市場調査レポート

CPV(集光型太陽光発電)技術・市場の予測

CPV (Concentrated Photovoltaics) Technology and Market Forecast (2009~2020)

発行 SNE Research 商品コード 254755
出版日 ページ情報 英文 179 Pages
納期: お問合せ
価格
本日の銀行送金レート: 1USD=101.50円で換算しております。

ご注意:当報告書は原文が韓国語のため、英訳が必要となる場合があります。納期については、当社までお問合せ下さい。

Back to Top
CPV(集光型太陽光発電)技術・市場の予測 CPV (Concentrated Photovoltaics) Technology and Market Forecast (2009~2020)
出版日: 2012年10月15日 ページ情報: 英文 179 Pages
概要

世界的な不況にも関わらず、CPV市場は急速な成長を続けています。このため、設置容量は2009年の3.5MWから2012年には505MWへ急増し、その後は安定した成長によって、2020年までに総容量は3.9GWへ達する見込みです。全ての太陽電池で設置が増えますが、太陽電池の種類別で比較すると、結晶シリコン太陽電池はCPVおよび薄膜太陽電池とは反対にシェアを減少させ、2020年のシェアはそれぞれ68.3%、27.3%および4.4%となる見込みです。

当レポートでは、世界のCPV(集光型太陽光発電)技術および市場動向について調査し、価格動向、各分野の主要特許分析、技術別の企業動向、世界市場の予測などをまとめ、概略以下の構成でお届けいたします。

第1章 集光型太陽光発電(CPV)の概要・基本原理

  • CPVの概要
  • CPVの基本原理
    • 集光型システムの原理
    • 集中型光学の原理
    • CPV
    • CSP(集光型太陽熱発電)
  • CPVシステムのコンポーネント
    • 光学
    • 熱管理ユニット
  • CPVシステムの種類
    • 集光コスト依存タイプ
    • 光学システム依存タイプ
  • CPV設置の要件
    • OSの検討事項
    • PV効率の検討事項

第2章 CPV技術・価格動向

  • CPV技術動向:コンポーネント別
    • 光学
    • 高効率電池
    • 熱管理
    • トラッカー
    • 高集光PV
  • CPVの課題
  • CPVの経験的結果
  • CPVのアプリケーション
    • HCPVのアプリケーション
    • LCPVのアプリケーション
  • 多接合型III-V族太陽電池のコスト分析
    • エピタキシャルプロセスコスト
    • ファブプロセスコスト
    • デバイスプロセスコスト
    • 3接合III-V族太陽電池のコスト

第3章 特許動向分析

  • 中−低集光型PV技術の特許動向
    • 主要諸国の技術開発
    • 分析:技術タイプ別
  • 高集光型PV技術の特許動向
    • 主要諸国の技術開発
    • 分析:特定技術別

第4章 CPV企業動向:CPV技術

  • レンズ方式
  • ディッシュ方式

第5章 CPV市場の現況・予測

  • 世界のPV市場予測
  • CPV市場・価格予測
    • CPV市場規模・市場シェア
    • CPVシステムの分類:タイプ別
    • CPV価格・収益

第6章 インデックス

目次
Product Code: R080PV2012054

The CPV (concentrated photovoltaic) technology started from the concept that inexpensive optical systems can be used to concentrate an equal amount of light as an attempt to reduce silicon consumption when the price of c-Si solar cells was very high in 1980 to 1990s

Concentrated photovoltaics mainly use III-V compound semi-conductor solar cells based on GaAs and InGaP. Due to direct band gaps, they have higher optical absorbance than existing silicon solar cells. Besides, covalent bonds lead to excellent properties. GaAs as a compound semi-conductor is proved to show high reliability even under extreme conditions in the field of semiconductor laser, which has a much more complex structure than solar cells. The biggest advantage of concentrated photovoltaics is that it is possible to remarkably reduce the price of power generation systems by drastically reducing the area of solar cell modules, which are expensive. They are aimed at remarkable reduction in the cost of power generation through low-cost optical systems.

Despite the global economic recession, the CPV market has continued to grow rapidly. For this reason, it is expected that there will be a rapid increase in installation from 3.5MW in 2009 to 505MW in 2012, and, with the steady growth, the total installation will reach 3.9GW by 2020. Comparing different types of solar cells, all solar cells will show increases in installation, but crystalline solar cells will decrease in percentage contrary to CPVs and thin-film solar cells (a-Si, CIGS, CdTe, DSSC, and OPV), accounting for 68.3%, 27.3%, and 4.4% respectively in 2020.

Figure. CPV installation market vs. other PV installation markets (2009~2020)

(Source: ‘PV Technology & Market Forecast (2009~2020)’ SNE Research)

This report will examine the CPV technology and market trend, focusing on:

  • (1) Technology and price trends
  • (2) Major patent analysis for each field
  • (3) Company trend by technology
  • (4) Global market forecast and forecast

Table of Contents

1. Overview and Basic Principle of Concentrated Photovoltaics (CPVs)

  • 1.1. Overview of CPVs
  • 1.2. Basic Principle of CPVs
    • 1.2.1. Basic Principle of Concentrated System
    • 1.2.2. Basic Principle of Concentrated Optics
    • 1.2.3. CPVs
    • 1.2.4. CSP (Concentrated solar power)
  • 1.3. Components of CPV System
    • 1.3.1. Optics
    • 1.3.2. Thermal Management Unit
  • 1.4. Type of CPV System
    • 1.4.1. Type depending on Concentrating Cost
    • 1.4.2. Type depending on Optical System
  • 1.5. Requirements for CPV Installation
    • 1.5.1. Considerations for Optical Systems
    • 1.5.2. Considerations for PV Efficiency

