. Major applicants by technology type
    • 4.3.4. Trend in lithium-air battery patents of maor applicants

5. Technology development and business trend of major research institutes and companies

  • 5.1. USA
    • 5.1.1. IBM
    • 5.1.2. Polyplus Battery Company
    • 5.1.3. US Army Research Lab.
    • 5.1.4. Pacific Northwest National Laboratory (PNNL)
    • 5.1.5. Argonne National Laboratory (ANL)
    • 5.1.6. Massachusetts Institute of Technology (MIT)
    • 5.1.7. University of Dayton Research Institute
    • 5.1.8. University of Texas at Austin
  • 5.2. Europe
    • 5.2.1. University of St. Andrews
    • 5.2.2. University of Rome La Sapienza
    • 5.2.3. Newcastle University
  • 5.3. Japan
    • 5.3.1. AIST
    • 5.3.2. Toyota
    • 5.3.3. Mie University
    • 5.3.4. Kyushu University
  • 5.4. Korea
    • 5.4.1. Samsung Elecronics (Samsung Advanced Institute Technology)
    • 5.4.2. Korea Institute of Energy Research
    • 5.4.3. Seoul National University
    • 5.4.4. Hanyang University
  • 5.5. etc.
    • 5.5.1. University of Waterloo
    • 5.5.2. Fudan University

6. Forecast of lithium air battery applications and commercialization

  • 6.1. Applications of lithium air batteries
  • 6.2. Forecast of commercialization of lithium air batteries

7. Index

  • 7.1. Figure
  • 8.2. Table
Back to Top