2. CPV Technology and Price Trend

  • 2.1. CPV Technology Trend by Component
    • 2.1.1. Optics
      • 2.1.1.1. High Concentration
      • 2.1.1.2. Medium Concentration
      • 2.1.1.3. Low Concentration
    • 2.1.2. High efficiency Cells
      • 2.1.2.1. High-efficiency III-V Compound Semiconductor Solar Cell
      • 2.1.2.2. Basic Principle and Structure of III-V Compound Semiconductor Solar Cell
      • 2.1.2.3. Technology Development Trend of III-V Compound Semiconductor Solar Cell
    • 2.1.3. Thermal Management
      • 2.1.3.1. Air Cooling Method
      • 2.1.3.2. Water Cooling Method
    • 2.1.4. Tracker
      • 2.1.4.1. Fixed Tracker
    • 2.1.5. High Concentrating PV
      • 2.1.5.1. Lens type
      • 2.1.5.2. Dish type
  • 2.2. Issue of CPVs
  • 2.3. Empirical Result of CPVs
  • 2.4. Application of CPVs
    • 2.4.1. Application of HCPVs
    • 2.4.2. Application of LCPVs
  • 2.5. CPV Cost Analysis
    • 2.5.1. CPV System Cost Analysis
    • 2.5.2. LCOE (Levelized Cost of Energy)
    • 2.5.3. Percentage of Components of CPV System
  • 2.6. Multi-junction III-V Solar Cell Cost Analysis
    • 2.6.1. Epitaxial Process Cost
    • 2.6.2. Fab Process Cost
    • 2.6.3. Device Process Cost
    • 2.6.4. Triple-junction III-V Solar Cell Cost

3. Patent Trend Analysis

  • 3.1. Medium-low Concentrated PV Technology Patent Trend
    • 3.1.1. Technology Development of Major Countries
    • 3.1.2. Analysis by Technology Type
      • 3.1.2.1. History Analysis- ENTECH SOLAR INC
      • 3.1.2.2. History Analysis-SHARP
      • 3.1.2.3. History Analysis-SOLBEAM INC
      • 3.1.2.4. History Analysis-MORI TAKASHI
      • 3.1.2.5. History Analysis-Mario Rabinowitz, Redwood City
      • 3.1.2.6. History Analysis by Key Technology (Solar Cell (AA))
      • 3.1.2.7. History Analysis by Key Technology (Concentrated System (AB))
  • 3.2. High Concentrated PV Technology Patent Trend
    • 3.2.1. Technology Development of Major Countries
    • 3.2.2. Analysis by Specific Technology
      • 3.2.2.1. History Analysis-Emcore Solar Power
      • 3.2.2.2. History Analysis-SHARP
      • 3.2.2.3. History Analysis- CANON
      • 3.2.2.4. History Analysis-Concentrix Solar
      • 3.1.2.5. History Analysis-Emcore Corporation

4. CPV Company Trend by CPV Technology

  • 4.1. Lens-type CPV
    • 4.1.1. Amonix Inc. (USA)
    • 4.1.2. Guascor Foton (Spain)
    • 4.1.3. Concentrix Solar GmbH (Germany)
    • 4.1.4. Emcore Corporation (USA)
    • 4.1.5. Sol 3G (Spain)
    • 4.1.6. Opel International Inc. (Canada)
    • 4.1.7. Arima Ecoenergy (Taiwan)
    • 4.1.8. Everphoton Energy Corporation (Taiwan)
    • 4.1.9. Soliant Energy Inc. (USA)
    • 4.1.10. Sunrgi (USA)
    • 4.1.11. ES System (Korea)
    • 4.1.12. Solar Tec International AG (Germany)
    • 4.1.13. Circadian Solar (UK)
    • 4.1.14. Energy Innovations (USA)
    • 4.1.15. Silicon CPV PLC (UK)
    • 4.1.16. Pacific Solartech Inc. (USA)
    • 4.1.17. Green & Gold Energy (Australia)
    • 4.1.18. Pyron Solar (USA)
    • 4.1.19. Sempra (USA)
  • 4.2. Dish type CPV
    • 4.2.1. SolFocus Inc. (USA)
    • 4.2.2. Greenvolts (USA)
    • 4.2.3. Solar Systems PTY, Ltd. (Australia)
    • 4.2.4. Megawatt Solar (USA)
    • 4.2.5. C Power SRL (Italy)
    • 4.2.6. Whitfield Solar Ltd (UK)
    • 4.2.7. Zytech Solar (Spain)
    • 4.2.8. JX Crystals (USA)
    • 4.2.9. Abengoa Solar (Spain)
    • 4.2.10. Skyline Solar (USA)
    • 4.2.11. Prism Solar Technologies, Inc. (USA)
    • 4.2.12. Cool Earth Solar (USA)

5. Current Status and Forecast of CPV Market

  • 5.1. Global PV Market Forecast (2006~2020)
  • 5.2. CPV Market and Price Forecast (2009~2020)
    • 5.2.1. CPV Market Size and Market Share (2009~2020)
    • 5.2.2. Classification of CPV System by Type (2009~2020)
    • 5.2.3. CPV Price and Revenue (2009~2020)

6. Index

  • 6.1. Figure
  • 6.2. Table
Back to Top